
Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Naturalium. Mathematica

Luisa Malaguti; Valentina Taddei
Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential
equations

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 44 (2005), No.
1, 97--113

Persistent URL: http://dml.cz/dmlcz/133386

Terms of use:
© Palacký University Olomouc, Faculty of Science, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/133386
http://project.dml.cz


Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
Mathematica 44 (2005) 97–113

Fixed Point Analysis for Non-oscillatory
Solutions of Quasi Linear Ordinary

Differential Equations

Luisa MALAGUTI 1, Valentina TADDEI 2

1Department of Engineering Sciences and Methods
University of Modena and Reggio Emilia
Via Fogliani 1, I-42100 Reggio Emilia, Italy

e-mail: malaguti.luisa@unimore.it
2Department of Engineering of Information

University of Siena, Via Roma 56, I-53100 Siena, Italy
e-mail: taddei@dii.unisi.it

(Received November 10, 2004)

Abstract

The paper deals with the quasi-linear ordinary differential equation
(r(t)ϕ(u′))′ + g(t, u) = 0 with t ∈ [0,∞). We treat the case when g
is not necessarily monotone in its second argument and assume usual
conditions on r(t) and ϕ(u). We find necessary and sufficient conditions
for the existence of unbounded non-oscillatory solutions. By means of a
fixed point technique we investigate their growth, proving the coexistence
of solutions with different asymptotic behaviors. The results generalize
previous ones due to Elbert–Kusano, [Acta Math. Hung. 1990]. In some
special cases we are able to show the exact asymptotic growth of these
solutions. We apply previous analysis for studying the non-oscillatory
problem associated to the equation when ϕ(u) = u. Several examples are
included.
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1 Introduction

The paper deals with the quasi-linear ordinary differential equation

(r(t)ϕ(u′))′ + g(t, u) = 0 on [0,+∞) (1)

under the following assumptions concerning r, ϕ and g

r ∈ C[0,+∞), r(t) > 0 for t ∈ [0,+∞);

ϕ ∈ C(R), strictly increasing, surjective, vϕ(v) > 0 for v �= 0;
∫∞
0

ϕ−1( k
r(s) ) ds = ∞ for k �= 0;

g(t, u) ∈ C([0,+∞)× R) with ug(t, u) > 0 for u �= 0 and t ≥ 0.

(2)

As usual by solution we shall mean a continuously differentiable function u
such that r(t)ϕ(u′) has a continuous derivative satisfying (1). We recall that
a solution of (1) is said to be oscillatory if it has an infinite sequence of zeros
clustering at ∞, non-oscillatory otherwise. The oscillatory and non-oscillatory
behavior of equation (1) is of special interest. On this purpose, it is important
to find necessary and/or sufficient conditions for the existence of solutions with
a prescribed asymptotic behavior. The following lemma gives the classification
of all possible non-oscillatory solutions of (1) according to their asymptotic
behavior. The result is due to Elbert–Kusano (see [6, Lemma 1]) and since its
proof does not depend on the monotonicity of g(t, ·), which is assumed in [6], it
is also valid in this more general context.

Lemma 1 [6, Lemma 1] Any non-oscillatory solution u(t) of (1) is of one of
the following types:

I) lim
t→∞

|u(t)| = ∞ and lim
t→∞

r(t)ϕ(u′(t)) = const �= 0.

II) lim
t→∞

|u(t)| = ∞ and lim
t→∞

r(t)ϕ(u′(t)) = 0.

III) lim
t→∞

u(t) = const �= 0 and lim
t→∞

r(t)ϕ(u′(t)) = 0.

