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RAINBOW CONNECTION IN GRAPHS
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Kathleen A. McKeon, New London, Ping Zhang, Kalamazoo

(Received July 31, 2006)

Abstract. Let G be a nontrivial connected graph on which is defined a coloring c : E(G)→
{1, 2, . . . , k}, k ∈ N, of the edges of G, where adjacent edges may be colored the same. A
path P in G is a rainbow path if no two edges of P are colored the same. The graph G
is rainbow-connected if G contains a rainbow u − v path for every two vertices u and v of
G. The minimum k for which there exists such a k-edge coloring is the rainbow connection
number rc(G) of G. If for every pair u, v of distinct vertices, G contains a rainbow u − v
geodesic, then G is strongly rainbow-connected. The minimum k for which there exists
a k-edge coloring of G that results in a strongly rainbow-connected graph is called the
strong rainbow connection number src(G) of G. Thus rc(G) 6 src(G) for every nontrivial
connected graph G. Both rc(G) and src(G) are determined for all complete multipartite
graphs G as well as other classes of graphs. For every pair a, b of integers with a > 3 and
b > (5a − 6)/3, it is shown that there exists a connected graph G such that rc(G) = a and
src(G) = b.
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MSC 2000 : 05C15, 05C38, 05C40

1. Introduction

Let G be a nontrivial connected graph on which is defined a coloring c : E(G) →
{1, 2, . . . , k}, k ∈ N, of the edges of G, where adjacent edges may be colored the

same. A u − v path P in G is a rainbow path if no two edges of P are colored

the same. The graph G is rainbow-connected (with respect to c) if G contains a

rainbow u− v path for every two vertices u and v of G. In this case, the coloring c is

called a rainbow coloring of G. If k colors are used, then c is a rainbow k-coloring.

The minimum k for which there exists a rainbow k-coloring of the edges of G is the

rainbow connection number rc(G) of G. A rainbow coloring of G using rc(G) colors

is called a minimum rainbow coloring of G.
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Let c be a rainbow coloring of a connected graph G. For two vertices u and v of G,

a rainbow u− v geodesic in G is a rainbow u− v path of length d(u, v), where d(u, v)

is the distance between u and v (the length of a shortest u−v path in G). The graph

G is strongly rainbow-connected if G contains a rainbow u− v geodesic for every two

vertices u and v of G. In this case, the coloring c is called a strong rainbow coloring

of G. The minimum k for which there exists a coloring c : E(G) → {1, 2, . . . , k}
of the edges of G such that G is strongly rainbow-connected is the strong rainbow

connection number src(G) of G. A strong rainbow coloring of G using src(G) colors

is called a minimum strong rainbow coloring of G. Thus rc(G) 6 src(G) for every

connected graph G.

Since every coloring that assigns distinct colors to the edges of a connected graph

is both a rainbow coloring and a strong rainbow coloring, every connected graph is

rainbow-connected and strongly rainbow-connected with respect to some coloring of

the edges of G. Thus the rainbow connection numbers rc(G) and src(G) are defined

for every connected graph G. Furthermore, if G is a nontrivial connected graph of

size m whose diameter (the largest distance between two vertices of G) is diam(G),

then

(1) diam(G) 6 rc(G) 6 src(G) 6 m.

To illustrate these concepts, consider the Petersen graph P of Figure 1, where a

rainbow 3-coloring of P is also shown. Thus rc(P ) 6 3. On the other hand, if u and

v are two nonadjacent vertices of P , then d(u, v) = 2 and so the length of a u − v

path is at least 2. Thus any rainbow coloring of P uses at least two colors and so

rc(P ) > 2. If P has a rainbow 2-coloring c, then there exist two adjacent edges of G

that are colored the same by c, say e = uv and f = vw are colored the same. Since

there is exactly one u − w path of length 2 in P , there is no rainbow u − w path in

P , which is a contradiction. Therefore, rc(P ) = 3.
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Figure 1. A rainbow 3-coloring and a strong rainbow 4-coloring of the Petersen graph
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Since rc(P ) = 3, it follows that src(P ) > 3. Furthermore, since the edge chromatic

number of the Petersen graph is known to be 4, any 3-coloring c of the edges of P

results in two adjacent edges uv and vw being assigned the same color. Since u, v, w

is the only u − w geodesic in P , the coloring c is not a strong rainbow coloring.

Because the 4-coloring of the edges of P shown in Figure 2 is a strong rainbow

coloring, src(P ) = 4.

