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Abstract. We study block diagonalization of matrices induced by resolutions of the unit
matrix into the sum of idempotent matrices. We show that the block diagonal matrices
have disjoint spectra if and only if each idempotent matrix in the inducing resolution dou-
ble commutes with the given matrix. Applications include a new characterization of an
eigenprojection and of the Drazin inverse of a given matrix.
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1. Introduction and preliminaries

In this paper we are concerned with a block diagonalization of a given matrix A;
by definition, A is block diagonalizable if it is similar to a matrix of the form

(1.1)




A1 0 . . . 0
0 A2 . . . 0

. . . . . .

0 0 . . . Am


 = diag(A1, . . . , Am).

Then the spectrum σ(A) of A is the union of the spectra σ(A1), . . . , σ(Am), which

in general need not be disjoint. The ultimate such diagonalization is the Jordan form
of the matrix; however, it is often advantageous to utilize a coarser diagonalization,

easier to construct, and customized to a particular distribution of the eigenvalues.
The most useful diagonalizations are the ones for which the sets σ(Ai) are pairwise

disjoint; it is the aim of this paper to give a full characterization of these diagonal-
izations.

For any matrix A ∈ �
n×n we denote its kernel and image by kerA and imA,

respectively. A matrix E is idempotent (or a projection matrix ) if E2 = E, and
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nilpotent if Ep = 0 for some positive integer p. Recall that rankE = trE if E is

idempotent. Matrices A,B are similar, written A ∼ B, if A = Q−1BQ for some
nonsingular matrix Q. The similarity transformation will be also written explixitly
as ψ(U) = ψQ(U) = Q−1UQ. The commutant and the double commutant of a

matrix A ∈ �
n×n are defined by

comm(A) = {U ∈ �
n×n : AU = UA},

comm2(A) = {U ∈ �
n×n : UV = V U for all V ∈ comm(A)}.

The main result of the present paper is the fact that the block diagonal matrices

have disjoint spectra if and only if the idempotent matrices inducing the diagonaliza-
tion double commute with the given matrix. One way to prove this is to use a pow-

erful theorem of matrix theory which states that the second commutant comm2(A)
coincides with the set of all matrices of the form f(A), where f is a polynomial ([10,
Theorem 1.3.7] or [11, p. 106]). (A simple proof of this result is given by Lagerstrom

in [4].) We prefer to give an elementary proof of the disjoint spectra theorem, which
provides us with a greater insight. As a corollary we show that an idempotent matrix

E is an eigenprojection of A if and only if it is in the double commutant of A and
(A− µI)E is nilpotent for some µ.

To study block diagonalizations of the form (1.1), it is convenient to use resolutions

of the unit matrix whose components are idempotent matrices.

Definiton 1.1. Let m � 2 be an integer. An m-tuple (E1, . . . , Em) of idempo-
tent n × n matrices is called a resolution of the unit matrix if E1 + . . . + Em = I.

A resolution is called nontrivial if each component matrix is nonzero. We say that
the resolution (E1, . . . , Em) commutes with the matrix A if Ei ∈ comm(A) for each
i, and that it double commutes with A if Ei ∈ comm2(A) for each i.

���� 1.2. If (E1, . . . , Em) is a nontrivial resolution of the unit n × n matrix,
then n = tr I = tr(E1 + . . .+ Em) = trE1 + . . .+ trEm = rankE1 + . . .+ rankEm,

which means that imEi ∩ imEj = {0} if i �= j. Therefore

(1.2) EiEj = 0 if i �= j.

We will need the following result on projections associated with direct sums of

subspaces, which can be deduced from [7, Theorem 214B].

Lemma 1.3. � n is the direct sum �
n = X1 ⊕ . . .⊕Xm of nonzero subspaces Xi

if and only if there is a nontrivial resolution (E1, . . . , Em) of the unit n × n matrix
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such that Xi = imEi, i = 1, . . . ,m. There are nonsingular matrices Q,P ∈ �
n×n

and consistent partitions Q = [Q1 . . . Qm], P = [P1 . . . Pm] such that

Ei = QiP
T
i , i = 1, . . . ,m.