In Sections 2 and 3 we obtain sufficient and sometimes also necessary con-
ditions for the existence of an unbounded non-oscillatory solution respectively
of type I and II (see Theorems 1, 2 and 3). In Section 3 in some special cases,
we also discuss the coexistence of type I and II solutions and prove the exact
asymptotic behavior of a type II solution (see Proposition 2). Our main in-
vestigation technique combine a linearization device with Schauder–Tychonoff
fixed point theorem. We compare our results with previous ones, in particular
with those in [6] and furnish several examples. Finally, Section 4 deals with the
special case

(r(t)u′)′ + g(t, u) = 0, t ∈ [0,∞) (3)

occurring when ϕ(u) = u. Applying previous analysis we discuss the non-
oscillatory properties of (3).
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Equation (1) arises in several applications. We quote, as an example, the
important study of the polar form of the semi-linear elliptic partial differential
equation div(|Du|α−2Du) + q(t)f(u) = 0. When f(u) = |u|γ−1u, this reduces
to the investigation of (|u′|α−1u′)′ + q(t)|u|γ−1u = 0, including the half-linear
equation (α = γ) and the generalized Emden–Fowler equation (α = 1, q(t) =
(t + 1)−m). Therefore, a wide literature is available, concerning the existence
and the asymptotic behavior of the solutions of (1) as well as their oscillatory
properties. See e.g. [1]–[4], [6]–[11], and references therein contained. However,
most of the quoted papers deals with the case when g(t, u) = q(t)f(u) and very
often it is assumed f(u) = |u|γ−1u for some γ > 0. In addition, also when
g(t, u) has not separable variables, as in [6] and [10], g(t, ·) is always increasing.
The main purpose of this paper is to investigate these matters in the case when
g is not necessarily monotone in its second argument. More precisely, we often
assume the existence of a constant L > 0 such that

|g(t, v)| ≤ L|g(t, u)| for u ∈ R, v ∈ [min{0, u},max{0, u}] and t ≥ 0. (4)

Remark 1 Condition (4) states that g(t,±u) give, for each t and u, an upper
and a lower bound for the oscillations of g(t, ·) in the interval [−u, u]. A typical
situation occurs when

l1|h(t, u)| ≤ |g(t, u)| ≤ l2|h(t, u)| for (t, u) ∈ [0,∞)× R

for some positive constants l1 and l2, and h(t, u) ∈ C([0,∞) × R), with h(t, ·)
increasing for t ∈ [0,∞) and uh(t, u) > 0 for u �= 0. Indeed

|g(t, v)| ≤ l2|h(t, v)| ≤ l2|h(t, u)| ≤ l2
l1
|g(t, u)| for v ∈ [min{0, u},max{0, u}],

that is (4) holds with L = l2
l1
. In particular, every g increasing in its second

argument satisfies (4) with L = 1.

Concerning ϕ, mainly investigated in previous papers is the case when
ϕ(u) = |u|γ−1u for some positive α. Under this condition, (4) can be replaced
by the weaker assumption (17) simply involving the asymptotic behavior of g.
This is possible, in particular, when studying equation (3) where α = 1.

2 Unbounded solutions of type I

This section deals with the existence of non-oscillatory type I unbounded solu-
tions of equation (1). A related result on this topic is due to Elbert and Kusano
[6] and it treats the case when g(t, ·) is increasing in R, for all t ∈ [0,∞).
Assuming for k �= 0

lim
h→0
hk>0

∫ t

0
ϕ−1

(
h

r(s)

)
ds

∫ t

0
ϕ−1

(
k

r(s)

)
ds

= 0 (5)

uniformly in [t0,∞) for any t0 > 0, they proved that the existence of constants
k �= 0 and c > 0 satisfying

∫ ∞

0

∣∣∣g(t, c
∫ t

0

ϕ−1
( k

r(s)

)
ds

∣∣∣ dt < ∞ (6)
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is a necessary and sufficient condition for the appearance of type I solutions.
Condition (7) in [6] is indeed slightly different from (5), but one can easily
see that they are equivalent. Theorem 1 is a generalization of [6, Theorem 1]
since it shows that (6) is a necessary and sufficient condition for the existence
of unbounded type I solutions also when g satisfies (4). On this purpose the
following lemma is needed, explaining the role of assumption (5) (see also the
discussion after the proof of Theorem 1).

Lemma 2 Assume (4) and (5). Then (6), for some constants k �= 0 and c > 0,
is equivalent to ∫ ∞

0

∣∣∣∣∣ g

(
t,

∫ t

0

ϕ−1

(
h

r(s)

)
ds

)∣∣∣∣∣ dt < ∞ (7)

for some h �= 0.

