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Abstract. Results on integration by parts and integration by substitution for the vari-
ational integral of Henstock are well-known. When real-valued functions are considered,
such results also hold for the Generalized Riemann Integral defined by Kurzweil since, in
this case, the integrals of Kurzweil and Henstock coincide. However, in a Banach-space
valued context, the Kurzweil integral properly contains that of Henstock. In the present
paper, we consider abstract vector integrals of Kurzweil and prove Substitution Formulas by
functional analytic methods. In general, Substitution Formulas need not hold for Kurzweil
vector integrals even if they are defined.
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1. PRELIMINARIES

Throughout this paper, [a, b] is a compact interval of the real line R, X and Y are
Banach spaces and L (X,Y") is the Banach space of all linear continuous functions
from X to Y.

Let C ([a,b], X) and G ([a,b], X) be respectively the Banach spaces of continuous
and of regulated functions from [a, b] to X endowed with the supremum norm which
we denote by |[|-|| .. We recall that a function f: [a,b] — X is regulated if it has only
discontinuities of the first kind, i.e. if the onesided limits tl_i)rgr f(t) and tl_i)rgl_ f(t) exist
for every ¢ € [a,b]. Let C7 ([a,b],L (X,Y)) be the set of all functions a: [a,b] —
L (X,Y) which are weakly continuous (i.e.the function t € [a,b] — a(t)x € Y is
continuous for every € X) and let G? ([a,b], L (X,Y)) be the set of all weakly
regulated functions a: [a,b] — L(X,Y) (i.e. the function t € [a,b] — a(t)z € Y is
regulated for every z € X). See [4].

15



Let a =ty < t1 < ... < t, = b be a division of [a,b]. In this case we write d =
(ti) € Dpap) and |d| = n. Given d = (t;) € Dy, and functions a: [a,b] — L (X,Y)
and f: [a,b] — X, we define

)= Z ILf (t:i) = f (i)l

and

SVala _sup{HZ ) - altio)ly:

Then V (f) = sup {Vd (f);de D[a’b]} is the variation of f and SV (a) = sup{SVy(«);
d € Diqp)} is the semivariation of a. If V' (f) < oo , then f is of bounded variation
and we write f € BV ([a,b],X). If SV (&) < o0, then a is of bounded semi-
variation and we write o € SV ([a,b],L (X,Y)). Clearly BV ([a,b],L(X,Y)) C
SV ([a,b],L(X,Y)). Let X' = L(X,R). Then SV ([a,b], L(X,R)) = BV ([a,b], X").
Moreover, for L(X) = L(X, X), SV ([a,b],L (X)) = BV ([a,b], L (X)) if and only if
X is of finite dimension.

1y € Y, il < }

For more information about these spaces, see [4].

2. BASIC DEFINITIONS AND PROPERTIES

When d = (t;) € Dy and &; € [t;1,t;] for i = 1,2,...,]d|, then d = (§;,1;) is
called a tagged division of [a, b]. We denote by T'D|, y) the set of all tagged divisions
of [a,b]. A gauge of [a,b] is a function §: [a,b] — ]0,00[ and d = (&;,t;) € T D,y is
called d-fine if [t;—1,¢;] C {t € [a,b];]t — &| <0 (&)} fori=1,2,...,]d|

In what follows we consider functions f: [a,b] — X and a: [a,b] — L (X,Y).

We say that f is Kurzweil a-integrable (we write f € K ([a,b], X)) and that
I €Y is its integral (we write I = Kf[a,b] da (t) f (t)) if given € > 0, there is a gauge
d of [a, b] such that for every o-fine d = (&;,t;) € TDjqy),

|d|

Ylat)-atil s~ [

i—1 [a,b]

da (t) f (1) H <e.

In particular, if we consider only constant gauges, then we obtain the Riemann-
Stieltjes integral f[a . da(t) f (t). We denote by R*([a,b],X) the set of all f:
[a,b] — X for which the Riemann-Stieltjes integral with respect to « exists.

In an analogous way we say that « is Kurzweil f-integrable (we write o €
Ky ([a,b],L(X,Y)) ) and that I € Y is its integral (we write I = Kf[a e (t) df (1))
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if for every £ > 0, there is a gauge ¢ of [a, b] such that for every d-fine d = (§;,¢t;) €

TDia ) u

Za(fz’) [f (t:) — f (tic1)] — K/

i—1 [a,b]

a(t) df(t)H<s

Again, when constant gauges are considered, we obtain the space of Riemann-Stieltjes
integrals [, ;) o (t) df () denoted by Ry ([a,b], L (X,Y)).