As another example, consider the graph G of Figure 2(a), where a rainbow 4-

coloring c of G is also shown. In fact, c is a minimum rainbow coloring of G and so

rc(G) = 4, as we now verify.
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Figure 2. A graph G with rc(G) = src(G) = 4

Since diam(G) > 3, it follows that rc(G) > 3. Assume, to the contrary, rc(G) = 3.

Then there exists a rainbow 3-coloring c′ of G. Since every u − v path in G has

length 3, at least one of the three u − v paths in G is a rainbow u − v path, say

u, u1, v1, v is a rainbow u − v path. We may assume that c′(uu1) = 1, c′(u1v1) = 2,

and c′(v1v) = 3. (See Figure 2(b).)

If x and y are two vertices in G such that d(x, y) = 2, then G contains exactly

one x − y path of length 2, while all other x − y paths have length 4 or more. This

implies that no two adjacent edges can be colored the same. Thus we may assume,

without loss of generality, that c′(uu2) = 2 and c′(uu3) = 3. (See Figure 2(b).) Thus

{c′(vv2), c
′(vv3)} = {1, 2}. If c′(vv2) = 1 and c′(vv3) = 2, then c′(u2v2) = 3 and

c′(u3v3) = 1. In this case, there is no rainbow u1 − v3 path in G. On the other

hand, if c′(vv2) = 2 and c′(vv3) = 1, then c′(u2v2) ∈ {1, 3} and c′(u3v3) = 2. If

c′(u2v2) = 1, then there is no rainbow u2 − v3 path in G; while if c′(u2v2) = 3, there

is no rainbow u2 − v1 path in G, a contradiction. Therefore, as claimed, rc(G) = 4.

Since 4 = rc(G) 6 src(G) for the graph G of Figure 2 and the rainbow 4-coloring

of G in Figure 2(a) is also a strong rainbow 4-coloring, src(G) = 4 as well.

If G is a nontrivial connected graph of size m, then we saw in (1) that diam(G) 6

rc(G) 6 src(G) 6 m. In the following result, it is determined which connected graphs

G attain the extreme values 1, 2 or m.
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Proposition 1.1. Let G be a nontrivial connected graph of size m. Then

(a) src(G) = 1 if and only if G is a complete graph,

(b) rc(G) = 2 if and only if src(G) = 2,

(c) rc(G) = m if and only if G is a tree.

P r o o f. We first verify (a). If G is a complete graph, then the coloring that

assigns 1 to every edge of G is a strong rainbow 1-coloring of G and so src(G) = 1.

On the other hand, if G is not complete, then G contains two nonadjacent vertices

u and v. Thus each u − v geodesic in G has length at least 2 and so src(G) > 2.

To verify (b), first assume that rc(G) = 2 and so src(G) > 2 by (1). Since

rc(G) = 2, it follows that G has a rainbow 2-coloring, which implies that every two

nonadjacent vertices are connected by a rainbow path of length 2. Because such a

path is a geodesic, src(G) = 2. On the other hand, if src(G) = 2, then rc(G) 6 2 by

(1) again. Furthermore, since src(G) = 2, it follows by (a) that G is not complete

and so rc(G) > 2. Thus rc(G) = 2.

We now verify (c). Suppose first that G is not a tree. Then G contains a cycle

C : v1, v2, . . . , vk, v1, where k > 3. Then the (m − 1)-coloring of the edges of G

that assigns 1 to the edges v1v2 and v2v3 and assigns the m− 2 distinct colors from

{2, 3, . . . , m − 1} to the remaining m − 2 edges of G is a rainbow coloring. Thus

rc(G) 6 m − 1. Next, let G be a tree of size m. Assume, to the contrary, that

rc(G) 6 m − 1. Let c be a minimum rainbow coloring of G. Then there exist edges

e and f such that c(e) = c(f). Assume, without loss generality, that e = uv and

f = xy and G contains a u − y path u, v, . . . , x, y. Then there is no rainbow u − y

path in G, which is a contradiction. �

Proposition 1.1 also implies that the only connected graphs G for which rc(G) = 1

are the complete graphs and that the only connected graphs G of size m for which

src(G) = m are trees.

2. Some rainbow connection numbers of graphs

In this section, we determine the rainbow connection numbers of some well-known

graphs. We refer to the book [1] for graph-theoretical notation and terminology not

described in this paper. We begin with cycles of order n. Since diam(Cn) = ⌊n/2⌋,
it follows by (1) that src(Cn) > rc(Cn) > ⌊n/2⌋. This lower bound for rc(Cn) and

src(Cn) is nearly the exact value of these numbers.
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Proposition 2.1. For each integer n > 4, rc(Cn) = src(Cn) = ⌈n/2⌉.

