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Abstract. We shall introduce the class of strongly cancellative multiplicative monoids
which contains the class of all totally ordered cancellative monoids and it is contained
in the class of all cancellative monoids. If G is a strongly cancellative monoid such that
hG ⊆ Gh for each h ∈ G and if R is a ring such that aR ⊆ Ra for each a ∈ R, then the class
of all non-singular left R-modules is a cover class if and only if the class of all non-singular
left RG-modules is a cover class. These two conditions are also equivalent whenever we
replace the strongly cancellative monoid G by the totally ordered cancellative monoid or
by the totally ordered group.
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In what follows, R stands for an associative ring with the identity element and

R-mod denotes the category of all unitary left R-modules. If G is a multiplicative

monoid with the unit element e, then RG will denote the monoid ring over R con-

sisting of all elements of the form
n
∑

i=1

rigi with ri ∈ R, gi ∈ G, i = 1, . . . , n, where the

addition is given naturally and the multiplication is given by
( n

∑

i=1

rigi

)( m
∑

j=1

sjhj

)

=

n
∑

i=1

m
∑

j=1

risjgihj . Recall, that a monoid G is called left cancellative if for any three

elements h, g1, g2 ∈ G the equality hg1 = hg2 implies that g1 = g2. The right can-

cellative monoid is defined similarly and G is called cancellative if it is both left and

right cancellative. The basic properties of rings and modules can be found in [1].

The research has been partially supported by the Grant Agency of the Czech Republic,
grant #GAČR 201/06/0510 and also by the institutional grant MSM 0021620839.
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A class G of modules is called abstract, if it is closed under isomorphic copies.

Recall that a hereditary torsion theory τR = (Tτ ,Fτ ), or simply τ = (T ,F), for

the category R-mod consists of two abstract classes T and F , the τ-torsion class

and the τ-torsionfree class, respectively, such that Hom (T, F ) = 0 whenever T ∈ T

and F ∈ F , the class T is closed under submodules, factor-modules, extensions

and arbitrary direct sums, the class F is closed under submodules, extensions and

arbitrary direct products and for each module M there exists a short exact sequence

0 → T → M → F → 0 such that T ∈ T and F ∈ F . It is easy to see that

every module M contains the unique largest τ -torsion submodule (isomorphic to T ),

which is called the τ-torsion part of the module M and it is usually denoted by τ(M).

Associated to each hereditary torsion theory τ is the Gabriel filter Lτ (or simply L)

of left ideals of R consisting of all the left ideals I 6 R such that R/I ∈ T . Recall

that τ is said to be of finite type, if L contains a cofinal subset of finitely generated

left ideals, i.e. if every element of L contains a finitely generated left ideal of R lying

in L.

For a moduleM , a submoduleK is called essential inM ifK∩L 6= 0 for each non-

zero submodule L of M and the singular submodule Z(M) consists of all elements

a ∈ M , the annihilator left ideal (0 : a)R = {r ∈ R; ra = 0}, or simply (0 : a),

of which is essential in R. Goldie’s torsion theory for the category R-mod is the

hereditary torsion theory σ = (T ,F), where T = {M ∈ R-mod; Z(M/Z(M)) =

M/Z(M)} and F = {M ∈ R-mod; Z(M) = 0}. Note, that throughout this paper

the letter σ will always denote Goldie’s torsion theory and that the modules from

the class Fσ are usually called non-singular modules. A ring R is said to be (left)

non-singular if it is non-singular as a left R-module. For more details on torsion

theories we refer to [11] or [10].

If G is an abstract class of modules, then a homomorphism ϕ : G → M with G ∈ G

is called a G-precover of the module M , if for each homomorphism f : F → M with

F ∈ G there exists a homomorphism g : F → G such that ϕg = f . A G-precover

ϕ of M is said to be a G-cover, if every endomorphism f of G with ϕf = ϕ is an

automorphism of the module G. An abstract class G of modules is called a precover

(cover) class, if every module has a G-precover (G-cover). A more detailed study of

precovers and covers can be found in [15].