Let f € K*([a,b],X). Its indefinite integral f®: [a,b] — Y is given by f (t) =
K f[a’ g dov (s) f (s) for every t € [a,b]. Similarly, we denote the indefinite integral of
a € Ky ([a,b],L(X,Y)) by as: [a,b] — Y, that is, ay (¢ Kf[at] s) df (s) for
every t € [a,b]. When « (t) = ¢, we write simply K([a,b], ), R([a,b],X) and f
instead of K ([a,b],X), R* ([a,b],X) and f*, respectively.

We say that f is Henstock a-integrable (we write f € H® ([a,b], X)) if there is a
function F*: [a,b] — Y such that for every € > 0, there is a gauge ¢ of [a,b] such
that for every d-fine d = (&;,t;) € TDjqyy,

||

Do llats) —altio0)] f (&) = [F (1) = F* (ti)]] <.

i=1

We set Hf[a,b] da(t) f (t) = F*(b) — F (a) in this case. Analogously, « is Henstock
f-integrable (we write a € Hy ([a,b], L (X,Y"))) if there is a function As: [a,b] = Y
such that for every ¢ > 0, there is a gauge § of [a,b] such that for every d-fine
d = (&,ti) € T D),

|d|

Dol (@) [f (1) = f (ti-1)] = [Ag (0) = Ap (Ei-2)]l| < e
i=1

In this case we set Hf[a’b] a(t) df (t) = Ap (b) — Ay (a).

The inclusions H® ([a,b],X) C K“(la,b],X) and Hy ([a,b],L(X,Y)) C
Ky ([a,b],L(X,Y)) hold. Moreover, if f € H*([a,b],X), then F* (t) — F (a) =
Kf[a’t] da(t) f(t) = f*(t) — f*(a ) for every t e [a b] Analogously, given a €
H¢ (la,b],L(X,Y)), then Aj (t) — Kfa f @) =ay(t) — ay (a) for
every t € [a,b]. Similarly as above 1f a( ) =t erte H ([a,b], X) instead of

H ([a,b], X).

Theorem 1 ([2, Theorem 1.2]). If « € G? ([a,b],L(X,Y)) (or a € C([a,b],
L(X,Y))) and f € K*([a,b],X), then f* € G([a,b],X) (respectively f* €
C ([a,b],X)). Analogously, if f € G([a,b],X) (or f € C([a,b],X)) and a €
Ky ([a,b],L(X,Y)), then &5 € G ([a,b],Y) (respectively &y € C ([a,b],Y)).
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Theorem 2 ([2, Theorem 1.5]). If either o € SV ([a,b],L(X,Y)) and f €
C ([a,b],X), or a € C([a,b],L(X,Y)) and f € BV ([a,b],X), then the Riemann-
Stieltjes integrals f[a’b] da (t) f (t) and f[a,b} a(t) df (t) exist and the Integration by
Parts Formula holds:

/ da(t)f(t)w(b)f(b)w(a)f(a%/ a(t) df (2).
[a,b]

[a,b]

Theorem 3 ([9, Theorem 15]). If f € G ([a,b],X), a € SV ([a,b],L(X,Y)) and
a € G ([a,b],L(X,Y)), then f € K*([a,b],X).

By a proof analogous to that of Schwabik for Theorem 3 one can show that

Theorem 4. If f € BV ([a,b],X) and o« € G([a,b],L(X,Y)), then a €
Ky ([a,b], L (X,Y)).

Lemma 1 (Saks-Henstock) ([9, Lemma 16]).
(i) Let a: [a,b] — L(X,Y) and f € K*([a,b],X). Givene > 0, let the gauge §
of [a,b] be such that for every é-fine d = (&;,t;) € TDjqy) ,

|d|

>lat)-atl s~ |

i=1 [a,b]

da (t) f (1) H <e.

Then fora < ¢y <m <di <cp <M <dp < ... < ¢ <M < dip < b with [¢,d5] C
Inj =& (nj),n; +6(ny)| for every j,

k

2 {de) — ale,)f () - K/

=1 [e;.d;

] da(t)f(t)}H <e.