Proof Trivially (7) yields (6) with c = 1. On the other hand, if (6) holds for
some k �= 0 and c > 0, then according to (5), we get the existence of h, with
hk > 0, |h| ≤ |k|, and t0 > 0 such that

∣∣∣∣
∫ t

0

ϕ−1

(
h

r(s)

)
ds

∣∣∣∣ ≤ c

∣∣∣∣
∫ t

0

ϕ−1

(
k

r(s)

)
ds

∣∣∣∣

for each t ≥ t0 and (4) implies (7). �

Theorem 1 Assume conditions (4) and (5). Then equation (1) has a non-
oscillatory solution of type I if and only if (6) holds for some k �= 0 and c > 0.

Proof Necessary condition. Let u(t) be a type I solution of equation (1), with

lim
t→∞

r(t)ϕ(u′(t)) = C �= 0.

Take, in particular C > 0, implying u(t) eventually positive; with a similar
reasoning the case of an eventually negative u(t) can be treated. Hence it is
possible to find δ > 0 and t0 ≥ 0 such that, for t ≥ t0, u(t) > 0 and

u′(t) > ϕ−1

(
C − δ

r(t)

)
> 0.

Given a sufficiently small c ∈ (0, 1] such that u(t0) ≥ c
∫ t0
0

ϕ−1(C−δ
r(s) ) ds, we get,

for all t ≥ t0,

0 ≤ c

∫ t

0

ϕ−1
(C − δ

r(s)

)
ds ≤ u(t).

Then, according to (4), it holds

g
(
t, c

∫ t

0

ϕ−1
(C − δ

r(s)

)
ds

)
≤ Lg(t, u(t)),
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and being ∫ ∞

0

g(t, u(t))dt = r(0)ϕ(u′(0))− C,

condition (6) holds.

Sufficient condition. Let (6) holds for some constants k �= 0 and c > 0. Then,
according to Lemma 2, (7) is valid for some h �= 0 with hk > 0. With no loss of
generality we can assume k > 0, so also h > 0 and the absolute value in (7) can
be removed. Given l ∈ (0, h), in view of the monotonicity of ϕ, applying (4) we
obtain

∫ ∞

0

maxR t
0 ϕ−1( l

r(s) )ds≤u≤
R t
0 ϕ−1( h

r(s) ) ds
g(t, u) dt

≤ L

∫ ∞

0

g

(
t,

∫ t

0

ϕ−1
( h

r(s)

)
ds

)
dt < ∞

so we can take t0 > 0 such that
∫ ∞

t0

maxR t
0 ϕ−1( l

r(s) )ds≤u≤
R t
0 ϕ−1( h

r(s) ) ds
g(t, u) dt ≤ h− l. (8)

Let C[t0,∞) be the Fréchet space of all continuous functions x : [t0,∞) → R
with the topology of the uniform convergence on compact subintervals of [t0,∞).
Let Ω be the closed, convex and bounded subset of C[t0,∞) defined as

Ω =
{

w ∈ C[t0,∞) :
∫ t

0

ϕ−1
( l

r(s)

)
ds ≤ w(t) ≤ λ +

∫ t

t0

ϕ−1
( h

r(s)

)
ds, ∀t ≥ t0

}
,

where λ =
∫ t0
0

ϕ−1( l
r(s) ) ds. For every w ∈ Ω, consider the Cauchy problem

(r(t)ϕ(u′))′ + g(t, w) = 0,
u(t0) = λ, u′(t0) = ϕ−1

(
h

r(t0)

)
.

(9)

Since (9) is uniquely solvable, we can define the operator

T : Ω → C[t0,∞)

w → T (w)(t) = λ +
∫ t

t0

ϕ−1

(
h−

∫ s

t0
g(η, w(η))dη

r(s)

)
ds

which associates to any w ∈ Ω the unique solution T (w) of problem (9). Now
we use the Schauder–Tychonoff fixed point theorem to prove that T has a fixed
point. First we show that T (Ω) ⊆ Ω. In fact, according to the monotonicity of
ϕ and the sign condition (2) on g, one has

T (w)(t) ≤ λ +
∫ t

t0

ϕ−1

(
h

r(s)

)
ds for all t ≥ t0.
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On the other hand (8) implies