Recently, in [4; Corollary 3], it has been proved that for each hereditary torsion

theory τ with τ > σ in the usual sense that Tσ ⊆ Tτ the class of all τ -torsionfree

modules is a precover class if and only if it is a cover class and these conditions

are satisfied exactly when the torsion theory τ is of finite type. Moreover, one

of the main results in [5] states that these conditions are equivalent for Goldie’s

torsion theory for all members of the countable set M = {R, R/σ(R), R[x1, . . . , xn],

R[x1, . . . , xn]/σ(R[x1, . . . , xn]), n < ω} of rings whenever they are equivalent for an
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arbitrary member of this set. Moreover, in [6] it has been shown that if RG is a

non-singular ring such that the class of all non-singular RG-modules is a cover class,

then so is that of R-modules. Furthermore, if G is a well-ordered cancellative monoid

such that for all elements g, h ∈ G with g < h there is l ∈ G such that lg = h, then

the class of all non-singular R-modules is a cover class if and only if the class of all

non-singular RG-modules is a cover class.

The purpose of this note is to introduce the class of strongly cancellative monoids

which lies between the classes of all totally ordered cancellative monoids and the

class of all cancellative monoids. The main results of this paper can be formulated

as follows.

Theorem. Let G be a monoid and let R be a ring such that aR ⊆ Ra for each

a ∈ R. Then the class of all non-singular R-modules is a cover class if and only if the

class of all non-singular RG-modules is a cover class provided one of the following

conditions holds:

(i) G is a strongly cancellative monoid such that hG ⊆ Gh for all h ∈ G;

(ii) G is a totally ordered cancellative monoid such that hG ⊆ Gh for all h ∈ G;

(iii) G is a totally ordered group.

P r o o f. With respect to [4; Corollary 3] it suffices to use Theorems 10, 12 and

13 presented below. �

Definition 1. We shall say that a monoid G is strongly cancellative, if to each

finite subset F = {g1, . . . , gn} of G it is associated an index i ∈ {1, . . . , n} such

that for any two finite subsets F = {g1, . . . , gn} and H = {h1, . . . , hm} of G with

associated indices i ∈ {1, . . . , n} and j ∈ {1, . . . , m} the product hjgi is different from

all other products hkgl with relevant indices k and l. We shall also say that gi is

the element corresponding to the set F = {g1, . . . , gn} under the strong cancellation

law.

R em a r k 2. Note, that the index in the above definition need not be determined

uniquely. So, if we shall speak about this index in what follows, then we shall

mean one of the indices having the property described in the definition. Further,

every strongly cancellative monoid is cancellative, i.e. it satisfies the left and right

cancellation laws. Clearly, for the subsets {g} and {h1, h2} of G we necessarily have

gh1 6= gh2 and h1g 6= h2g.

Lemma 3. Let R be a ring and let G be a strongly cancellative monoid and

let u =
n
∑

k=1

rkgk be a non-zero element of the ring RG such that rk 6= 0 for each

k = 1, . . . , n. If K is a left ideal of the ring R such that the left ideal J = (RGK : u)
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is essential in RG, then the left ideal I = (K : ri) is essential in R, i being the index

corresponding to the set {g1, . . . , gn} under the strong cancellation law.

P r o o f. Proving indirectly let us suppose that there exists a non-zero left ideal

L of R such that L∩I = 0. Now RGL is a non-zero left ideal of RG and we are going

to show that RGL∩ J = 0. Assume, on the contrary, that v =
m
∑

l=1

slhl is a non-zero

element of RGL∩ J with all the coefficients non-zero. By the hypothesis there is an

index j ∈ {1, . . . , m} such that the product hjgi is different from all other products

hlgk with relevant indices l and k. Then v ∈ J yields vu =
n
∑

k=1

m
∑

l=1

slrkhlgk ∈ RGK

and consequently the coefficient sjri at hjgi belongs to K. On the other hand,

0 6= sj ∈ L means that sj /∈ I, hence sjri /∈ K, which is a contradiction finishing the

proof. �

Theorem 4. If G is a strongly cancellative monoid, then the equalities Z(RG) =

Z(R)G and σ(RG) = σ(R)G hold. Especially, a ring R is non-singular if and only if

the ring RG is so.