(ii) Let f: [a,b] — X and o € Ky ([a,b],L(X,Y)). If for ¢ > 0, the gauge ¢ of
[a, b] is such that for every d-fine d = (&;,t;) € T Dy ),

|d|

D al&)[f (t) = f(tia)] - K/

i=1 [a,b]

ayar o) <=

then for a < c¢; <M <dy <ca <mp<do < ... < < < dyp < b with [¢j,dj] C
Inj =& (mj),n; +6(ny)| for every j,

> {amr@)-ren-f

j=1 [Cj,dj]

a(t) df(t)}Hgs.
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3. INTEGRATION BY PARTS FORMULAS

Using the definitions it is not difficult to show that the following holds.

Theorem 5. If f € H ([a,b],X) and o € K ([a,b],L(X,Y)) (or o € Hf([a, ],
L(X,Y))) is bounded, then af € K ([a,b],Y) (respectively af € H ([a,b],Y)) and

K K
/ a(t) f(t) dt = / a(t) df (t) .
la,b] [a,b]

Corollary 1. Let a € G ([a,b],L(X,Y)) and f € H ([a,b],X) be such that
f e BV (la,b],X). Then af € K ([a,b],Y) and

" « d :K o df (t).
/M (1) f (1) dt /H () dF (t)

Proof. By Theorem 4, the Kurzweil vector integral Kf[a e (t) df (t) exists.
O

In the next corollaries, we use the fact that the Riemann-Stieltjes integrals are
special cases of the Kurzweil vector integrals.

Corollary 2. Let a € C ([a,b],L(X,Y)) and f € H ([a,b],X) be such that

f € BV (Ja,b],X). Then af € K (la,b],Y) with

Proof. Follows by Theorem 2. O

Corollary 3. If f € H ([a,b],X) and a € SV ([a,b],L(X,Y)), then af €
K ([a,b],Y) and equations (1) and (2) hold.

Proof. Follows by Theorems 1 and 2. O
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It is even true that

Theorem 6 ([5]). If f € K ([a,b],X) and o € SV ([a,b], L (X,Y)), then af €
K ([a,b],Y) and equations (1) and (2) hold.

The proof of the above theorem is due to Honig. It follows the steps of the proof
of Theorem 11 below applying Theorems 1 and 2. When the functions are real-
valued, SV ([a,b],L(R)) = BV ([a,b], L (R)) and Theorem 6 is also proved in [7,
Theorem 12.1 and Corollary 12.2].

On the other hand,

Theorem 7. If f € H ([a,b],X) and a € BV ([a,b],L(X,Y)), then af €
H ([a,b],Y) and equations (1) and (2) hold.

Proof. By hypothesis, f € H ([a,b],X). By Theorem 1, f is continuous. Then
for every € > 0, there exists 6* > 0 such that for the oscillation w(f, [¢,d]) of f over
the interval [c, d] we have w(f,[c,d]) < eif 0 < d — ¢ < §* and there is a gauge & of
[a, b] for which § (t) < 6*/2, t € [a,b], such that for every d-fine d = (&;,t;) € T'Dy, ),

géﬂmu fir) XHMN@Q%E
Thus,
i;mmﬂmu o) - Z“Mamﬂwﬂ
<§;mm{ﬂmm o) - zuﬁfwww
+§j T ew-aeisoy
|

K
<lalloe+
i=1

mw—wmuwﬁw

[ti1,tq]

However, by Corollary 3 we have af € K ([a,b],Y’) where

[ awioa-[ awai@-amio-a@iw-[ dwoio
la,b] la,b] [a,b]



and a similar formula holds also for every subinterval contained in [a,b]. Hence, for

Br, = lo(ts) — a(&)] f (t:) and B, = [ (tim1) — o (&)] f (ti—1) we have

ﬁ;7;Mdmw—a@Mfwdﬂ=§;ﬂm—mA—A;meuMuﬂ
:i 4, _/m] da(8) F (t) = Bi,_, _/[n_l,&] da(t)f(t)H
S| oo [ aaoeo) - ol
< ;/zza)a, o

because || f(t:) — (1) < w(f,[ti-1,t:]) and [[f(tio1) — F)|| < w(f, [tir,t:]) for
every t € [t;—1,t1]. The proof is complete. O

The next result can be proved by appealling to the definitions.

