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Abstract. General results giving approximate bias for nonlinear models with constrained
parameters are applied to bilinear models in ANOVA framework, called biadditive models.
Known results on the information matrix and the asymptotic variance matrix of the parame-
ters are summarized, and the Jacobians and Hessians of the response and of the constraints
are derived. These intermediate results are the basis for any subsequent second order study
of the model. Despite the large number of parameters involved, bias formulae turn out to
be quite simple due to the orthogonal structure of the model. In particular, the response
estimators are shown to be approximately unbiased. Some simulations assess the validity
of the approximations.

Keywords: asymptotic variance, bilinear model, nonlinear least squares, response func-
tion, second order approximation
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1. INTRODUCTION

Bilinear models in ANOVA framework date back to the work of Fisher and Macken-
zie [10]. Analyzing a two-factor crossed experiment, these authors compare additive
modelling [o; + §;] and multiplicative modelling [y;6;]. Subscripts ¢ and j denote
the levels of the two factors of interest while Greek letters designate unknown para-
meters. The second step was made in 1936 by Eckart and Young [8]. They proposed
the least-squares approximation of any matrix by a matrix of lower rank leading to
the powerful tool of the singular value decomposition. Statistical models relying im-
plicitly on this decomposition were independently proposed by Gilbert [12], Gollob
[13], Mandel [16] and Johnson and Graybill [15] under the concept of multiplicative

This work was supported by INRA (France) and the Slovak Grant Agency (grant
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modelling of the interaction between two factors. These multiplicative models have
proved to be very efficient tools for interpreting interactions between two factors,
even when no replication is available. In the book by Gauch [11] an extensive list of
references can be found about the subject. At the same time independent but con-
sistent results about the asymptotic variances of the maximum likelihood estimators
of the parameters appeared in Goodman and Haberman [14], Chadceuf and Denis
[1], Denis and Gower [2, 4, 5] and Dorkenoo and Mathieu [7].

Biadditive terminology introduced in Denis and Gower [2, 3] highlights the bilin-
ear nature of these models. Following their notation, we will deal here with models
B(m,a,b, ), i.e. models with an additive part; but our results remain almost un-
changed for members of the biadditive family which are orthogonal. It is only the
B(m, *, *,m,) models, promoted under the name of shifted multiplicative models by
Seyedesadr and Cornelius [18], which are excluded here.

Here we apply to the B(m,a, b, 7,) models the asymptotic bias formulae proposed
by Pézman and Denis [17] for general nonlinear models when the parameters are
constrained by nonlinear equalities, continuing the path opened by Silvey [19].

Before deriving the bias, the model is presented and maximum likelihood estima-
tors of the expectation parameters are given, as are the information and asymptotic
variance matrices. Jacobians and Hessians for the response and constraint set are
stated, and these in turn are of use for any further second order analyses of the
model. Besides the basic parameterization proposed in Section 2.1, we present an-
other commonly used parameterization (Section 4.1). Bias functions are obtained
for both types of parameterization and for the response function. Interestingly, al-
though most of the developments presented here are very technical, the final results
are surprisingly simple. For example, the bias of the nonlinear parameters of the
model is given by simple formulae in Theorem 9 and Proposition 13: parts of bias
are colinear to the corresponding vectors of parameters. Another nice result is that
the approximate bias of the response function is zero (Proposition 14).

Full numerical checking of the formulee have been carried out, most of them are
presented elsewhere (see Denis and Pazman [6]). Finally, with some simulations the
validity range of the approximations proposed is studied. SPLUS functions of all
results presented in the paper are available under request from the first author.
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2. MODEL

2.1. Definition
Biadditive models considered here read

formula Yiij) = 1+ i+ B+ D Yiubju + (i)
u=1
0'2 when (’L7]) = (i/,j/)
moments Ele ;] =0;  Covleq ), €a,51] = .
0 otherwise
(Soac): Sa; =0 1
i
(¥5): XB;=0 )
(1) J
(@g,u): Z%’u =0 Vu r
i
C . o
constraints (05.): ;6311 =0 Yu r
Ny 1 (Zﬂfu -3 53%) —0 Vu r
(@Wo,u,v): Z%’u%‘v =0 Yu<w @
3
(@507“7”); Z(Sju(sjv =0 Yu<w @
J

where i € {1...1} and j € {1...J} are the levels of two factors, say the row-factor

column-factor, respectively, having effect on the variate of interest y; and 7, the

number of multiplicative terms, is less than or equal to min(/ — 1, J — 1). The first

three terms (p+ «; + ;) correspond to additive modelling (linear part of the model),
T

the other terms, > 7;u0;u, correspond to the modelled interaction (the nonlinear
u=1

part of the model, in fact bilinear). By cpac, cpg, cpﬁu, gog’:u, oN cp,?um and goéo’u’v we
denote the constraints on the parameters. The numbers following each constraint
definition indicate the number of constraints generated (by varying the subscripts u
and v).

This model is a special case of Model (1-2) in [17]: the number of parameters is p =
14 (r+1)(I+J), the number of observations is n = I.J and the number of constraints

is ¢ = 2 + 2r + r2. For the sake of simplicity of notation, let & = (a1, g, ..., az)7,
B = (81,82, 8%, Yo = (Viu, Y205 - - - V1w) T and 8, = (614, 620, - - -, 05u)T Vu =
1,...,7. The parameters will be ordered in the following way:

0= (na®,BT A, 8 73,05, ... . 60)"
and we will distinguish between the additive parameters
04 = (u, T, BT of size p*
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and the biadditive parameters
0 = (71Ta51Ta72T,5§,-~-,77T,5?)T OfsizepB.