P r o o f. Let Cn : v1, v2, . . . , vn, vn+1 = v1 and for each i with 1 6 i 6 n, let

ei = vivi+1. We consider two cases, according to whether n is even or n is odd.

C a s e 1. n is even. Let n = 2k for some integer k > 2. Thus src(Cn) > rc(Cn) >

diam(Cn) = k. Since the edge coloring c0 of Cn defined by c0(ei) = i for 1 6 i 6 k

and c0(ei) = i − k if k + 1 6 i 6 n is a strong rainbow k-coloring, it follows that

rc(Cn) 6 src(Cn) 6 k and so rc(Cn) = src(Cn) = k.

C a s e 2. n is odd. Then n = 2k + 1 for some integer k > 2. First define an

edge coloring c1 of Cn by c1(ei) = i for 1 6 i 6 k + 1 and c1(ei) = i − k − 1 if

k + 2 6 i 6 n. Since c1 is a strong rainbow (k + 1)-coloring of Cn, it follows that

rc(Cn) 6 src(Cn) 6 k + 1.

Since rc(Cn) > diam(Cn) = k, it follows that rc(Cn) = k or rc(Cn) = k + 1. We

claim that rc(Cn) = k + 1. Assume, to the contrary, that rc(Cn) = k. Let c′ be

a rainbow k-coloring of Cn and let u and v be two antipodal vertices of Cn. Then

the u − v geodesic in Cn is a rainbow path and the other u − v path in Cn is not

a rainbow path since it has length k + 1. Suppose, without loss of generality, that

c′(vk+1vk+2) = k.

Consider the vertices v1, vk+1, and vk+2. Since the v1 − vk+1 geodesic P : v1,

v2, . . . , vk+1 is a rainbow path and the v1 − vk+2 geodesic Q : v1, vn, vn−1, . . . , vk+2

is a rainbow path, some edge on P is colored k as is some edge on Q. Since the

v2 − vk+2 geodesic v2, v3, . . . , vk+2 is a rainbow path, it follows that c′(v1v2) = k.

Similarly, the vn − vk+1 geodesic vn, vn−1, vn−2, . . . , vk+1 is a rainbow path and so

c′(vnv1) = k. Thus c′(v1v2) = c′(vnv1) = k. This implies that there is no rainbow

v2 − vn path in G, producing a contradiction. Thus rc(Cn) = src(Cn) = k + 1. �

A well-known class of graphs constructed from cycles are the wheels. For n > 3,

the wheel Wn is defined as Cn + K1, the join of Cn and K1, constructed by joining

a new vertex to every vertex of Cn. Thus W3 = K4. Next, we determine rainbow

connection numbers of wheels.

Proposition 2.2. For n > 3, the rainbow connection number of the wheel Wn is

rc(Wn) =











1 if n = 3,

2 if 4 6 n 6 6,

3 if n > 7.

P r o o f. Suppose that Wn consists of an n-cycle Cn : v1, v2, . . . , vn, vn+1 = v1

and another vertex v joined to every vertex of Cn. Since W3 = K4, it follows by

Proposition 1.1 that rc(W3) = 1. For 4 6 n 6 6, the wheel Wn is not complete and
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so rc(Wn) > 2. Since the 2-coloring c : E(Wn) → {1, 2} defined by c(viv) = 1 if i is

odd, c(viv) = 2 if i is even, and c(vivi+1) = 1 if i is odd, and c(vivi+1) = 2 if i is

even is a rainbow coloring, it follows that rc(Wn) = 2 for 4 6 n 6 6.

Finally, suppose that n > 7. Since the 3-coloring c : E(Wn) → {1, 2, 3} defined by
c(viv) = 1 if i is odd, c(viv) = 2 if i is even, and c(e) = 3 for each e ∈ E(Cn) is a

rainbow coloring, it follows that rc(Wn) 6 3. It remains to show that rc(Wn) > 3.

Since Wn is not complete, rc(Wn) > 2. Assume, to the contrary, that rc(Wn) =

2. Let c′ be a rainbow 2-coloring of Wn. Without loss of generality, assume that

c′(v1v) = 1. For each i with 4 6 i 6 n− 2, v1, v, vi is the only v1 − vi path of length

2 in Wn and so c′(viv) = 2 for 4 6 i 6 n − 2. Since c(v4v) = 2, it follows that

c(vnv) = 1. This forces c(v3v) = 2, which in turn forces c(vn−1v) = 1. Similarly,

c(vn−1v) = 1 forces c(v2v) = 2. Since c(v2v) = 2 and c(v5v) = 2, there is no rainbow

v2 − v5 path in Wn, which is a contradiction. Therefore, rc(Wn) = 3 for n > 7. �

Proposition 2.3. For n > 3, the strong rainbow connection number of the wheel

Wn is

src(Wn) = ⌈n/3⌉.