P r o o f. We start with the equality Z(RG) = Z(R)G. The inclusion Z(R)G ⊆

Z(RG) holds by [6; Proposition 6]. In order to prove the converse let u =
n
∑

k=1

rkgk ∈

Z(RG) be an arbitrary non-zero element such that rk 6= 0 for each k = 1, . . . , n.

Then (0 : u) 6′ RG and so (0 : ri) 6′ R by Lemma 3 for the index i ∈ {1, . . . , n}

corresponding to the subset {g1, . . . , gn} of G by the strong cancellation property.

Hence ri ∈ Z(R) yields that rigi ∈ Z(R)G ⊆ Z(RG). Thus u − rigi ∈ Z(RG) and

continuing by the induction we finally obtain that u =
n
∑

k=1

rkgk ∈ Z(R)G, as we

wished to show.

Now we are going to finish the proof in the similar way. By [6; Proposition 6] we

know that σ(R)G ⊆ σ(RG) and thus we shall prove the equality. So, let 0 6= u =
n
∑

k=1

rkgk be an arbitrary element of σ(RG) such that rk 6= 0 for each k = 1, . . . , n.

Then (Z(RG) : u) is essential in RG and so the left annihilator ideal (Z(R) : ri) is

essential in R by Lemma 3 in view of the equality Z(RG) = Z(R)G proved in the

first part of the proof, i ∈ {1, . . . , n} being the index corresponding to the subset

{g1, . . . , gn} of G under the strong cancellation property of G. Thus ri ∈ σ(R) gives

that rigi ∈ σ(R)G ⊆ σ(RG). From this we infer that u − rigi ∈ σ(RG) and we

can proceed by the induction. Finally we obtain that u =
n
∑

k=1

rkgk ∈ σ(R)G, as we

wished to show. The rest is now obvious. �
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Corollary 5. Let G be a strongly cancellative monoid and let u =
n
∑

k=1

rkgk be

a non-zero element of the ring RG. If the left annihilator ideal (0 : u) is essential in

RG, then the intersection
n
⋂

k=1

(0 : rk) is essential in R.

P r o o f. In the proof of Theorem 4 we have shown that (0 : ri) 6′ R for the index

i ∈ {1, . . . , n} corresponding to the set {g1, . . . , gn} under the strong cancellation

property and that u − rigi ∈ Z(RG). Continuing by the induction we shall obtain

that (0 : rk) 6′ R for each k = 1, . . . , n, from which the assertion follows immediately.

�

N o t a t i o n. Let G be a strongly cancellative monoid and let J 6 RG be an

arbitrary left ideal. We shall define the subset J [g] of the ring R for an arbitrary

element g ∈ G in such a way that a ∈ J [g] if and only if there is an element

u = ag +
m
∑

j=1

ajhj in J such that g is the element corresponding to the subset

{g, h1, . . . , hm} under the strong cancellation law. Note, that the set J [g] is non-

empty for each g ∈ G. Clearly, J [g] contains the zero element 0 of R since 0g ∈ J is

the zero element of the ring RG.

Lemma 6. Let G be a strongly cancellative monoid and let J be a left ideal of

the ring RG. Then

(i) J [g] is a left ideal of the ring R for each g ∈ G;

(ii) J [g] ⊆ J [hg] for any two elements g, h ∈ G;

(iii) if hG ⊆ Gh for each h ∈ G, then the set {J [g]; g ∈ G} is directed upward.

P r o o f. (i) For arbitrary elements a, b ∈ J [g] and r ∈ R there are elements

u = ag +
m
∑

j=1

ajhj and v = bg +
t

∑

r=1

brkr from J such that the element g corresponds

to the subsets {g, h1, . . . , hm} and {g, k1, . . . , kt} under the strong cancellation law.

So, u − v = (a − b)g +
m
∑

j=1

ajhj −
t

∑

r=1

brkr ∈ J , ru = rag +
m
∑

j=1

rajhj ∈ J and

consequently a − b, ra ∈ J [g] once we verify that the element g corresponds to

the set {g, h1, . . . , hm, k1, . . . , kt} under the strong cancellation law. However, if

F = {g1, . . . , gn} ⊆ G is arbitrary with the index i = 1, then gg1 6= hjgi and

gg1 6= krgi for all relevant indices i, j, r, as we wished to show.