It will be shown in Section 2.2.1 by the ranks of the Jacobians that the constraints
on the parameters are only identifiable and are independent. There are two centering
constraints, (¢¢) and (cpg), for the additive part and (2 + ) constraints associated
with the multiplicative terms:

e centering: (gogu) and (cpg’:u)

e cquality of norms: (V)

e orthogonality between the v: (©5,,.,)

e orthogonality between the §: (<p50’u’v)

Although these constraints ensure the local identifiability of the model, global
identifiability requires more properties. The «4’s (and consequently also the §’s) are
ordered according to their norm:

Ty zvly > 2y .

Even so, global identifiability is not guaranteed. For instance, the signs of any -,
and d, can be simultaneously changed without modifying the response. Moreover,
if some norms are equal (’75 Yu = '75 +1’yu+1) any rotations on these vectors and the
associated rotations on d, and d,41 can be performed without changing the response.
Hence, we will suppose that

’le'n >72T’yg>...>'yTT'yr>0.

Even more, to maintain the compactness of the parameter space which is required
in Pazman and Denis [17], we will suppose that

D LI T e I N e T Ry T

x|

for some small k > 0. If k is very small, this has no noticeable influence on statistical

considerations.

2.2. Structure
Ordering the subscripts (i, j) by varying first ¢, we can write Model (1) in a vector
form:

(2) EM:77(9):(1J®1I)M+1J®a+5®11+Z5u®’yu.

u=1



Here 15 denotes the column vector of R® with all entries equal to 1.

2.2.1. Jacobians and Hessians.

Proposition 1. The Jacobian J (6) = 687’9(2) of Model (1) is given by

(3) 1, 01,1,; 1, 1,901,611, @v,...,6. 11,1, @7,).

Its rank is (1 +7r)(I+J—(1+7))

Proof. J(0) = 8%7% is an IJ times (14 I+ J) + (I + J) matrix. Following
the distinction previously made between the additive and biadditive parameters, it is
convenient to consider separately the part corresponding to the additive parameters
denoted by J ((9’4) and the part corresponding to the biadditive parameters denoted

by J (QB ) Of course the complete Jacobian is given by
J(0) = (J(6%),7(67)).
Straightforward derivations give

J(eA) =1,®1,1;1;,I;,®1).

For the biadditive part the basic derivation is ?)((iUT®(;YT)) . It is immediate, once one

has established the order of subscripts. We obtain

9(6.97.) 0 (61772027, 674T)"

s 0
SECIT SR PR I i
= 0,R1;.
Hence

ot ary = Ou @171 u) s
gT.ep) (el lem)

which produces the proposed expression for the Jacobian.
Let us now establish the rank of Matrix (3). Reordering the columns of a matrix
does not modify its rank, so we can look for the rank of

<1J®117<1J761a"'a67")®II>I.]®<11a717"'a7r))~

Denote by M [A] the vector space generated by the columns of any matrix A. We
have

(4) rtk(17,v1,...,v) =tk(1;,01,...,0,) =7r+1
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since the centering and the orthogonality constraints hold. One can find I —r — 1
independent vectors, say

(5) (Yrt1 -5 v1-1) 5

such that they generate the orthocomplement vector subspace to M [(17, 71, .. .,7)],
and similarly J —r — 1 independent vectors, say

(6) (67"+1a"'a6J—1)7
generating the orthocomplement vector subspace to M [(1;,81,...,d,)]. Since

M) = M5, 9)] @ M[(Vrg1, - v1-1)],
ML =M[(1,,61,...,6.)] & M[(r41,...,87-1)]

we have
M1y ®17,(15,61,...,6,) 01,1, @ A, 71, .., %))
=M[((1,61,...,6,) L1, ® (11,71, ¥))]
=M[((1s,01,...,6:) @ (11,71, %))
®M [((1.]761’ . . -767") & (’77»4.1, .. .,’7]_1))]
® M [((67""1‘17' : "6~]—1) ® (11’717~ . a77"))] )
hence

rtk (1, ®17,(15,01,...,0,) 1,1, @ (11,v1,-.-,7))
=1k((1s,61,...,0,) ® 11,71, -, Yr))
+1k((17,01,...,0:) @ (Yrg1y--sYI-1))
+ 1k ((6r41y--5,07-1) @ (11,71, o, Yr))
= 14+ +0+r)T—r—1)+J—r—1)(1+7)
=14+r{I+J-(14+r)).

O

Note that, with the constraints in (1), (17,71,...,7-) and (1,81,...,9d,) are
orthogonal bases of M [(11,7v1,...,7r)] and M [(1,d1,...,0d,)].

Proposition 2. The Hessian of Model (1) is given by

) oy Py () ((Optr Opaspn
He(0) = —g007— = 0 e
OpB x pA I ® fjeiT 0
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where e; and f; are the ith and jth canonical vectors of Rl and R’. Every HED (6)

is a symmetrical matrix of rank 2r.

Proof. The Hessian of the response function is a four dimensional array row
factor x column factor x parameters x parameters; it is presented here as a series
of symmetrical matrices for each couple of factor levels (i, ).