P r o o f. Suppose that Wn consists of an n-cycle Cn : v1, v2, . . . , vn, vn+1 = v1

and another vertex v joined to every vertex of Cn. Since W3 = K4, it follows by

Proposition 1.1 that src(W3) = 1. If 4 6 n 6 6, then rc(Wn) = 2 by Proposition 2.2

and so src(Wn) = 2 by Proposition 1.1. Therefore, src(Wn) = ⌈n/3⌉ for 4 6 n 6 6.

Thus we may assume n > 7. Then there is an integer k such that 3k−2 6 n 6 3k.

We first show that src(Wn) > k. Assume, to the contrary, that src(Wn) 6 k − 1.

Let c be a strong rainbow (k − 1)-coloring of Wn. Since deg v = n > 3(k − 1), there

exists S ⊆ V (Cn) such that |S| = 4 and all edges in {uv : u ∈ S} are colored the
same. Thus there exist at least two vertices u′, u′′ ∈ S such that dCn

(u′, u′′) > 3

and dWn
(u′, u′′) = 2. Since u′, v, u′′ is the only u′ − u′′ geodesic in Wn, it follows

that there is no rainbow u′ − u′′ geodesic in Wn, which is a contradiction. Thus

src(Wn) > k.

To show that src(Wn) 6 k, we provide a strong rainbow k-coloring c : E(Wn) →
{1, 2, . . . , k} of Wn defined by

c(e) =











1 if e = vivi+1 and i is odd,

2 if e = vivi+1 and i is even,

j + 1 if e = viv if i ∈ {3j + 1, 3j + 2, 3j + 3} for 0 6 j 6 k − 1.

Therefore, src(Wn) = k = ⌈n/3⌉ for n > 7 as well. �
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We now determine the rainbow connection numbers of all complete multipartite

graphs, beginning with the strong connection number of the complete bipartite graph

Ks,t with 1 6 s 6 t.

Theorem 2.4. For integers s and t with 1 6 s 6 t,

src(Ks,t) =
⌈

s
√

t
⌉

.

P r o o f. Since src(K1,t) = t, the result follows for s = 1. So we may assume

that s > 2. Let
⌈

s
√

t
⌉

= k. Hence

1 6 k − 1 <
s
√

t 6 k.

Therefore, (k − 1)s < t 6 ks and so (k − 1)s + 1 6 t 6 ks.

First, we show that src(Ks,t) > k. Assume, to the contrary, that src(Ks,t) 6 k−1.

Then there exists a strong rainbow (k − 1)-coloring of Ks,t. Let U and W be the

partite sets of Ks,t, where |U | = s and |W | = t. Suppose that U = {u1, u2, . . . , us}.
Let there be given a strong rainbow (k−1)-coloring c ofKs,t. For each vertex w ∈ W ,

we can associate an ordered s-tuple code(w) = (a1, a2, . . . , as) called the color code

of w, where ai = c(uiw) for 1 6 i 6 s. Since 1 6 ai 6 k − 1 for each i (1 6 i 6 s),

the number of distinct color codes of the vertices of W is at most (k− 1)s. However,

since t > (k − 1)s, there exists at least two distinct vertices w′ and w′′ of W such

that code(w′) = code(w′′). Since c(uiw
′) = c(uiw

′′) for all i (1 6 i 6 s), it follows

that Ks,t contains no rainbow w′−w′′ geodesic in Ks,t, contradicting our assumption

that c is a strong rainbow (k − 1)-coloring of Ks,t. Thus, as claimed, src(Ks,t) > k.

Next, we show that src(Ks,t) 6 k, which we establish by providing a strong rain-

bow k-coloring of Ks,t. Let A = {1, 2, . . . , k} and B = {1, 2, . . . , k − 1}. The sets
As and Bs are Cartesian products of the s sets A and s sets B, respectively. Thus

|As| = ks and |Bs| = (k − 1)s. Hence |Bs| < t 6 |As|. Let W = {w1, w2, . . . , wt},
where the vertices of W are labeled with t elements of As and such that the ver-

tices w1, w2, . . . , w(k−1)s are labeled by the (k − 1)s elements of Bs. For each i with

1 6 i 6 t, denote the label of wi by

(2) wi = (wi,1, wi,2, . . . , wi,s).