T (w)(t) ≥
∫ t

0

ϕ−1

(
l

r(s)

)
ds for any t ≥ t0. (10)

Now we prove the continuity of T . Let {wn} be a sequence of functions of Ω
converging to w, in the topology of C[t0,∞), as n →∞. The continuity of g and
ϕ, the Lebesgue dominated convergence theorem and (8) imply that T (wn) →
T (w) in C[t0,∞) as n →∞. It remains to prove the relative compactness of T .
First notice that T (Ω) ⊆ Ω, which is bounded in C[t0,∞). Moreover

(T (w))′(t) = ϕ−1

(
h−

∫ t

t0
g(η, w(η))dη

r(t)

)
;

thus, in view of the positivity of g and (8), we get

ϕ−1

(
l

r(t)

)
≤ (T (w))′(t) ≤ ϕ−1

(
h

r(t)

)
(11)

for every t ≥ t0 and every w ∈ Ω. Therefore, the functions in Ω are equi-
continuous at each t ≥ t0 and Ascoli–Arzelá theorem implies the relative com-
pactness of T . Hence Schauder–Tychonoff theorem can be applied; it guarantees
the existence of a function u ∈ Ω which remains fixed in T , e.g. of a solution of
(1) which is unbounded, in view of (10) and (2). Moreover, from (11) and the
monotonicity of ϕ, u satisfies

lim
t→+∞

r(t)ϕ(u′(t)) = C ∈ [l, h]. �

Looking at the proof of Theorem 1, it is clear that (6) is a very natural
necessary condition for the existence of type I non-oscillatory solutions of (1).
It also follows that (7) is a quite obvious sufficient condition, when employing
a fixed point technique for the investigation of type I solutions. As showed in
Lemma 2, whenever g satisfies (4) then assumptions (6) and (7) are equivalent,
under condition (5). This is the only reason why we introduced (5).

Remark 2 Several results in this framework (see e.g. [5] and [9]) deal with the
case when ϕ(v) = v|v|α−1 for some α > 0. Notice that, for such ϕ, condition
(5) is trivially fulfilled; indeed ϕ−1(v) = v|v| 1α−1, hence

lim
h→0
hk>0

∫ t

0
ϕ−1

(
h

r(s)

)
ds

∫ t

0
ϕ−1

(
k

r(s)

)
ds

= lim
h→0
hk>0

(
h

k

) 1
α

= 0

and it is uniform on [0,∞), for all k �= 0. Moreover it is easy to see that (6)
yields (7) with h = cαk. Therefore, (6) and (7) are always equivalent without
any additional requirement on g.
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Other results (see e.g. [7, 8, 10, 12]) concern the case when r(t) ≡ 1. Also
under this condition (5) is satisfied, because

lim
h→0
hk>0

∫ t

0
ϕ−1

(
h

r(s)

)
ds

∫ t

0
ϕ−1

(
k

r(s)

)
ds

= lim
h→0
hk>0

ϕ−1(h)
ϕ−1(k)

= 0

uniformly on [0,∞), for all k �= 0.

In the following example we propose a pair of functions (ϕ(u), r(t)) which
does not satisfy condition (5).

Example 1 Let ϕ(u) = (e|u| − 1)sgnu and r ∈ C1[0,∞) such that r(t) > 0
for all t and r(t) → 0 as t → ∞. Being ϕ−1(v) = log(1 + |v|)sgnv, all the
assumptions in (2) concerning ϕ(u) and r(t) hold. Moreover, it is easy to see
that

lim
t→∞

∫ t

0
log

(
1 + |h|

r(s)

)
ds

∫ t

0
log

(
1 + |k|

r(s)

)
ds

= 1

for every choice of h and k with hk > 0 and this prevent to condition (5) to be
satisfied.