From Proposition 1, d(ngn is given by

Mgy _
g = (
All terms involving linear parameters vanish and consequently

1,el ,f 5]1eiTﬁz'1ij>~--a5jreiT’%7"ij)'

Pnigy g P

A A
I I

BXpA'

For the remaining {)QL?T@%T block, it suffices to check that

0 (djuel) o 7 0(viuff)  op
Téu = fJeZ and T% = ezf]

to obtain that 8277 N 0 o g7
(ZJ)TIT@(,T ”>'
0689 (6B) fie, 0
The rank of Hii] ) (0) is equal to the rank of its second diagonal block because the
other blocks are null. On the other hand,

0 eff 0 ef”
k(L. J = rk(I,)rk J
' ( ®(fjezT 0 )) thil)r ((fjeZT 0
0 g7
=rrk T il .
fjei 0

The rank of the remaining matrix is obviously two. O

Proposition 3. The rows of the Jacobian for the constraints, L () = %57, are
given by the expressions

1 LY =(0,17,01,0,5,2)

1 Lg = (o, 01X,,1J,01Xp 5)

r Lg,u (lep >gu (11701><J>> Yu

r L5C,u = (015pa ,gu (01x7,1%)) Yu

r quy = (Orxp ,gu (’Yu,* )) Yu
74(74_1)/2 L'?u’u (O’FXp >gu ('7U>01><J>+gz;®(’)’3;,01><J)) Yu < v

T(T_l)/2 Léou'u :(07"><p 7gu®(01><I>63;>+gUT®(01><1,63;)) Yu < v

where the first column indicates the number of rows of L (0) involved by the formula
in the line and g, is the uth canonical vector of R". The rank of L () is 2 + 2r + 2.
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Proof. It is straightforward to derive the different blocks of agg(ﬁ) once we
recall that ¢ (0) and 6 are defined in Section 2.1.
The derivation of the rank can be done in several steps:

1. Constraints on additive parameters give null components for the 82 part of the
Jacobian. Similarly, constraints on biadditive parameters give null components
for the A4 part of the Jacobian. It follows that

d¢ (9) 9¢ (9) Dy ()
rk( 90T ) =rk (8(9A)T> +rk (8(93)T> .

k (LD (9)T> =2
2(64)

3. From the centering constraints it follows that 1; and -, are linearly indepen-

2. Obviously

dent, and so are 1; and §,. Hence

0= (RC’Y @] ch) N (RN URoy U Ro5)

where
Roy =M [g1@ (17,000)" o g @ (17, 000s) " |
Res = M[ © (00, 19)" g @ (011, 1%)]
Ry =M g1®(’y , ) ...,g,«®('yTT,—5TT)T}
Roy =M [gu® (v7.01xs)" + 80 @ (77, 01,5)" . Vu<v}
Ros = [ (011, 87) " + g0 ® (01.1,87)", vu <],
0

k (882:;;0))T> = dim (Rey U Res) + dim (Ry URoy UR0s) -

4. Tt is easy to see that

dim (RC’Y U ch) =27,

dim (Ry) =,
dim (Ro4) = (7“2— 1),
dim (Ro5) r (T; 1)
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5. It is easy to check that RoyLRos, hence
dim (Rofy @] Ro(s) = dim (Rofy) + dim (Ro(;) .

6. Due to (4) no vectors of the form g, ® (v7, 755)T can belong to Ro, U Ros
since only generators of the form g, ® ('7UT ,01x J)T with v # v are available.
Now vectors g1 ® (’le, fdf)T ey Br ® (’er, 75,7:)71 have nonnull components
in the same position, consequently

dim (Ry U ('Ro7 URos)) = dim (Ry) + dim ('Ro7 URos) -

O
. - (TO) .
Proposition 4. The matrix L) is of full column rank.
: . . (J(0)
Proof. According to Propositions 1 and 3, the matrix L(®) reads
1,21, 1,I; I;1; 61 I, 0,1 Ii®v
- 17 - - I -
T
_ _ 17 _ _ _ _ _
— — _ 1}" — — — —
— — _ _ 15 — — —
— — _ _ — — 1? —
— — _ _ — — — 1?
e s
e S
e
Y - S
where for the sake of clarity, null block matrices have been indicated by “~” and null

lines drawn out to better display the structure. Postmultiplying this matrix by the
block diagonal matrix

1 01 (p-1)
Q, O5x;
0p-1x1 Iy ® ( ! Qxé

Oyxr
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where Qy=((17,71,72:¥3:---»Y1-1)" )

' and Qs=((1/,81,82,8s,...,6, 1)) "

with complementing vectors defined in Expressions (5) and (6), one obtains

1;®1; 1J®ny
T

Qs®1; 60Q, Qs®m

6r®Q’y Qs @ r

T
_ — £ — _ _ — _
_ _ _ el _ _ _ _
T
_ — _ — £ — — _
T
T
- - - e —f5 - - -
T T
- - - - - - €ri1 —f
T T

- - - €ry1 - - €3 -
T T

- - - - £ - - f;

It can be checked that all multiple columns of the transformed J (6), namely 1, ®17,
01017, 0:017, 1,071, 17®72, 611, 2Rz, 01 @72 and §; ®-y2, are distinguished
by the canonical vectors in the transformed L (#). Consequently all columns of this

matrix are linearly independent.