For each i with 1 6 i 6 (k − 1)s, we have 1 6 wi,j 6 k − 1 for 1 6 j 6 s. We now

define a coloring c : E(Ks,t) → {1, 2, . . . , k} of the edges of Ks,t by

c(wiuj) = wi,j where 1 6 i 6 t and 1 6 j 6 s.
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Thus for 1 6 i 6 t, the color code code(wi) of wi provided by the coloring c is in fact

wi, as described in (2). Hence distinct vertices in W have distinct color codes.

We show that c is a strong rainbow k-coloring of Ks,t. Certainly, for wi ∈ W

and uj ∈ U , the wi − uj path wi, uj is a rainbow geodesic. Let wa and wb be two

vertices of W . Since these vertices have distinct color codes, there exists some l with

1 6 l 6 s such that code(wa) and code(wb) have different l-th coordinates. Thus

c(waul) 6= c(wbul) and wa, ul, wb is a rainbow wa − wb geodesic in Ks,t. We now

consider two vertices up and uq in U , where 1 6 p < q 6 s. Since there exists a

vertex wi ∈ W with 1 6 i 6 (k−1)s such that wi,p 6= wi,q, it follows that up, wi, uq is

a rainbow up−uq geodesic in Ks,t. Thus, as claimed, c is a strong rainbow k-coloring

of Ks,t and so src(Ks,t) 6 k. �

With the aid of Theorem 2.4, we are now able to determine the strong rainbow

connection numbers of all complete multipartite graphs.

Theorem 2.5. Let G = Kn1,n2,...,nk
be a complete k-partite graph, where k > 3

and n1 6 n2 6 . . . 6 nk such that s =
k−1
∑

i=1

ni and t = nk. Then

src(G) =











1 if nk = 1,

2 if nk > 2 and s > t,
⌈

s
√

t
⌉

if s 6 t.

P r o o f. Let n =
k
∑

i=1

ni. If nk = 1, then G = Kn and by Proposition 1.1,

src(G) = 1. Suppose next that nk > 2 and s > t. Since nk > 2, it follows that

G 6= Kn and so src(G) > 2 by Proposition 1.1. It remains to show that src(G) 6 2

in this case.

Partition the multiset S = {n1, n2, . . . , nk} into two submultisets

A = {a1, a2, . . . , ap} and B = {b1, b2, . . . , bq},

where then p + q = k, such that

a =

p
∑

i=1

ai 6

q
∑

j=1

bj = b

and b− a is the minimum nonnegative integer among all such partitions of S. Hence

Ka,b is a spanning subgraph of G. Since diam(Ka,b) = 2, for every two nonadjacent
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vertices u and v of Ka,b, a path P is a u − v geodesic in Ka,b if and only if P is a

u − v geodesic in G. Thus, from Theorem 2.4,

src(G) 6 src(Ka,b) =
⌈

a
√

b
⌉

.

We claim that b 6 2a. Assume, to the contrary, that b > 2a. Since s > t, it follows

that q > 2. We consider two cases, according to a 6 3 or a > 4. If G is a complete k-

partite graph with a 6 3, then the only ordered pairs (a, b) for Ka,b are: (2, 3), (2, 4),

(3, 3), (3, 4), (3, 5), (3, 6). In all cases, src(G) 6 src(Ka,b) =
⌈

a
√

b
⌉

= 2. Hence we

may assume that a > 4. Let b1 be the smallest element of B. Hence a + b1 > b− b1.

Because a > 4, it follows that

b1 >
b − a

2
>

2a − a

2
>

3a − a

2
= a.

Let A′ = {b1} and let the multiset B′ = S−{b1}. Since b2 ∈ B′, b1 6 b2, and a < b1,

this contradicts the defining properties of the sets A and B. Hence, as claimed,

b 6 2a. Thus

src(G) 6
⌈

a
√

b
⌉

6
⌈

a
√

2a
⌉

= 2,

giving us the desired result.

Next, suppose that s 6 t. Let W be the unique independent set of nk = t vertices

of G. Since Ks,t is a connected spanning subgraph of G, it follows again, since

diam(G) = 2, that

src(G) 6 src(Ks,t) =
⌈

s
√

t
⌉

.

We claim that src(G) =
⌈

s
√

t
⌉

. Assume, to the contrary, that src(G) = l <
⌈

s
√

t
⌉

.