Theorem 8. Let a € H([a,b],L(X,Y)) and f € K%([a,b],X) (or f €
H%([a,b],X)). If f is bounded, then af € K ([a,b],Y) (respectively af €

H ([a,b],Y)) and N N
/cmwww=/ da(t) ().
[a,b]

[a,b]

Corollary 4. If « € H ([a,b],L(X,Y)) with & € SV ([a,b],L(X,Y)) and f €
G ([a,b],X), then af € K ([a,b],Y) and

K K
/ alt) f(t) dt = / da (t) f (t).
[a.b]

Proof. By Theorem 1, & € C([a,b],L(X,Y)). Then the result comes by
Theorem 3, since C ([a,b], L (X,Y)) C G ([a,b], L (X,Y)). O

Corollary 5. If « € H ([a,b],L(X,Y)) with & € SV ([a,b],L(X,Y)) and f €
C ([a,b],X), then af € K ([a,b],Y) and we have

3 " o dt = da

(3) Aﬂuwwt AM ) £ ()

and

4 da =a(b b) —al(a a) — a d
(4) AH (1) F () =a() f () —a(a)f (a) Aﬂﬁ)ﬂﬂ
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Corollary 6. If « € H ([a,b],L(X,Y)) and f € BV ([a,b],X), then af €
K ([a,b],Y) and equations (3) and (4) hold.

Proof. Follows by Theorems 1 and 2. O

More generally, we have

Theorem 9. If « € K ([a,b],L(X,Y)) and f € BV ([a,b],X), then af €
K ([a,b],Y) and both (3) and (4) hold.

Theorem 10. If o € H ([a,b],L(X,Y)) and f € BV ([a,b],X), then af €
H ([a,b],Y) and equations (3) and (4) hold.

The proof of Theorem 9 follows the steps of the proof of Theorem 12 below applying
Theorems 1 and 2. The proof of Theorem 10 is analogous to that of Theorem 7.

4. THE SUBSTITUTION FORMULAS
In this section, in addition to X and Y, W also denotes a Banach space.
4.1. Substitution formulas for the Kurzweil vector integrals.

Theorem 11. Let f: [a,b] — X, o € K¢ ([a,b],L(X,W)), g =ay: [a,b] = W
(ie, g(t) = Kf[a t}a(s) df (s) for every t € [a,b]) and v € SV ([a,b],L(W,Y)).
Then v € K, ([a,b], L (W,Y)) if and only if ya € Ky ([a,b], L (X,Y)). In this case,

(5) /[a,,,ﬂ“)“(” af (1) = /[a,bﬂ(t) dg (1),

Proof. Since @ € Kf([a,b],L (X, W)), then given ¢ > 0, there is a gauge ¢ of
[a, b] such that for every d-fine d = (&;,t;) € T'Diq ),

|d|

> {a (&) [f (t:) — f (ti1)] — K/

[ti—1,ti]

a(t) df(t)}H<a.

i=1

Taking approximated sums for ¥ f[a,b] v (t)a(t) df (t) and K f t) dg (t) we have
d] |d|
> &)@ )~ 1))~ (€ lo¢) o )
i=1

Il

ol D% & {ateir @) - f<ti_1>]—K/

[ti—1,ti]

a(t) df(t)}H:I.
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However, if v; € L (X,Y) and z; € X, then

n

> viwi = Zn:(%' —7j-1) <zn:wz> +vo(zn:a:i), n e N.

i=i j=1 i=j i=j

Thus, for z; = o (&) [f (t:) = f (ti=1)] = 5[, () df (£), v =7 (&), 70 =7 (a)
and n = |d| we have

Id| Id| Id|

>0 -6l (L) +o0( L) | < v+ It

i=1 i=i i=j

I =

|d]
provided || > x;|| < ¢ for every j € {1,2,...,|d|}, by the Saks-Henstock Lemma
i=j

(Lemma 1). O
Corollary 7. Let f: [a,b] — X, a € K¢([a,b],L(X,W)), g = & € BV
([a,b],W) and v € G ([a,b],L(W,Y)). Then v € K,(la,b],L(W,Y)), va €
Ky ([a,b],L(X,Y)) and equation (5) holds.
Proof. By Theorem 4, v € K, ([a,b],L (W,Y)). O

Corollary 8. If f € C([a,b],X), a € Ky ([a,b],L(X,W)), g = é&s: [a,b] = W
andvy € SV ([a,b],L (W,Y)), theny € Ry ([a,b], L (W,Y)), ya € K¢([a,b], L(X,Y))
and equation (5) holds.

Proof. v € Ry ([a,b],L(W,Y)) C K, ([a,b],L(W,Y)) by Theorems 1 and 2.