O

ER0)

Proposition 5. The Hessian for the constraints, K (§) = 555,57, is given by the

following symmetrical matrices, one for each constraint.

1 Kg = 0pxp
1 K§ = 0,5,
T Kgu =0,xp Yu
r Kgu = 0pxp Yu
N 0,45 pa 0,45 pB
r K, = T I; 0;, Yu
Op5ypa  BuBy ®
0;r —1;
( )/ o OpAXpA pA xpB
r(r—1)/2 K = I; 0;, Yu <wv
v v 0,55,4 (8081 +gugl) ® (
051 0y
0,45 pa 0paxpB
T‘(T‘—l)/2 K(;O = 0[’[ OI’J Yu < v
v OprpA (gvgg + gug?;) ®

057 1,

where the first number is the number of constraints described in the line.
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Proof. There are no technical difficulties in obtaining these matrices starting

from the Jacobian given in Proposition 3. O

2.2.2. The information matrix and a related matrix.
The following derivations are given without proofs: either they are simple products
of matrices or they are proved in Appendix A.1.

Proposition 6. The information matrix M (0) of Model (1) is given by

pal BT Al 6T Y585 o 60
— N—— ~—— ——
I
« } AV Bl B2 e Br
B
J(O)" J(6) = ’;’1 } Bl il +Tn Ty |
1
72 T
5y } B; T2 Colipg+To ... | P
” } BT P r. C,I T
S r 1r 2r RN O § Ny +1,.,

where C,, = vI~, Yu and
J g7 1%

0 0 0T
A" =gy, Jn, 17, Bu=< 1?(1“))7 F“”:<51X§ g U).
I11; lJIIT I1; u0 u Yy IxJ

Proposition 7. The inverse of M (0) + L (0) L () is given by the matrix

NG T I U S
—_— Y= N—— ~——
o
o A* B] B; B
B
71 T . — (A1 +T21) —(A14T)
o1 } (B7) Cu (0127102)221 (017107-)21
72 ( *)T 7(A12+F12) * 7(A1-2+r1-2)
9> 2 (Ca—Cn)? 2 GG
’77: * T —(A ,T+r +) —(A ,..+r ) '*
o } (B7) (Crl—Cl)12 (Cr2—02)22 T G
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where

)y 412472 I 21? —J217
J 4+ Z 117
_1_21] 92 T T OIXJ
A= +J77 2 Yuu ,
vt I~ 1IJ+IJ21J1T
-J 21 0
J Jx1I 41 2 Z 5 (ST
u=1
O1x1 O1xg
B, =— Orxr J 2y, 17 |
IiZ&ul? Oyxy
c?2—12 c? —
C* —C_lI U E U E
w=C Y e ey G, J2(J+C )
1
> A+ Ay, +T
— C, (Cu + Cb) A Z cu+0)(c -C,)? z (Ao + Too)
v;éu
with
Irxr OI><J> <OI><I OI><J> <’Yu’YT OI><J>
E, = ’ E; = 3 Auv: v ’
! (UJxI 0y ? Osxr Ijxy 0yx; 6,67

T',, being defined in Proposition 6.

2.3. Least squares estimators

It is convenient to distinguish the estimates of the linear part which can be ob-

tained in closed form from the estimates of the bilinear part which are the solution

of the eigenvalue equations.

2.3.1. Parameters of the linear terms.

L.S. estimators for the linear parameters (u, o, 3) are given by identical formulse

whatever is r, the number of multiplicative terms, even if it is null. This good

property is due to the centering constraints (@gu) and (cpgu) of Model (1). These

estimators are especially simple, namely linear combinations of the observations. If

Y is the I by J matrix of generic component y; ;) then

- 1
B= IJ —17Y1,,
(@); = leJ — 17,

@ ——Y 1]—1J/,6.
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They are unbiased.

2.3.2. Parameters of the bilinear terms.

Let Py = 1; (11T11)71 17 be the orthogonal projector of R’onto the span of
1;; similarly we define P;. For the bilinear part the L.S. estimators 4, and
3, are the eigenvectors of the matrices (I; —P;)Y (I; — P;)YZ (I, — P;) and
I, —P,) YT (I; —P;)Y (I, — P,) such that 375, = 678, = C,, where C2 is the
common uth eigenvalue of these matrices. Note that the directions of 4, and ;S\u
must be chosen simultaneously. Classical references for these equations are Eckart
and Young [8], Gollob [13], Mandel [16] and Johnson and Graybill [15].

As a consequence of Constraints (1) the estimators of the additive part are inde-
pendent of (I; — P;)Y (I; — P;) and consequently of 4,, and Su

2.3.3. Asymptotic variances.
The results presented in the next proposition come from Denis and Gower [2, 4, 5].
There are no novelty, merely the formulae have been translated into our notation.