Then t > ls. This implies that there exists a strong rainbow l-coloring c of G. Since

every vertex of G belonging to W has degree s in G, the coloring c produces a color

code code(w) for each vertex w of W consisting of an ordered s-tuple, each entry of

which is an element of {1, 2, . . . , l}. Since the number of distinct color codes for the
vertices of W is at most ls and |W | = t > ls, there exist two vertices w′ and w′′ in

W having the same color code. This, however, implies that the two edges in each

w′ −w′′ geodesic in G have the same color, contradicting the assumption that c is a

strong rainbow l-coloring of G. �

According to Theorems 2.4 and 2.5, the strong rainbow connection number of a

complete multipartite graph can be arbitrarily large. This is not the case for the

rainbow connection number of a complete multipartite graph however, as we show

next. We begin with complete bipartite graphs.
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Theorem 2.6. For integers s and t with 2 6 s 6 t,

rc(Ks,t) = min{
⌈

s
√

t
⌉

, 4}.

P r o o f. First, observe that for 2 6 s 6 t,
⌈

s
√

t
⌉

> 2. Let U and W be the

partite sets of Ks,t, where |U | = s and |W | = t. Suppose that U = {u1, u2, . . . , us}.
We consider three cases.

C a s e 1.
⌈

s
√

t
⌉

= 2. Then s 6 t 6 2s. Since

2 6 rc(Ks,t) 6 src(Ks,t) =
⌈

s
√

t
⌉

= 2,

it follows that rc(Ks,t) = 2.

C a s e 2.
⌈

s
√

t
⌉

= 3. Then 2s + 1 6 t 6 3s. Since

2 6 rc(Ks,t) 6 src(Ks,t) =
⌈

s
√

t
⌉

= 3,

it follows that rc(Ks,t) = 2 or rc(Ks,t) = 3. We claim that rc(Ks,t) = 3. Assume,

to the contrary, that there exists a rainbow 2-coloring of Ks,t. Corresponding to

this rainbow 2-coloring of Ks,t, there is a color code code(w) assigned to each vertex

w ∈ W , consisting of an ordered s-tuple (a1, a2, . . . , as), where ai = c(uiw) ∈ {1, 2}
for 1 6 i 6 s. Since t > 2s, there exist two distinct vertices w′ and w′′ of W such

that code(w′) = code(w′′). Since the edges of every w′ − w′′ path of length 2 are

colored the same, there is no rainbow w′ − w′′ path in Ks,t, a contradiction. Thus,

as claimed, rc(Ks,t) = 3.

C a s e 3.
⌈

s
√

t
⌉

> 4. Then t > 3s + 1. We claim that rc(Ks,t) = 4. First, we show

that rc(Ks,t) > 4. Assume, to the contrary, that there exists a rainbow 3-coloring

of Ks,t. In this case, corresponding to this rainbow 3-coloring of Ks,t, there is a

color code, code(w), assigned to each vertex w ∈ W , consisting of an ordered s-tuple

(a1, a2, . . . , as), where ai = c(uiw) ∈ {1, 2, 3} for 1 6 i 6 s. Since t > 3s, there exist

two distinct vertices w′ and w′′ of W such that code(w′) = code(w′′). Since every

w′ − w′′ path in Ks,t has even length, the only possible rainbow w′ − w′′ path must

have length 2. However, since code(w′) = code(w′′), the colors of the edges of every

w′ − w′′ path of length 2 are the same. Hence there is no rainbow w′ − w′′ path in

Ks,t, a contradiction. Thus, as claimed, rc(Ks,t) > 4.

To verify that rc(Ks,t) 6 4, we show that there exists a rainbow 4-coloring of

Ks,t. Let A = {1, 2, 3}, W = {w1, w2, . . . , wt}, W ′ = {w1, w2, . . . , w3s}, and W ′′ =

W − W ′. Assign to the vertices in W ′ the 3s distinct elements of As and assign

to the vertices in W ′′ the identical code whose first coordinate is 4 and all whose

remaining coordinates are 3. Corresponding to this assignment of codes is a coloring
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of the edges of Ks,t, where c(wiuj) = k if the jth coordinate of code(wi) is k. We

claim that this coloring is, in fact, a rainbow 4-coloring of Ks,t. Let x and y be two

nonadjacent vertices of Ks,t. Suppose first that x, y ∈ W . We consider three cases.

C a s e i. x, y ∈ W ′. Since code(x) 6= code(y), there exists i with 1 6 i 6 s such

that code(x) and code(y) have different ith coordinates. Then the path x, ui, y is a

rainbow x − y path of length 2 in Ks,t.

C a s e ii. x ∈ W ′ and y ∈ W ′′. Suppose that the first coordinate of code(x) is a,

where 1 6 a 6 3. Then x, u1, y is a rainbow x − y path of length 2 in Ks,t whose

edges are colored a and 4.

C a s e iii. x, y ∈ W ′′. Let z ∈ W ′ such that the first coordinate of code(z) is 1

and the second coordinate of code(z) is 2. Then x, u1, z, u2, y is a rainbow x−y path

of length 4 in Ks,t whose edges are colored 4, 1, 2, 3, respectively.