A matrix A leaves the subspaces Xi invariant if and only if A commutes with the

resolution (E1, . . . , Em).

The next lemma, the well known primary decomposition theorem that can be

found, for instance in [6], is stated in the form suitable for the future development.

Lemma 1.4. Let A ∈ �
n×n . If σ(A) = {µ1, . . . , µs}, then �

n = X1 ⊕ . . .⊕Xs,

where Xi = ker(µiI−A)pi and pi = ind(µiI−A), i = 1, . . . , s. If (E(µ1), . . . , E(µs))

is the resolution of the unit n × n matrix associated with this direct sum, then

E(µi) ∈ comm2(A) for i = 1, . . . , s.
The matrices E(µi) from the preceding lemma are called the eigenprojections of

A, and can be constructed by the method described in Lemma 1.3, provided the
spaces ker(µiI −A)pi are known. If µ is not an eigenvalue of A, we define E(µ) = 0.

We can also express the eigenprojection E(µ) �= 0 through the holomorphic calculus
for A, described in [6]. We have

(1.3) E(µ) = f(A),

where f is equal to 1 in an open set M containing the eigenvalue µ and to 0 in an

open set N containing all other eigenvalues of A, while M and N are disjoint.
For the proof of the main theorem we will need a result which is a special case of

[5, Theorem 5.8.1]. We give a proof for completeness.

Lemma 1.5. Let the matrices A1 ∈ �
p×p , A2 ∈ �

q×q be such that the equation

A1U −UA2 = 0 has only the trivial solution. Then A1, A2 cannot be simultaneously
singular.

�����. Let u ∈ �
p and v ∈ �

q be such that A1u = 0 and vTA2 = 0. Set

U = uvT , so that U ∈ �
p×q . Then

A1U = A1(uvT ) = (A1u)vT = 0vT = 0,

UA2 = (uvT )A2 = u(vTA2) = u0 = 0.

By hypothesis, U = uvT = 0. Hence either u = 0 or v = 0; equivalently, either A1
or A2 is nonsingular. �
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2. Resolutions of the unit matrix

In this section we describe block diagonalizations (1.1) in terms of resolutions of
the unit matrix. For reader’s convenience we summarize basic facts about block

diagonalizations in the following proposition.

Proposition 2.1. (i) If A ∈ �
n×n and (E1, . . . , Em) is a nontrivial resolution of

the unit n × n matrix commuting with A, then there is a similarity transformation

ψ such that

ψ(A) = diag(A1, . . . , Am),

ψ(E1) = diag(I, . . . , 0),

. . .(2.1)

ψ(Em) = diag(0, . . . , I).

(ii) Conversely, every block diagonalization ψ(A) = diag(A1, . . . , Am) gives rise to
a nontrivial resolution (E1, . . . , Em) of the unit matrix satisfying (2.1).

(iii) If A ∼ diag(A1, . . . , Am), then σ(A) = σ(A1) ∪ . . . ∪ σ(Am).
(iv) Let (E(µ1), . . . , E(µs)) be the resolution of the unit matrix associated with the

primary decomposition of Lemma 1.4, and let diag(A1, . . . , As) be the induced
block diagonalization. Then σ(Ai) = {µi} for i = 1, . . . , s.

�����. (i) Let (E1, . . . , Em) be a nontrivial resolution of the unit matrix

commuting with A. According to Lemma 1.3, the subspacesXi = imEi are invariant
under A. If Q,P are the matrices of Lemma 1.3, then the similarity transformation

ψ = ψQ has the required properties.
(ii) If ψ(A) = diag(A1, . . . , Am), then the required resolution of the unit matrix

consists of the idempotents Ei = ψ−1(diag(0, . . . , I, . . . , 0)), i = 1, . . . ,m.
(iii) Follows from observing that λI − A is singular if and only if at least one of

the matrix blocks λIi −Ai is singular.