Proposition 8. The variance matrix of the first order asymptotic approximation

of least squares estimators of Model (1), say 5(1), is

wa, BT A6 3,05 ... Al8F
N—— N—— SN—— ~——
I
o AY Opax(r+s) Opax+sy -+ Opaxty)
B
>N Y1
Var |:9(1):| = 0'2 5 } 0(1+J)><pA El E12 e El’r
1
‘;’2 } 0747 xpa Eo; E, E,,
2
Y
5 } 0(1+J)><pA Erl Er2 . Er
where
(IJ)” O1x1 01
AV =1 05 J U —I)) 1t 07y s
071 Oyxr I_lIJ—<IJ)_1 1J1§
1 (Ir—=P;  O1xys " _ _
Cu< 0ur IJPJ)+;( qRqq t Fug qQ)
—1 —2 9 — _
E,, = ﬁ((cu + CU)AUU + 2CquI‘vu> when u 7é v
(Cu - Cv)
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with

-3 1
luu E— kuu Ea—
4 4
— =2 =2 —9
c,(3C, - ) 2C
7 B w— v ) W= — 5 for u # q,
q 2 2\ 2 q 2 2\ 2
Cu (Ou - Oq) (Cu - Cq)

Ay, Ty, are defined in Propositions 7 and 6, C,, = vI~, = 618,, and bar means
the true value of parameters.

Remark. Notice that Var(@\(l)) = Var(A(l)) as used in Pdzman and Denis [17],
since A1) =) — 9.

3. APPROXIMATE BIAS OF THE PARAMETERS

The derivation of the asymptotic bias of the parameter estimator 0 will be done
by applying Proposition 2 in [17] which reads

-1

(1) b(6) = —5(M(®) + L)L)
(JT( ) Tr{H (8) Var[dV]} + LT () Tr{K (9) Var[dV]}).

The main elements of this formula and the formula itself are calculated in Appendices
A.1l and A.2:

o (M(0)+ T(@)L(?))_l is given by Lemma 18.
Tr{H(0) Var[§(!)]} is given by Lemma 19.
Tr{K (0 )Var[é\(1 ]} is given by Lemma 20.
JT(6) Te{H(0) Var[f(V]} + LT (A) Tr{ K () Var[f(V]} is given by Lemma 21.
Finally, Expression (7) is obtained in Lemma 22.

Theorem 9. The approximate bias of the estimator of the parameter vector of
Model (1) is null for the linear parameters, and is given by

A 2(J -1 -1 C, _
b(Fu) = 0o %—Zﬁ Vs
© (@)
~ I-J)-1 c’ _
b6, =P Y G
o (G-a)

for the bilinear parameters where b(@ means the approximate bias of the estimator
~ — —T—
0 and C,, = 5.5, =8, 6..
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A noticeable point of this result is its simplicity: the vectors b (5,) and 7, have
the same direction. The same holds for b(gu) and d8,. The vectors b (7,) and b(gu)
respect the symmetry of -, and d,, in Model (1). The only difference is due to the
number of levels, I and J, of the two factors.

4. BIAS OF IMPORTANT FUNCTIONS OF THE PARAMETERS

In this section we give results for a second parameterization of Model (1) as well
as for its response.

4.1. Another parametrization

4.1.1. Definition.

In most practical circumstances biadditive models are considered under an equiv-
alent parametrization imposing unit length to vectors =, and 8, and adding r addi-
tional parameters g, i.e.

T
(8) Y(ij) = M+ a; + 05 + Z 0uViudju + €(i,5)

u=1

with r additional constraints
I
Z?fuzfygfyuzl Vu=1,...,r
i=1

The main reason is that the amount of interaction for each multiplicative term is
given by o2 while vectors 7, and J,, develop the contrasts of the interaction. The
new parameters can be easily defined as functions of the former ones by

ou=rYe Yu=1,...7
Yu = Yu (75’7%)_
~ 1
0, = 6y ('717;7u) ..
Let us denote the new set of parameters by
0 T T T ST T ST ~1r 51\7
9: (,u,a ?16 791a71 761 792a72 762 7"'797"7’7’r 76r)
and the mapping giving 0 as a function of 6 by 7:
(9) 0=1(6).
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4.1.2. Jacobian and Hessian of the transformation.

a7 (0)

Proposition 10. The Jacobian —5,7> of the function (9) is the ((1+r)(1+ 1 +

) x (14 (1 +r)(I+J)) matrix

(Il+I+J 0 )
0 diagu:l,...,r (ZU) ’

where Z,, are (1 +1+ J) x (I + J) matrices given by

2y, 01,;
Ly = ('717;7u)_ [III_ Yu ('717;’)%)_1 '73;] OI,J )
- (’YE’WL)_E Oy ('73’)%)_1 '73 (73’7u)_5 I,

N

It is full column rank.

Proof. Straightforward derivations produce the formula. The rank of Z, is
I+ J because the two blocks of columns are independent of rank I and J, respectively.
Due to the diagonal block structure of f’g;;’i), its rank is the sum of the ranks of the

blocks. O

Proposition 11. The Hessian gz(gg? of the function (9) is given by the following

series of symmetrical matrices of size (pA +pB ) X (pA +pB ):

{827' @) } {827 (9) } {827 @) } 0
= = = Y(pA+pB)x(pA+pP)
00007 () 00007 (@) 00007 () pep o
( 0p4 5 pa 0,45 pB

21] 0y J Vuzl,...,r
0,5 xpa gugg ® < *
O0sx1r Oyxs

927 (0) } ( Opspa 04 xpr )
{ N; 0]><J VUZI,...,TViil,...,I

00007 | - 0 T !

(Fiw) pB xpA guly ® <OJ><I 0J><J>
{627 (9)} <0PA xpA 0,4 xpm )
= Upw V1§ Yu=1,...,r¥j=1,...,J
T ~ T J Jju ’ ’ ’ )

where

_3 _
Niw = (77 %) "% [Byiuve (Vv) " AT = (€T +vue! + viulr)],
_3 _
Uju = dju (757%) : [3 (Vg'Yu) ! ’Yu’yg - II];

[N

Viu = — ('75’7“) fj’yg'
Proof. Straightforward derivation gives each matrix. O
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4.1.3. Asymptotic variance.