(ii) Using the above notations we have hu = ahg+
m
∑

j=1

ajhhj ∈ J and hgg1 6= hhjgi

for all relevant indices by the left cancellation law and so a ∈ J [hg].

(iii) For g, h ∈ G we have hg = g̃h for a suitable element g̃ ∈ G by the hypothesis

and so (ii) yields J [g] ⊆ J [hg] and J [h] ⊆ J [g̃h] = J [hg], as desired. �
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Lemma 7. Let R be a non-singular ring such that Goldie’s torsion theory σ

for the category R-mod is of finite type. Further, let G be a monoid and let J be

an essential left ideal of the ring RG such that the set {J [g]; g ∈ G} is directed

upward with respect to the inclusion. Then there is an element g ∈ G such that J [g]

is essential in R.

P r o o f. First of all we are going to verify that the union J̃ =
⋃

g∈G

J [g] is an

essential left ideal of the ring R. Clearly, if r ∈ R \ J̃ is an arbitrary element, then

r /∈ J [g] for each g ∈ G. Especially, r = re is not in J [e] = J , and so there is

an element u ∈ RG such that 0 6= ur ∈ J . Now if u =
m
∑

j=1

bjhj , where all the

coefficients b1, . . . , bm are non-zero, then there is an index i ∈ {1, . . . , m} such that

0 6= bir ∈ J [hi] ⊆ J̃ , as we wished to show. Assume first now, that there exists an

element g ∈ G such that J [g] is essential in J [h] for each h ∈ G with J [g] ⊆ J [h].

Now if 0 6= r ∈ R is an arbitrary element, then there is an element s ∈ R with

0 6= sr ∈ J̃ , hence 0 6= sr ∈ J [h] for some h ∈ G and consequently 0 6= sr ∈ J [k] for

some k ∈ G with J [g], J [h] ⊆ J [k]. Thus 0 6= tsr ∈ J [g] for a suitable element t ∈ R,

which means that J [g] is essential in R. So, to finish the proof let g0 ∈ G be arbitrary.

Continuing by the induction let us suppose that the elements g0, g1, . . . , gi of G have

been found for some i < ω in such a way that J [gj] is not essential in J [gj+1] for each

j < i. By the preceding part of the proof there is an element gi+1 ∈ G such that

J [gi] ⊆ J [gi+1] and J [gi] is not essential in J [gi+1]. Then there is a left ideal Li 6 R

such that 0 6= Li 6 J [gi+1] and J [gi] ∩ Li = 0 for each i < ω. Obviously, the ideals

Li are σ-torsionfree left ideals of the ring R and they form the infinite direct sum
⊕

i<ω

Li in R, which contradicts [14; Theorem 2.1] stating that σ is of finite type if

and only if the ring R contains no infinite direct sum of σ-torsionfree left ideals. �

Lemma 8. Let G be a monoid such that hG ⊆ Gh for each h ∈ G and let R

be a ring such that aR ⊆ Ra for each a ∈ R. Then to any two elements u, v ∈ RG

there exists an element ũ ∈ RG such that vu = ũv.

P r o o f. If u =
n
∑

i=1

rigi and v =
m
∑

j=1

sjhj , then vu =
m
∑

j=1

n
∑

i=1

sjrihjgi =

n
∑

i=1

m
∑

j=1

r̃isj g̃ihj = ũv, as desired. �

Lemma 9. Let G be a strongly cancellative monoid such that hG ⊆ Gh for each

h ∈ G. Further, let R be a non-singular ring such that aR ⊆ Ra for each a ∈ R. If

every essential left ideal of R essentially contains a finitely generated left ideal, then

every essential left ideal of the ring RG essentially contains a finitely generated left

ideal, too.
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P r o o f. Let J be an essential left ideal of the ring RG. The set {J [g]; g ∈ G} is

directed upward by Lemma 6(iii) and so Lemma 7 yields the existence of an element

g ∈ G such that J [g] is essential in R. By the hypothesis there is a finitely generated

left ideal K =
s

∑

i=1

Rai of R which is essential in J [g]. So, for each i = 1, . . . , s there

is an element ui ∈ J of the form ui = aig +
si
∑

j=1

aijhij such that the element g ∈ G

corresponds to the set {g, hi1, . . . , hisi
} under the strong cancellation law for each

i = 1, . . . , s. Now we put L =
s

∑

i=1

RGui and we are going to show that L is essential

in J . So, let u =
n
∑

r=1

brhr be an arbitrary element of J such that br 6= 0 for each

r = 1, . . . , n and 1 ∈ {1, . . . , n} is the index corresponding to the set {h1, . . . , hn}

under the strong cancellation law. Assume first, that uiu 6= 0 for some i ∈ {1, . . . , s}.