(iv) Let Q = [Q1 . . . Qs] and P = [P1 . . . Ps] be the partitioned matrices from
Lemma 1.3 associated with the primary decomposition �

n = ker(µ1I −A)p1 ⊕ . . .⊕
ker(µsI − A)ps . If Q−1AQ = diag(A1, . . . , As), then AQi = QiAi for i = 1, . . . , s.
Let Aiw = µw for some w �= 0. Then µ ∈ {µ1, . . . , µs},

QiAiw = µQiw =⇒ AQiw = µQiw =⇒ Ax = µx,

where x = Qiw is a linear combination of the columns of Qi, and x ∈ ker(µiI−A)pi .

Since ker(µiI −A) ⊂ ker(µiI −A)pi and since ker(µiI −A)pi ∩ ker(µjI −A)pj = {0}
for i �= j, we have µ = µi. Hence σ(Ai) = {µi}. �
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We say that the resolution (E1, . . . , Em) of the preceding proposition induces the

block diagonalization A ∼ diag(A1, . . . , Am). In general, the sets σ(Ai) need not be
disjoint. However, if they are, the block diagonalization has special properties, in
particular, the (disjoint) partition of the spectrum determines uniquely the projec-

tions E1, . . . , Em.

Proposition 2.2. Let the spectrum σ(A) of A ∈ �
n×n be a disjoint union of

the sets S1, . . . , Sm. Then A is similar to a block diagonal matrix diag(A1, . . . , Am)

with σ(Ai) = Si for i = 1, . . . ,m. The resolution (E1, . . . , Em) of the unit matrix
inducing this diagonalization is uniquely determined by the sets Si, i = 1, . . . ,m,

and double commutes with A.

�����. The idea is to construct a resolution of the unit matrix from the
eigenprojections and apply Proposition 2.1. For each i ∈ {1, . . . ,m} define

(2.2) Ei =
∑

µ∈Si

E(µ).

From Lemma 1.4 we deduce that each matrix Ei is idempotent, and that E1 + . . .+
Em = I. Since the E(µ) double commute with A, so do the Ei. By Proposition 2.1

(iv) we have σ(Ai) = Si.

Suppose (F1, . . . , Fm) is another nontrivial resolution of the unit matrix inducing

the block diagonalization ψ(A) = diag(B1, . . . , Bm) with σ(Bi) = Si, i = 1, . . . ,m.
We show that Fk = Ek for k ∈ {1, . . . ,m} by an application of the holomorphic
calculus whose definition and properties can be found in [6]. If f is a function
holomorphic in an open set containing σ(A), then

f(A) = ψ−1(diag(f(B1), . . . , f(Bm))).

Let k ∈ {1, . . . ,m}. Since the sets Si are pairwise disjoint, there exists a func-
tion g holomorphic in an open neighbourhood of σ(A) such that g is equal to 1

in a neighbourhood of Sk and to 0 in an open neighbourhood of
⋃

j �=k

Sj . Then, by

Proposition 2.1 (i),

g(A) = ψ−1(diag(0, . . . , I, . . . , 0)) = Fk.

On the other hand, g(A) =
∑

µ∈Sk

E(µ) = Ek by (1.3). �
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3. Examples

��	
��� 3.1. There are resolutions of the unit matrix commuting with a given

matrix A, which do not double commute with A. Define

A =




0 1 0 0

0 0 0 0
0 0 0 0

0 0 0 1


 , E1 =




1 0 0 0

0 1 0 0
0 0 0 0

0 0 0 0


 , U =




0 0 1 0

0 0 0 0
0 1 1 0

0 0 0 1


 ,

and E2 = I − E1. A direct verification shows that (E1, E2) is a resolution of I

commuting with A. Further, U commutes with A, but does not commute with Ei,
i = 1, 2. Hence Ei ∈ comm(A) but Ei /∈ comm2(A), i = 1, 2. In agreement with
Proposition 2.2, the sets σ(A1) = {0} and σ(A2) = {0, 1} overlap where A1, A2 are
the 2× 2 block diagonal matrices of A.