Example 2 Consider the following equation

(u′|u′|α−1

(1 + t)β

)′
+ q(t)u|u|γ−1(a + b sin2 |u|) = 0, (12)

with α, γ, a > 0, β ∈ R and b ≥ 0. Since, for any k �= 0,

ϕ−1
( k

r(t)

)
= k|k| 1α−1(1 + t)β/α

we assume β ≥ −α for guaranteeing condition (2). In this case, for (t, u) ∈
[0,∞) × R, it holds aq(t)|u|γ ≤ |g(t, u)| ≤ (a + b)q(t)|u|γ . Thus, in view of
Remark 1, (4) is satisfied, taking L = 1 + b

a . Moreover (6) is equivalent to

the convergence of
∫∞
0

q(t)
[
(1 + t)

β
α +1 − 1

]γ
dt. Therefore, according to Theo-

rem 1, the existence of a non-oscillatory unbounded solution of equation (12) is
equivalent to the following condition

∫ ∞

0

q(t)t(
β
α +1)γ dt < ∞. (13)

A special case occurs when α, a = 1, β, b = 0 and q(t) = (1+ t)−m for some real
m. Indeed (12) reduces to the well known generalized Emden–Fowler equation

u′′ +
1

(1 + t)m
u|u|γ−1 = 0. (14)

We shall treat again equations (12) and (14) in the end of next sections.
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Looking at the proof of Theorem 1, it is easy to deduce that the following
stronger sufficient condition (15) is valid, for the existence of a non-oscillatory
type I solution. Condition (15) does not require any assumption on ϕ or g, but
it is equivalent to (6) when assuming (4) and (5). The following result holds;
we omit its proof, since it is very similar to the sufficient part of Theorem 1.

Proposition 1 Assume there exists h < k with hk > 0 such that
∫ ∞

0

∣∣∣∣∣ maxR t
0 ϕ−1( h

r(s) )ds≤u≤
R t
0 ϕ−1( k

r(s) ) ds
g(t, u)

∣∣∣∣∣ dt < ∞. (15)

Then equation (1) has a non-oscillatory solution of type I.

Example 3 Consider the equation

(r(t)u′(t))′ +
eu

2+u4 sin2 u

(1 + t)2
signu = 0, (16)

where r(t) satisfies conditions (2) and it is such that
∫ t

0
1

r(s) ds goes to ∞, when
t →∞, as (loglog t)μ for some 0 < μ < 1/4. Given t ≥ 0 and an arbitrary value
l ∈ (0, 1), it is easy to see that

lim sup
u→∞

g(t, lu)
g(t, u)

= lim sup
n→∞

en
2π2(l2−1+n2π2l4 sin2 nπl) = ∞.

Therefore condition (4) is not valid and Theorem 1 can not be applied. Take
β > 0 and T > 0 satisfying

∫ t

0

1
r(s)

ds ≤ β(log log t)μ for all t ≥ T.

Given p �= 0, t ≥ T and 0 ≤ u ≤ |p|
∫ t

0
1

r(s) ds it holds

0 ≤ |g(t, u)| ≤ e1+2u4

(1 + t)2
≤ e (log t)2β4|p|4

(1 + t)2
;

this implies (15). According to Proposition 1, also equation (16) has a non-
oscillatory solution of type I.

We now consider the special case when ϕ is a power and prove that not only
(5) can be omitted, as showed in Remark 2, but that also (4) can be weakened
to an assumption on the asymptotic behavior of g.

Theorem 2 let ϕ(v) = v|v|α−1 for some α > 0. Assume the existence of L ≥ 0
and m ∈ (0, 1) such that

lim sup
t,|u|→∞

g(t, v)
g(t, u)

= L (17)

for all v ∈ [min{mu, u},max{mu, u}]. Then equation (1) has a non-oscillatory
solution of type I if and only if (6) holds for some k �= 0 and c > 0.
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Proof Necessary condition. We do not lose in generality when assuming the
existence of an eventually positive type I solution of equation (1), i.e. with
lim

t→∞
r(t)(u′(t))α = C > 0. Applying L’Hospital rule we get

lim
t→∞

u(t)
∫ t

0

(
1

r(s)

) 1
α ds

= C
1
α .

Take δ > 0 such that C
1
α−δ

C
1
α +δ

= m and t0 ≥ 0 satisfying

(C
1
α − δ)

∫ t

0

(
1

r(s)

) 1
α

ds ≤ u(t) ≤ (C
1
α + δ)

∫ t

0

(
1

r(s)

) 1
α

ds,

for all t ≥ t0, that is

mu(t) ≤ (C
1
α − δ)

∫ t

0

(
1

r(s)

) 1
α

ds ≤ u(t).

Then, according to (17), there exists t1 ≥ t0 such that, for t ≥ t1, it holds

g
(
t, (C

1
α − δ)

∫ t

0

(
1

r(s)

) 1
α

ds
)
≤ 2Lg(t, u(t)),

and the conclusion follows as in the proof of Theorem 1.

Sufficient condition. According to Remark 2, (6) implies (7) with h = cαk. For
the sake of simplicity let us assume k > 0. A similar reasoning holds when
k < 0. According to (17) and the divergence of

∫∞
0

( 1
r(t) )

1
α dt, it is then possible

to find t0 ≥ 0 such that, for all t ≥ t0 and

v ∈
[
mk

1
α

∫ t

0

( 1
r(s)

) 1
α

ds, k
1
α

∫ t

0

( 1
r(s)

) 1
α

ds

]
,

it holds

0 ≤ g(t, v) ≤ 2Lg

(
t, k

1
α

∫ t

0

(
1

r(s)

) 1
α

ds

)
.

Therefore

∫ ∞

0

max
mk

1
α

R t
0 ( 1

r(s) )
1
α ds≤u≤k

1
α

R t
0 ( 1

r(s) )
1
α ds

g(t, u) dt < ∞,

and the conclusion follows from Proposition 1. �
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3 Unbounded solutions of type II

We investigate now the existence of type II unbounded solutions u(t) of equation
(1), i.e. such that limt→∞ |u(t)| = ∞ and limt→∞ r(t)ϕ(u′(t)) = 0. Theorem 3
gives a sufficient condition. In the special case (12) we then discuss, in Propo-
sition 2, the existence of a type II solution with prescribed behavior at infinity.

Theorem 3 Assume condition (4) and let (7) hold for some h �= 0. If
∫ ∞

0

∣∣∣∣ϕ−1

(
1

Lr(t)

∫ ∞

t

g(s, d) ds

)∣∣∣∣ dt = ∞, (18)

for all d satisfying dh > 0, then equation (1) has a non-oscillatory solution of
type II.

Proof Notice that, with no loss of generality we can assume h > 0, implying
that also the value d appearing in (18) must be positive. According to (7), it is
possible to find t0 ≥ 0 such that

∫ ∞

t0

g
(
t,

∫ t

0

ϕ−1
( h

r(s)

)
ds

)
dt ≤ h

L
.

Let us denote d =
∫ t0
0

ϕ−1
(

h
r(s)

)
ds. As a consequence of (4) and (7) it follows

∫ ∞

t0

max
d≤u≤

R t
0 ϕ−1( h

r(s) ) ds
g(t, u) dt ≤ L

∫ ∞

t0

g

(
t,

∫ t

0

ϕ−1

(
h

r(s)

)
ds

)
dt ≤ h. (19)

Given the usual Fréchet space of continuous functions C[t0,∞), let Ω be its
closed, convex and bounded subset defined as follows

Ω =
{

w ∈ C[t0,+∞) : d ≤ w(t) ≤
∫ t

0

ϕ−1

(
h

r(s)

)
ds, ∀t ≥ t0

}
.

Since for every w ∈ Ω,
∫∞

t0
g(s, w(s)) ds < ∞, it is possible to define the operator

T : Ω → C[t0,∞)

w → T (w)(t) = d +
∫ t

t0

ϕ−1

(∫∞
s

g(η, w(η))dη

r(s)

)
ds

associating to w the unique solution of the Cauchy problem

(r(t)ϕ(u′))′ + g(t, w) = 0,

u(t0) = d, u′(t0) = ϕ−1

( R∞
t0

g(s,w(s)) ds

r(t0)

)
.

(20)

The monotonicity of ϕ, the sign condition on g and (19) easily yield that T (Ω) ⊆
Ω. Applying the Schauder–Tychonoff theorem as in the proof of Theorem 1, one
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can see that T has a fixed element u(t), which is a solution of (1). Moreover,
since u(t) ≥ d for all t ≥ t0, according to (4) and the definition of T (u) it follows

u(t) ