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Abstract

The simple incidence structure D(A,2) formed by points and un-
ordered pairs of distinct parallel lines of a finite affine plane A = (P, £) of
order n > 21is a 2 — (n?,2n,2n — 1) design. If n = 3, D(A, 2) is the com-
plementary design of A. If n =4, D(A, 2) is isomorphic to the geometric
design AG35(4,2) (see [2; Theorem 1.2]). In this paper we give necessary
and sufficient conditions for a 2 — (n?, 2n, 2n — 1) design to be of the form
D(A, 2) for some finite affine plane A of order n > 4. As a consequence
we obtain a characterization of small designs D(A, 2).

Key words: 2 — (n?,2n,2n — 1) designs; incidence structure; affine
planes.
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By a 2 — (v,k,\) design we mean a pair D = (P,B) where P is a set of
v points and B is a collection of distinguished subsets of P called blocks such
that each block contains k points and any two distinct points are contained in
exactly A common blocks!. Our main result is the following

Theorem 1 Let n be an integer with n > 4 and let D = (P,B) be a
2 — (n%,2n,2n — 1) design. Then D is of the form D(A,2) if and only if
the following two conditions are satisfied: (c1) any three distinct points of D

*Supported by MIUR, Universita di Palermo.
1For further definitions (and basic results) about 2-designs see [1].
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are contained in exactly 3 or n — 1 common blocks; (c2) if X1,X2,...,Xn-1
are n — 1 distinct blocks of D such that | X1 N Xe N --- N X,,_1| > 2, then
XiNnXoNn---NX,_1 = X;NX; whenever i # j.

Before proving the theorem we need some preliminary results about
2 — (n2,2n,2n — 1) designs.

Lemma 1 Suppose A = (P,L) is a finite affine plane of order n > 4 and let
D(A,2) be the system of points and unordered pairs of distinct parallel lines
of A. Then D(A,?2) is a2 — (n?,2n,2n—1) design satisfying the following prop-
erties:

(1) any three distinct collinear points of A are contained in exactly n — 1
blocks of D(A,2);

(2) any three distinct non-collinear points of A are joined by precisely 3 blocks

of D(A,2);

(8) if X1,Xo,...,Xn_1 are n — 1 distinct blocks of D(A,2) such that | X1 N
XonN---NXp1| > 2, then XiNXoN---NXpq = X; NX; whenever
i#£7.

Proof This follows directly from the definition of D(A,2). O

Lemma 2 Let n be an integer greater than 4 and let D = (P,B) be a
2 — (n2,2n,2n — 1) design any three distinct points of which are contained in
exactly 8 or n — 1 blocks. Then for any choice of two distinct points x,y in D
there are precisely n — 2 points z € P\ {z,y} with the property that z,y, z are
joined by n — 1 distinct blocks of D.

Proof Let 2,y be any two distinct points of D and denote by ¢ the number
of points z € P\ {z,y} with the property that x,y,z are joined by n — 1
blocks of D. Then 0 < ¢ < n? — 2 and n? — 2 — ¢ is the number of points
w € P\ {z,y} with the property that x,y, w are joined by exactly 3 blocks of D.
Thus, counting the point block pairs (p,C) with z # p # y and {z,y,p} C C,
we find 3(n? —2 —¢) + (n — 1)c = (2n — 2)(2n — 1) which can be written as
(n—4)c=(n—4)(n —2). Hence, since n —4 # 0, ¢ = n — 2 and the lemma is
proved. O

Lemma 3 Let n be an integer with n > 4 and let D = (P,B) be a
2—(n? 2n,2n—1) design. If X1, Xo, ..., X,_1 are n—1 distinct blocks of D such
that X1NXoN- - -NX,_1 = X;NX; wheneveri # j, then | X1NXa2N- - -NXp_1] > n
with equality if and only if X U XU ... X,,_1 =P.

Proof Write X UXoU---UX,,_1 ZlU(Xl\l)U(XQ\l)U"'U(Xn_l\l),
where | = X1;NXoN---NX,,_1. Then |X1UX2U' . 'UXn—ll = a+(n—1)(2n—a) =
n? 4+ (n — 2)(n — a) with @ = |I|. Thus, since D has n? points, we obtain
n? > n? + (n — 2)(n — a) which, since n > 4, gives n < a. Moreover n = a is
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equivalent to ask | X; UXoU---UX, 1| =n?%ie. X3UXoU---UX, 1 =P,
and the lemma is proved. a