��	
��� 3.2. We give a characterization of the Drazin inverse through the

construction described in Proposition 2.2. Let A ∈ �
n×n be a singular matrix, and

let S1 = {0}, S2 = σ(A) \ {0}. Let ψ(A) = diag(A1, A2) be a block diagonalization
of A such that σ(A1) = S1 and σ(A2) = S2, where ψ is a similarity transformation.
Then 0 /∈ σ(A2), and

AD = ψ−1(diag(0, A−12 ))

is the Drazin inverse of A [1, Theorem 7.2.1].
Let (E1, E2) be the resolution of the unit matrix inducing the above block diago-

nalization of A. The Drazin inverse AD can be expressed in terms of E1, E2: First
we observe that diag(0, A−12 ) = diag(I, A2)

−1 diag(0, I), which under the similarity

transformation ψ−1 becomes

(3.1) AD = (AE2 + E1)−1E2.

This is essentially the representation of AD obtained by Rothblum [8]. By Proposi-
tion 2.2, the resolution (E1, E2) double commutes with A; consequently, the Drazin

inverse also double commutes with A.

��	
��� 3.3. The construction of Example 3.2 can be generalized when we
partition the spectrum of A ∈ �

n×n into two disjoint sets S1 and S2 such that

0 /∈ S2. Let ψ(A) = diag(A1, A2) be a block diagonalization of A of Proposition 2.2
with σ(Ai) = Si, i = 1, 2, and let (E1, E2) be the resolution of the unit matrix which

induces it. The matrix AE2 + E1 is nonsingular being similar to

diag(A1, A2) diag(0, I) + diag(I, 0) = diag(I, A2),
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and we can define a matrix A∆ by

(3.2) A∆ = (AE2 + E1)
−1E2.

If S1 = {0}, then A∆ = AD. The matrix A∆ defined by (3.2) has many useful

properties, and may be regarded as a generalization of the Drazin inverse.

��	
��� 3.4. Let A ∈ �
n×n be a power bounded matrix. Then the spectrum

is known to lie in the closed unit disc, and the eigenvalues with the unit modulus

have index 1. We partition the spectrum σ(A) into two parts:

S1 = {λ ∈ σ(A) : |λ| < 1}, S2 = {λ ∈ σ(A) : |λ| = 1}.

Assuming that the sets S1, S2 are nonempty, there is a resolution (E1, E2) of the unit
matrix corresponding to the sets S1, S2, respectively. (Explicitly, E1 =

∑
|µ|<1

E(µ)

and E2 =
∑
|µ|=1

E(µ).) Suppose that A ∼ diag(A1, A2) is the induced block diago-

nalization. Then (Ak
1) converges to 0 while (A

k
2) converges or boundedly oscillates

as k → ∞ depending on whether σper ⊂ {1} or not. (Here σper is the peripheral
spectrum of A.)

4. Main results

We are now ready to present the main theorem of this paper, namely the char-
acterization of those block diagonalization of a matrix for which the block diagonal

matrices have disjoint spectra.

Theorem 4.1. Let (E1, . . . , Em) be a nontrivial resolution of the unit n × n

matrix commuting with a given matrix A ∈ �
n×n , and let A ∼ diag(A1, . . . , Am) be

the induced block diagonalization. Then the union

σ(A) = σ(A1) ∪ . . . ∪ σ(Am)

is disjoint if and only if (E1, . . . , Em) double commutes with A.

�����. If the union is disjoint, Proposition 2.2 gives the answer.

Let m = 2, and let (E1, E2) be a nontrivial resolution of the unit n × n matrix
double commuting with A. Applying a similarity transformation if necessary we may

assume that

A =

[
A1 0
0 A2

]
, E1 =

[
I1 0
0 0

]
, E2 =

[
0 0
0 I2

]
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with A1 ∈ �
p×p and A2 ∈ �

q×q , where p+ q = n.

First we characterize the general form of a matrix B ∈ comm(A). Let

B =

[
B11 B12
B21 B22

]

be the partition of B consistent with that of A, E1 and E2. The equality AB = BA
is equivalent to

A1B11 = B11A1, A2B22 = B22A2,(4.1)

A1B12 = B12A2, A2B21 = B21A1.(4.2)

Since Ei ∈ comm2(A) for i = 1, 2, we have BEi = EiB for i = 1, 2; this implies

(4.3) B12 = 0 = B21.

Let µ ∈ � . Suppose that U ∈ �
p×q is any matrix satisfying

(A1 − µI1)U − U(A2 − µI2) = 0.