~(1)

Proposition 12. Var [5 ] , the asymptotic variance of the estimators of parame-

ters of Model (8) is given by

po BT 0 AT6 AR08 . oAl 8
N—— N— N— ——
1
« AY Opaxtr+s)y Opaxtrssy - Opaxiryy)
B
01 B _ B
T O(147+7)xpa E; Eio e Eq,
o? 1
02 _ _ _
’:)’2 O(147+7)xpa Eo; E, e E,,
02
. : ~. ~. ~
Yr O(1414+7)xpa E. E.» E.
o,
where
1 0 0
1 2C., = 57
Eu _ 0 ?;P(’Y) T#Zu <5i—612,)2 71}511 ’
2C., =T 1
O L@yt aPo)
1 0 0 0
~ — 2 —2 —
Ew=—77 — 5 (C’M+CU) 0 57° _()_T
cici(c.-) 0 0 3,0
0 0 0
+20.0, |0 o 7,3,
0 57 0
where

20, (36i - 63) B _T}

20, (3C° - Of,) .
P(6) {P{m}i + ; (62 __2)2 51,5(,],
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1 -1
P{l’%}i =1I; - Tlll? —VYu ('717;'7%) '717;7

w

1

059(9) (9(1))0T 9( ) whose terms
are given in Propositions 10 and 8. O

4.1.4. Bias.

Proposition 13. Approximate bias of the second parametrization is

—=2

b(@.) = o (J+£)—4+Z_ _Cq

T mEE-T))

c, (sCh-77)
p— (Uz - 63) ’

c (36i - 62)

q

e~ o?_
b(’7u> = 70u 2-1- 7u’

o -

—2  =2\2

qF#u (C w—C q)
Proof. these formulae are obtained by applying Proposition 5 in [17] using the
previous results on bias (Theorem 9), variance (Proposition 8), Jacobian (Proposi-

tion 10) and Hessian (Proposition 11). O

4.2. Estimator of the response function
The estimator of the expectation of the observations is simply given by replacing
the estimators of the parameters in the response

n(6) = 1J®1Iu+11®a+ﬁ®11+zdu®w
u=1

Proposition 14. The asymptotic variance ofn(@ is

1 1 1
2{IJ (1,17 ®1,17) + i (1157 ® (I, - Py)) + 7 (I, -P;)@1,17)

+3 o (0,67 © (L = P1) + (L~ P) @ 7]
u=1
ZZ

®%%T)}.
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Proof. Thisresult is obtained by expanding J (5) Var(a(l)) JT (5) whose terms
are given in Propositions 1 and 8. O

Proposition 15. The approximate bias ofn(@ is null.
Proof. Application of the general Proposition 5 in [17]. O

Remark. When the maximum number of multiplicative terms is introduced
in the model, that is when r = min (I —1,J — 1), Model (1) turns out to be the
classical ANOVA interaction model which is a linear model and consequently without
bias in the response. Our result is consistent with this fact.

5. SIMULATIONS

In order to have an idea about the practical validity of the approximations pro-
posed, we have performed some simulations. Following the investigation made by
Chadceuf and Denis [1], we took I = 8, J = 13, r = 1 and a series of values of o>
such that their coefficient

(I—-1)(J—1)c?
(I-1)(J—1)02+0?

r(o) =

takes the values {0.01,0.05,0.1,(0.1),0.9,0.95}. This coefficient can be interpreted
as the ratio of the noise over the sum of the noise plus the signal. In agronomic
applications presented or studied by Chadoeuf and Denis [1], Gauch [11] and van
Eeuwijk [9] its values were (0.02, 0.30, 0.22, 0.17, 0.14, 0.44, 0.59, 0.68), so some
practical situations are covered by these computations. For each value of r (o), 1000
simulations were done.

The results are presented in Figure 1 where simulated values and approximations
are compared for 711, 01 and 7)1 1). Rather than to give globally the mean square
error of the estimators, we thought it useful to look at its two components: the
standard deviation and the absolute value of the bias.

Several kinds of comments can be infered from Figure 1. We found them true
also for other results investigated but not presented here. In all cases, the two
approximations (standard deviation and bias) are quite good until r (¢) = 0.5 or
0.6. After that point, the approximation underestimates the bias for the response,
nevertheless it is still surprisingly good for g;. According to the parameter considered
the participation of the bias in the MSE can be the most important (g1) or the
smallest (711).
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Figure 1. Results of simulations for 711, 01 and 711. The coefficient r(o) is on
the x-axis (see text); either the standard deviations (dashed lines), or the absolute
values of the bias (solid lines) are on the y-axis. Big dots indicate the simulated
values, the other lines give the approximate values.
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A. APPENDIX
A.1. Some necessary inverse matrices

Lemma 16. Let A be the matrix

IJ Jit nr
J1; JII—I—]_I]_? 1]15
I1; 1,17 IT; + 1,17

Its inverse is

(I 41724 g2 1*21? —J217%
—1721; J- 1II+ T2 111T OrxJ
—J %1, 0Jx1 7'y + 54 1,1)