Finally, suppose that x, y ∈ U . Then x = ui and y = uj, where 1 6 i < j 6 s.

Then there exists a vertex w ∈ W ′ whose ith and jth coordinates are distinct. Then

x, w, y is a rainbow x − y path in Ks,t.

Thus this coloring is a rainbow 4-coloring of Ks,t and so rc(Ks,t) = 4 in this case.

�

Next, we determine rainbow connection numbers of all complete multipartite

graphs.

Theorem 2.7. Let G = Kn1,n2,...,nk
be a complete k-partite graph, where k > 3

and n1 6 n2 6 . . . 6 nk such that s =
k−1
∑

i=1

ni and t = nk. Then

rc(G) =











1 if nk = 1,

2 if nk > 2 and s > t,

min
{⌈

s
√

t
⌉

, 3
}

if s 6 t.

P r o o f. Let n = s + t =
k
∑

i=1

ni. If nk = 1, then G = Kn and by Proposition 1.1,

rc(G) = 1. Suppose next that nk > 2 and s > t. By Theorem 2.5, src(G) = 2 and so

rc(G) = 2 by Proposition 1.1.

Next, suppose that s 6 t. Since nk > 2, it follows that G 6= Kn and so rc(G) > 2.

By Theorem 2.5, src(G) =
⌈

s
√

t
⌉

and so rc(G) 6
⌈

s
√

t
⌉

. To show that rc(G) 6 3 as

well, we provide a rainbow 3-coloring of G. Let V1, V2, . . . , Vk be the partite sets of

G with

Vi = {vi,1, vi,2, . . . , vi,ni
}
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for 1 6 i 6 k. Furthermore, let

U = V1 ∪ V2 ∪ . . . ∪ Vk−1 = {u1, u2, . . . , us}

such that ui = vk−1,i for 1 6 i 6 nk−1. Thus |U | = s. Define a coloring c∗ of the

edges of G by

c∗(e) =























1 if e = vi,jvi+1,j for 1 6 i 6 k − 2 and 1 6 j 6 ni or

if e = ulvk,l for 1 6 l 6 s,

2 if e = v1,jvk,l for 1 6 j 6 n1 and s + 1 6 l 6 t,

3 otherwise.

Let x and y be two nonadjacent vertices of G. Then x, y ∈ Vi for some i with

1 6 i 6 k. Let x = vi,p and y = vi,q, where 1 6 p < q 6 ni. If 1 6 i 6 k − 1, then

x, vi+1,p, y is a rainbow x − y path in G whose edges are colored 1 and 3. Thus we

may assume that i = k. If 1 6 p < q 6 s, then x, up, y is a rainbow x − y path in G

whose edges are colored 1 and 3. If s+1 6 p < q 6 t, then x, v1,1, v2,1, y is a rainbow

x − y path in G whose edges are colored 2, 1 and 3, respectively. If 1 6 p 6 s and

s + 1 6 q 6 t, then x, v1,1, y is a rainbow x − y path whose edges are colored 3 and

2. Thus rc(G) 6 3. Therefore, as claimed, rc(G) 6 min
{⌈

s
√

t
⌉

, 3
}

.

Assume, to the contrary, that rc(G) < min
{⌈

s
√

t
⌉

, 3
}

6 3. Since rc(G) > 2,

it follows that rc(G) = 2. Let c′ be a rainbow 2-coloring of G. Thus, we can

associate a color code code(w) = (a1, a2, . . . , as) to each vertex w ∈ W , where

ai = c(uiw) ∈ {1, 2} for 1 6 i 6 s. Since s
√

t > 2, it follows that t > 2s and so there

exist two distinct vertices w′ and w′′ of W such that code(w′) = code(w′′). Hence

the two edges of each w′ − w′′ path of length 2 are colored the same and so there

is no rainbow w′ − w′′ path in Ks,t, producing a contradiction. Thus, as claimed,

rc(Ks,t) = 3 = min
{⌈

s
√

t
⌉

, 3
}

in this case. �

3. On rainbow connection numbers with prescribed values

We have seen that rc(G) 6 src(G) for every nontrivial connected graph G. By

Proposition 1.1, it follows that for every positive integer a and for every tree T of

size a, rc(T ) = src(T ) = a. Furthermore, for a ∈ {1, 2}, rc(G) = a if and only if

src(G) = a. If a = 3 and b > 4, then by Propositions 2.2 and 2.3, rc(W3b) = 3 and

src(W3b) = b. For a > 4, we have the following.
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Theorem 3.1. Let a and b be integers with a > 4 and b > (5a − 6)/3. Then

there exists a connected graph G such that rc(G) = a and src(G) = b.