Proof of Theorem 1 In view of Lemma 1, we have only to prove that D =
D(A,2) for some affine plane A (of order n), provided conditions (¢1) and (c2)
hold. Define A = (P, L) by taking P as the set of points and theset L = {l C P :
[I| >2,l=LiNLyN-+-NLy_y with Ly, Lo, ..., L, distinct blocks of D} as
the set of lines. By Lemma 2, £ is non empty. Let [ € £ and let Ly, Lo, ..., L1
be the n—1 distinct blocks of D such that ] = L1NLyN---NL,_1. Then condition
(c2) gives | = L; N L; whenever ¢ # j so that, by Lemma 3, | contains at least
n points. On the other hand, as any three distinct points of [ are joined by the
n—1Dblocks L; (i =1,2,...,n—1), it follows from Lemma 2 that [ contains at
most 2 + (n — 2) = n points. Thus we must have n < |I| < n and consequently
|l| = n. Let x,y be any two distinct points of D. By Lemma 2 we may choose
a point z € P\ {z,y} and n — 1 distinct blocks Z1, Zs, ..., Z,_1 € B such that
{z,y,2} CZ1NZyN+--NZy_1. Therefore h = Zy N ZyN ... Z,_1 belongs to
L and passes through both = and y. Assume that {z,y} C k for some k € L
with k # h. Writing k as the intersection k = Wy NnWe N ... W;,_1 of n — 1
distinct blocks Wy, Wa, ..., W,,_1 € B we obtain {z,y,p} C Z1NZ2N---NZ,_1
or {z,y,p} CTWiNWan---NW,_1 whenever p € h Uk is a point such that
x # p # y. Then from Lemma 2 we deduce |hUk| < 24 (n —2) = n which
contradicts our assumption k # h and shows that h is the unique element in
L containing {x,y}. Thus each [ € £ has n points and each pair of points is
on exactly one common point set m € L: this is sufficient to conclude that
A = (P, L) is a finite affine plane of order n. Note that such a plane A = (P, L)
has the properties: (i) for any line | € £ and any point @ € P,z ¢ [, there is
just one block of D containing both [ and z; (ii) if a block C' € B contains a
line h € £ and if y € C is a point not on h, then C' = h U k where k € L is the
only line of A through y not intersecting h. Property (i) follows from the fact
that (by condition (c2) and Lemma 3) the point set P can be written as disjoint
union P ={U (L1 \)U(L2\)U---U(Lp_1\1),if L1, Lo, ..., Ly,—1 are the n—1
distinct blocks of D through the line I € £. To show (ii) we proceed as follows.
Denote by k the line of A through y parallel to h. Let z € C' \ h be a point
distinct from y and denote by [ the line of A joining y to z. We claim that [ = k.
Infact I A hand Il =W NWeN---NW,_1 for suitable n — 1 distinct blocks
Wi, Wa,...,W,_1 € B. Suppose there is a point w € hNIl. Then y, z,w are
three distinct points belonging to [ and, by condition (c;), there is no block in
D containing {y, z,w}, apart from the blocks W;. But h C C forces w € C' and
consequently {y, z,w} C C. Thus we have C = W; for some i € {1,2,...,n—1}
so that [ C C. Then [Uh C C and there is just one point p € C such that
p & lUh,since |C| =2n =1+ |[lUh|. As p belongs to n + 1 lines of A, we may
choose a line s € £ through p such that w ¢ s and s meets both [ and h. Since
C = {p} Ul U h, we have that s intersects C' in exactly three points, namely
p,INsand hNs. On the other hand, if Sy, Ss,...,5,_1 are the n — 1 distinct
blocks of D such that s = S; NSy N---NS,_1, we infer from condition (c;)
that S1,5,...,5,-1 are the only blocks of D containing p,l Ns,h N s. Since
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{p,INs,hNs} C C, we obtain C'= S; for some j € {1,2,...,n— 1} and hence
s C C. Therefore s = s N C consists of three points, a contradiction. Thus [
and h do not intersect and [ is the unique line of A through y not intersecting
h,i.e. l = k. Therefore z € k. As this is true for every point z € C'\ h distinct
from y and |C \ h| = n = |k|, we may conclude that C\ h =k. So C =hUk
and (ii) holds.

As any parallel class of the affine plane A = (P, L) consists of n lines and
A has n + 1 parallel classes, we infer from (i) and (ii) that D = (P, B) contains
exactly (n + 1)% blocks X of the form X = [Um with [, m distinct parallel
lines of A. But any 2 — (n?,2n,2n — 1) design has precisely b = (n + 1)@
blocks. Then we must have

B={X CP:X =1Um with [, m distinct parallel lines of 4}
and hence D = D(A,2). The theorem is proved. O

Since up to isomorphism there is just one affine plane of order 5,7 or 8 we
have the following characterization of small designs D(A, 2).

Corollary 1 Suppose n is one of the numbers 5,7,8 and let A(n) be the de-
sarguesian affine plane of order n. There exists up to isomorphisms exactly
one 2 — (n?,2n,2n — 1) design D = (P, B) satisfying conditions (c1), (c2) of
Theorem 1, namely the 2-design D(A(n),2).

We end our investigation with a few remarks

Remark 1 If A = (P,L£) is a finite affine plane of order n > 4, then 0,4,n
are the intersection numbers of the 2 — (n?,2n,2n — 1) design D(A,2): i.e.
{0,4,n} ={|X NY|: X,Y are two distinct blocks of D(A4,2)}.

Remark 2 There is no plane of order n = 6, but there is an example of a
2 — (36,12,11) design produced by H. Hanany [3], Table 5.23, p. 343. The
2 —(25,10,9) design D = (P, B) exhibited by H. Hanany, loc. cit. Table 5.23,
p. 334 is not of the form D(A,2): since D = (P, B) admits 8 as an intersection
number (i.e. | X NY| = 8 for suitable distinct blocks X,Y € B).
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