Proof. A direct check can be performed by multiplying the two matrices. [

Lemma 17. Let C be the symmetric square matrix of r x r blocks of size (I + J) X
(I + J) defined by

Z |:CuHu + Eul + Eu2 + Z CvDuv + Z Cucvvuv:|
v=1 v=1
vEU

u=1

1,17 0 0 0
where H,, = gug5®II+Ja E,g= gugz:@ < 0 0); E,» = gugz:@ (0 1J1§>,

D,, = CLUgugg ® Ay and Vuv:ﬁgugg ® (Avu + Fvu)-
Its inverse is

S 1 1
© -2 j s a) e ura)”
. ~ V0.0,
;Ou C +C Z C,)? Vo
v;éu
- 2C,C,
1 (CutCy) (Cu— Cy)° “]

v=
v;éz

where F,, = C%gugf ® (Ayy + Ty). [Ayy and Ty, are defined in Propositions 7
and 6.
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Proof. We will calculate the product CC ™! and check that it gives the identity
matrix. To do so, it is convenient to derive the table of products of the auxiliary
matrices. Note that the products which are not mentioned in the following table are
null. The table is ordered according to the resulting products.

<<=

IS
]

H, E s =Eu
Egu H,=E,
Eul Eul - IEul
H, Ep=E,;
E.n H,=E,;

IS
]
IS
]

<=
S

g

£
e
I

g
g

H
g

<= <>
g g
uj'-a<p< <
I

Eu2 Eu2 - JEuZ Hu uv — Fuv
H, Dy, = Dy, Fuo Hy=Fy,
Duv Hu = Duv Duv Fuv = Luv
Duv Duv - Duv Fuv Duv = Luv
Vo Vyu = 2F

We will now perform the calculus of CC ™! using this table of products:

e terms in H,:

Cu
Z C_MHU = ZH“ = Ir(I+J)><r(I+J)

e terms in E,;:

11 I —C (14— 1
_ ——————]Eu=) E,
Zu < I+c, G, Cu(1+(]u)) ! ( CuI+ Cu) > !

u

= 0r(14J)xr(1+7)

e terms in E,5:

1 1 T
a w7y ) B2 = 0, r
%: < J+Cy - Co Cu(J+ C’u)> 2 (I+J)xr(I+J)

e terms in D,,:

o, G, c?
2.2 (C ~o. to, A, +Gu)> D

—Cy+ (Cy + Cy) — Cy,
=226 < Co (Cu 1 Cy) ) v = Or(tryertie)
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e terms in V,:

Cy \/C C VC,Cy CovC Oy
X3 -

U vEu CU (C“ - C”)2
CuvVCCy 4C,Cyv/CLCy
- + 2 )Vuv
Cy (Cu+Cy)  (Cy —Cy)* (Cu+Cy)

Z Z KW\/C’ Cy v
w vz C Cy)* (Cu + C)

where

KU'U

- = Cucv (Cu + Cv)

+(Cu — Co)? (Cu + C)
- 03 (Cu + Cv)

— Cy (Cy — Cy)? 4+ 4C,C2
(Cu+Cy) (—cucv +(Cy— C)? - 03) —Cy ((c —C)% 402)
= (Cu+ Cy) (CF = 3CuCy) + Cy (—C2 4+ 2C,C, + 3C2) =

0
e terms in F,,:
Z C.2C,C, + C,2C,C, 200G, F
vFU (Cu+Cy) (C _Cv)2 (Cu+ Cy) (C _Cv)2 (Cu _Cv)2 "
B Z 2C,Cy (Cy + Cy) — 2C,C, (Cy + C’U)F ~0
o (Cu+Cy) (Cu — C)? B

(]
Lemma 18. The inverse of the matrix M (0) + LT (6) L (8) of Model (1) is given
by

(@ o)

where
(1) 1724 g2 —1217 —J217
R =T
_21 I T-J12 ILiy 0
-1 I —92 T IxJ
A +J75 30 YuVu ,
u=1 1 T
, I—I;+ 1J2 ].Jl
—-J7“1 0
J Jx1I —l—I_ Z 5 65
u=1
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, O1xr O1xs
—Zgu Orr  J2vlb |,
1726, 1, 0%

C*_ZT: dp oGl g G-l g
_u:1 Cu u CIZ(I+C) ul OuJZ(J+Ou) u2
_zf: Cy Z \/Cu(]
Cu O +O uv Cu C uv
v;éu
s 2C,C,
+ Fuv:|a
Z (Cu+ Cy) (Cy — Cy)?

v;éu

with the auxiliary matrices H,,, E,1, Ey2, Dy, and F,,, defined in Lemma 17.
Proof.
1. M(H)—i—LT (0)L () = (

in Lemma 17 and

A B
BT C) where A is defined in Lemma 16, C is defined

01><I 01><J
B = Zgu ® | Orxr Yulh
u=1 5 11 0J><J

The well known formula of the inverse of such a two blocks by two blocks
partitioned square matrix is

A B\~
(o7 )
(A-BC'BT) ", ~(A-BC'BT)'BC!
< C-'BT (A-BC 'B”)"', C~!+C'BT (A-BC'BY) 'BC >

we will compute it accordingly.