O

Theorem 12. Let v: [a,b] — LW)Y), a« € K7([a,b], L(X,W)), f €
BV([a,b],X) and 8 = &7: [a,b] — L(X,Y) (ie, B(t) = Kf[a,t] dy (s) a(s) for
every t € [a,b]). Then f € K”([a,b],X) if and only if af € K" ([a,b],Y). In this

K K
6 dv (t) a (t t) = dgs(t t).
(6) /H V(B a () f (#) /H B(t) £ (t)

Proof. By hypothesis, « € K7 ([a,b],L (X,W)). Hence, given ¢ > 0, there
exists a gauge 0 of [a, b] such that for every d-fine d = (&;,t;) € T D),

||

> {0 - wlae -

i=1 [ti—1,t:]

dw(t)a(t)}H <e.
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Taking approximated sums for Kf[a p Ay () o (t) f (t) and Kf[a p) 4B (t) f () we have

|d| ]
> b6 (] (6 16~ Y1500 811 £ 69|
=t i=1
||
X {pe e woeo el

However, if v; € L (X,Y) and z; € X, then

Z’Yil’i = (Z’Yz)l’o +Z (Z’YZ> (l’j 71&;1), n e N.
=1 i=1 j=1 N i=j

Hence, taking v = [y (t:) — v (tim1)] e (&) = X[, oy dy () at), zi = f (&), xo =
f (a) and n = |d|, we obtain

1< gl{ (6 — 7 ()] o (&) — K/[] d (1) (1 }H If @)
|| |d]

2|21 ) = £ i)l < < 1f @) 2V ().

|d| |d|
since || 32| = | A (t) = 7 ()l (€)= KF, o dy (B a (B} < = for every
i=j i=j
je{1,2,...,]d|}, by the Saks-Henstock Lemma (Lemma 1). O
Corollary 9. If v € G? (la,b],L(W,Y)), a € K7([a,b],L(X,W)), B =

& € SV ([a,b],L(X,Y)) and f € G([a,b],X), then f € KP®([a,b],X), af €
K7 ([a,b],Y) and equation (6) holds.

Proof. By Theorem 1, 8 € G([a,b],L(X,Y)). Then Theorem 3 implies that
f € K?(la,b], X). O

Corollary 10. If v € C?([a,b],L(W,Y)), a € K7 ([a,b],L(X,W)), f €
BV (ja,b],X) and 8 = &: [a,b] — L(X,Y), then f € R®([a,b],X), af €
K7 ([a,b],Y) and equation (6) holds.

Proof. We have f € R?([a,b], X) by Theorems 1 and 2, and R” ([a,b],X) C
KB ([a,b], X). O

Remark 1. Similar results are valid for the Riemann-Stieltjes integrals, since
the Saks-Henstock Lemma holds for R ([a,b],X) and Ry ([a,b],L (X,Y)) instead
of K*([a,b],X) and Ky ([a,b],L (X,Y)), respectively.
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4.2. Substitution formulas for the Henstock vector integrals.

The results of this subsection are straightforward applications of the definitions.

Theorem 13. Let f: [a,b] — X, o € Hy ([a,b],L(X,W)), g = &y: [a,b] = W
(ie, g(t) = Kf[a’t] a(s) df (s) for every t € [a,b]) and let v: [a,b] — L(W,Y) be
bounded. Then v € Hy ([a,b],L (W,Y)) if and only if yao € Hf ([a,b],L(X,Y)). In
this case, equation (5) holds.

Corollary 11. Let f € H ([a,b],X). If a: [a,b] — L(X,Y) is bounded, then
a € Hf([a,b], L (X,Y)) if and only if af € H ([a,b],Y). In this case,

" « d :K « df (t).
/M (1) f (1) dt /H () dF (t)

Theorem 14. Let v: [a,b] — L(W,Y), @ € H"([a,b],L(X,W)), = &":
[a,b] — L(X,Y) (ie, B(t) = Kf[a’t dvy (s)a(s) for every t € [a,b]) and let f:
[a,b] — X be bounded. Then f € HF ([a,b],X) if and only if af € H" ([a,b],Y).
In this case, equation (6) holds.

Corollary 12. Let o € H ([a,b],L (X,Y)) and f: [a,b] — X be bounded. Then
f € H% ([a,b], X) if and only if af € H ([a,b],Y). In this case,

" o d :K da .
/W (1) f (1) dt /W ) (1)

Remark 2. Similar results hold for the vector integrals of McShane, which
gives a Riemannian definition of the Bochner-Lebesgue-Stieltjes integrals when we
introduce McShane’s modification in the Henstock vector integrals ([8], [6]).
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