Then 0 6= uiu = ũui ∈ L for a suitable element ũ ∈ RG by Lemma 8 and we are

through. So, let uiu = 0 for each i = 1, . . . , s. By the strong cancellation law we have

gh1 6= ghi and gh1 6= hijhr for all relevant indices and consequently the coefficient

aib1 at the element gh1 in the product uiu is equal to zero for each i = 1, . . . , s. This

means that K ⊆ (0 : b1), which is a contradiction with the non-singularity of the

ring R and the proof is complete. �

Now we are ready to prove one of the main results.

Theorem 10. Let G be a strongly cancellative monoid such that hG ⊆ Gh for

each element h ∈ G and let R be a ring such that aR ⊆ Ra for each element a ∈ R.

Then Goldie’s torsion theory for the category R-mod is of finite type if and only if

Goldie’s torsion theory for the category RG-mod is of finite type.

P r o o f. By [5; Theorem 5] Goldie’s torsion theory σ for the category R-mod is

of finite type if and only if Goldie’s torsion theory for the category R/σ(R)-mod is

of finite type. By Theorem 4 we have σ(RG) = σ(R)G, from which easily follows

the ring isomorphism (R/σ(R))G ∼= RG/σ(RG) and consequently we may restrict

ourselves to the case of non-singular rings. So, if Goldie’s torsion theory for the

category RG-mod is of finite type, then so is that for the category R-mod by [6;

Theorem 8], while the converse follows immediately from Lemma 9. �

Now we are going to present some applications of this result to the case of totally

ordered monoids and groups. These results are in some sense related to that in [6],

namely when the well-ordering is replaced by the total order on G and the condition

that for all elements g, h ∈ G with g < h there is l ∈ G such that lg = h is replaced by

the conditions hG ⊆ Gh and aR ⊆ Ra for all elements h ∈ G and a ∈ R, respectively.
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Lemma 11. Every totally ordered cancellative monoid is strongly cancellative.

P r o o f. Let {g1, . . . , gn} and {h1, . . . , hm} be finite subsets of G such that

g1 < . . . < gn and h1 < . . . < hm. Then hjg1 < hjgi by the left cancellation law

and h1gi < hjgi by the right cancellation law. Thus h1g1 < hjgi for all j = 1, . . . , m

and i = 1, . . . , n, where at least one of the indices i and j is different from 1 and the

proof is complete, the elements g1 and h1 being the elements corresponding to the

sets {g1, . . . , gn} and {h1, . . . , hm} under the strong cancellation law, respectively.

�

Theorem 12. LetG be a totally ordered cancellative monoid such that hG ⊆ Gh

for each element h ∈ G and let R be a ring such that aR ⊆ Ra for each a ∈ R. Then

Goldie’s torsion theory for the category R-mod is of finite type if and only if Goldie’s

torsion theory for the category RG-mod is of finite type.

P r o o f. It immediately follows from Lemma 11 and Theorem 10. �

Theorem 13. Let G be a totally ordered group and let R be a ring such that

aR ⊆ Ra for each a ∈ R. Then Goldie’s torsion theory for the category R-mod is of

finite type if and only if Goldie’s torsion theory for the category RG-mod is of finite

type.

P r o o f. For any two elements g, h ∈ G we have hg = hgh−1h and it suffices to

use Theorem 10, G being obviously cancellative on both sides. �

Corollary 14. If G is a totally ordered group and if R is a commutative ring

then Goldie’s torsion theory for the category R-mod is of finite type if and only if

Goldie’s torsion theory for the category RG-mod is of finite type.

P r o o f. Obvious. �
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