2. Here we will derive BC™*. From the definition of these matrices (see Lemmas
17 and 18) it can be checked that

O1x7r O1xs

BH, =g’ 0 17
uw=8, ® IxI Yuly |,

5,17 0yxy

01><I 01><J 01><I 01><J
BE, =gl ®| 0/x; Oixs|; BEwn=gl®| 01 Jyv.1% |,
16,17 0jys Osxr  Oyxs

BDuv - Bvuv - BFuv = 0(1+I+J)><T(I+J)'
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It follows that

r O1xr 017
BC ' = ng ® OI><I Froo el
u=1 I+C 6u1T 0J><J

3. Here we will derive BC™!B”. A straightforward matrix product from the
preceding expression gives

- 0 O1xr O1xs
BC 'B"=> | 011 v Ors
u=1 \0,x1 0x1 T 0ud,

4. Here we will derive (A — BCleT)_l. It can be checked that it is given by
the expression

0 01><] 01><J
A~ +Z Orx1 J 27yl Orxy
u=1 \ 0yy1 O0yxr I1726,67

5. Here we will derive (A — BC_lBT) “'BC! from the previous results. It turns
out to be equal to

r O1xr O01xJ
Sele|(a-BCB) | 0 o)
I+C oy 0ull 077
r 01><I 01><J
= ng@ Orxr J72’7u1§
u=1 726,17 04,

6. Here we will derive C™'B” (A — BCleT)leCf1 by multiplying C~ BT
and (A — BC_lBT) “'BC! previously obtained:

” 0 0 O1xr O1xJ
Ree(on iy ol e (o, e
1 Ix1  Jxro, LI Vu IxJ 1_2%1? 0/,
T Cu T

o T 12(1+Cu)1111 0I><J

= Z (gugu) ® 0 Cu 1,17 )"
u—1 JIxI TEI+Co) T T

From here, there is no difficulty in obtaining C* because C~! is already given

in Lemma 17.

O
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A.2. Calculations for the bias formula
The aim of this section is to calculate for the parameters of the biadditive Model
(1) according to Proposition 2 in [17].

Lemma 19. For the biadditive Model (1) we have

- 402 1
Tr{H Var9(1 } =07 |+ = 6,7,
e Z 2 - aap | Fae
vFEU

where C,, = vI~, = 616,.

Proof. H(#)isan IJ x (pA +pB) X (pA +pB) structure given by Proposition
2 and Var [9(1)] is a (pA +pB) X (pA +pB) matrix detailed in Proposition 8. This
means that we must obtain an I.J vector whose (7, j) component is

Te{ H{7 () Var[fV] ).

. i) 0,45 pa O0p4pB . .
Since H,.,”’' = 0 ef: , so only the codiagonal blocks of
0,55pa I,® £ ol J
the terms E,,, have to be taken into account for the trace. This gives

a? Z kaﬂzq jq
u=1

" "1 2r 1
=0"> Yigbig 2| au —
g YiqOjq + 3
pr ot C.Cy (14 QOq

= Tug)’

Lemma 20. For the biadditive Model (1) we have

[-J1-J I-J T
Te{K () Var[0]} = 0> (01x22. ("5 5 ) O (1))

where C,, = vL~, = 814,.

Proof. K(#)isa (3 +2r + r2) X (pA +pB) X (pA —|—pB) structure given by
Proposition 5 and Var [5(1)} is a (pA + pB) X (pA + pB) matrix detailed in Proposi-

tion 8. This means that we must obtain a (3 + 2r + r2) vector whose components will

400



be calculated according to the seven types of constraints presented in the definition
of Model (1):
e components associated with the four centering constraints are null because the
corresponding matrices of the Hessian are null;
e components associated with the normalization constraints reduce to

oL
Cu '’

" 1
o? {Zzuq (Yavqg — 62 8) + o (Tr(I; —P;)—Tr (I, —Py))| =0

q=1

e components associated with the orthogonalization constraints vanish because
the result is a linear combination of Tr (v,v!) = vl ~v. = 0 and Tr (6,07) =
815, = 0 because u # v.

U
Lemma 21. For the biadditive Model (1) we have

JT(0) Te{H(6) Var[0)]} + LT (0) Te{ K (0) Var[§V)] }
= 02 (lepA7Q1’7?a Rl(s{a tety QTW?? RT6?>T

where
1+2(I—-J) 2 402
u — Cu L 3
Q 20“ i v=1 (Cg - 03)2
vFEU
1+2(J 1) . 402
R, = C, v
20, — (C2 — (C2)?
vZu

and Cy, = vI'~, = 6L4,.

Proof. J(0)is given by Proposition 1, Tr{ H () Var [5(1)] } by Lemma 19, L (6)
by Proposition 3 and Tr{K (0) Var [9(1)]} by Lemma 20. The result is obtained by
multiplying matrices and summing vectors. ]

Lemma 22. For the biadditive Model (1) we have

@+ O )

< (7 0) Te{ 1 (0) Var[IV]} + L7 (0) Te{ K (0) Ve 0] )
= o2 (lepA,Slﬂle,Tlle, ceey ST’YT»T,TT(sg)T ’
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where

8C7 ocz-cp)¥
vEU
2(I-J)—1 c?
T, = - § v
8C3 —(cz-c2y
v#U

and C,, = 'ygﬁyu = 555,,

Proof. (M (0)+ LT ()L (9))_1 is given by Lemma 18 and

JT(0) Te{ H (0) Var[0D] }+ LT (0) Tr{ K (0) Var[0V] }

by Lemma 21. The result is obtained by a simple matrix multiplication. O
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