P r o o f. Let n = 3b − 3a + 6 and let Wn be the wheel consisting of an n-cycle

Cn : v1, v2, . . . , vn, v1 and another vertex v joined to every vertex of Cn. Let G be

the graph constructed from Wn and the path Pa−1 : u1, u2, . . . , ua−1 of order a − 1

by identifying v and ua−1.

First, we show that rc(G) = a. Since b > (5a − 6)/3 and a > 4, it follows that

b > a and so n = 3b − 3a + 6 > 7. By Proposition 2.2, we then have rc(Wn) = 3.

Define a coloring c of the graph G by

c(e) =























i if e = uiui+1 for 1 6 i 6 a − 2,

a if e = viv and i is odd,

a − 1 if e = viv and i is even,

1 otherwise.

Since c is a rainbow a-coloring of the edges of G, it follows that rc(G) 6 a.

It remains to show that rc(G) > a. Assume, to the contrary, that rc(G) 6 a − 1.

Let c′ be a rainbow (a− 1)-coloring of G. Since the path u1, u2, . . . , ua−1 is the only

u1 − ua−1 path in G, the edges of this path must be colored differently by c′. We

may assume, without loss of generality, that c′(uiui+1) = i for 1 6 i 6 a − 2. For

each j with 1 6 j 6 3b − 3a + 6, there is a unique u1 − vj path of length a − 1 in

G and so c′(vvj) = a − 1 for 1 6 j 6 3b − 3a + 6. Consider the vertices v1 and

va+1. Since b > (5a− 6)/3, any v1 − va+1 path of length a− 1 or less must contain v

and thus two edges colored a − 1, contradicting our assumption that c′ is a rainbow

(a − 1)-coloring of G. This implies that rc(G) > a and so rc(G) = a.

Next, we show that src(G) = b. Since n = 3b − 3a + 6 = 3(b − a + 2) > 7, it

follows by Proposition 2.3 that src(Wn) = b − a + 2. Let c1 be a strong rainbow

(b − a + 2)-coloring of Wn. Define a coloring c of the graph G by

c(e) =

{

c1(e) if e ∈ E(Wn),

b − a + 2 + i if e = uiui+1 for 1 6 i 6 a − 2.

Since c is a strong rainbow b-coloring of G, it follows that src(G) 6 b.

It remains to show that src(G) > b. Assume, to the contrary, that src(G) 6 b− 1.

Let c∗ be a strong rainbow (b − 1)-coloring of G. We may assume, without loss of

generality, that c∗(uiui+1) = i for 1 6 i 6 a−2. For each j with 1 6 j 6 3b−3a+6,

there is a unique u1 − vj geodesic in G, implying c∗(vvj) ∈ C = {a− 1, a, . . . , b− 1}.
Let S = {vvj : 1 6 j 6 3b − 3a + 6}. Then |S| = 3b − 3a + 6 and |C| = b − a + 1.

Since at most three edges in S can be colored the same, the b− a+1 colors in C can
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color at most 3(b− a+1) = 3b− 3a+3 edges, producing a contradiction. Therefore,

src(G) > b and so src(G) = b. �

Combining Propositions 1.1, 2.2, 2.3 and Theorem 3.1, we have the following.

Corollary 3.2. Let a and b be positive integers. If a = b or 3 6 a < b and

b > (5a − 6)/3, then there exists a connected graph G such that rc(G) = a and

src(G) = b.

We conclude with two conjectures and a result.

Conjecture 3.3. Let a and b be positive integers. Then there exists a connected

graphG such that rc(G) = a and src(G) = b if and only if a = b ∈ {1, 2} or 3 6 a 6 b.

It is easy to see that if H is a connected spanning subgraph of a nontrivial (con-

nected) graph G, then rc(G) 6 rc(H). We have already noted that if, in addition,

diam(H) = 2, then src(G) 6 src(H). However, the question arises as to whether this

is true when diam(H) > 3.

Conjecture 3.4. If H is a connected spanning subgraph of a nontrivial (con-

nected) graph G, then src(G) 6 src(H).

If Conjecture 3.4 is true, then for every nontrivial connected graph G of order n,

diam(G) 6 rc(G) 6 src(G) 6 n − 1.

The following can be proved immediately.

Proposition 3.5. For each triple d, k, n of integers with 2 6 d 6 k 6 n − 1,

there exists a connected graph G of order n with diam(G) = d such that rc(G) =

src(G) = k.
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