Then A1U − UA2 = 0, so that

B =

[
0 U

0 0

]

satisfies (4.1) and (4.2). Hence B ∈ comm(A). By (4.3), U = 0. According to
Lemma 1.5, the matrices A1 − µI1 and A2 − µI2 cannot be simultaneously singular.
Hence

σ(A1) ∩ σ(A2) = ∅.

For a general m we proceed by induction, observing that if (E1, . . . , Em) is a
nontrivial resolution of the unit matrix and if F1 = E1, F2 = E2 + . . . + Em, then

(F1, F2) is also a nontrivial resolution of the unit matrix. This completes the proof.
�

The following theorem gives a new characterization of an eigenprojection of A.

Theorem 4.2. Let A ∈ �
n×n and let E ∈ �

n×n be a nonzero idempotent matrix.

Then E is an eigenprojection of A if and only if

(4.4) E ∈ comm2(A) and σ((A − µI)E) = {0}

for some µ ∈ � .
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�����. We may assume that µ = 0; the case of a general eigenvalue µ is

obtained when A is replaced by A−µI. If E is the eigenprojection of A corresponding
to 0, then E double commutes with A and AE is nilpotent by definition.

Conversely, assume that E satisfies the conditions of the theorem. If E = I, then
σ(A) = {0}, and the eigenprojection of A at 0 is the unit matrix. If E �= I, then

(E, I −E) is a nontrivial resolution of the unit matrix which double commutes with
A. Let A ∼ diag(A1, A2) be a block diagonalization of A induced by (E, I − E).

By Theorem 4.1, the spectra σ(A1), σ(A2) are disjoint. Since E ∼ diag(I, 0), we
have AE ∼ diag(A1, 0), which implies σ(A1) = {0}. By Proposition 2.2, E is the
eigenprojection of A at 0. �

��	
��� 4.3. The preceding theorem enables us to give a new characterization
of the Drazin inverse AD of A ∈ �

n×n . Let E be a nonzero idempotent matrix

double commuting with A, and let AqE = 0. Theorem 4.2 quarantees that E is
an eigenprojection of A at 0 as AqE = (AE)q = 0 is equivalent to σ(AE) = {0}.
Consequently,

AD = (A+ ξE)−1(I − E)

for any nonzero ξ ∈ � by Rothblum’s formula [8].

Theorem 4.2 can be used to recover the following characterizations of eigenprojec-

tions. The equivalence of (i), (ii) and (iii) was proved in [3] by a different method.
Condition (iv) was explored in [2] for bounded linear operators acting on a Banach

space.

Proposition 4.4. Let A ∈ �
n×n and let E ∈ �

n×n be a nonzero idempotent

matrix. Then the following conditions are equivalent.

(i) E is the eigenprojection of A at 0.

(ii) (Rothblum [9]) E ∈ comm(A) and A+ ξE is nonsingular for all ξ �= 0.
(iii) (Koliha and Straškraba [3]) E ∈ comm(A), σ(AE) = {0} and A+ E is nonsin-

gular.

(iv) (Harte [2]) E ∈ comm(A), σ(AE) = {0} and AU = I − E = V A for some

U, V ∈ �
n×n .

�����. (i) =⇒ (ii) was established by Rothblum [9, Theorem 4.2].
(ii) =⇒ (iii) If ξ �= 0, then

[
(A+ ξE)−1E + ξ−1(I − E)

]
(AE + ξI) = I.

Hence AE + ξI is nonsingular for all ξ �= 0, and σ(AE) = {0}. Setting ξ = 1, we get
the third condition in (iii).
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(iii) =⇒ (iv) Set S = (A+ E)−1(I − E). Then SA = I −E = AS, and (iv) holds
with U = V = S.
(iv) =⇒ (i) Set S = V AU and F = I − E. Then we calculate that

SF = FS = S, SA = AS = F.

Let B ∈ comm(A). If q is such that (AE)q = AqE = 0, then

FB − FBF = FBE = F qBE = SqAqBE = SqBAqE = 0.

Similarly, BF − FBF = 0, and FB = BF . This implies F,E ∈ comm2(A), and E
is the eigenprojection of A at 0 by Theorem 4.2. �
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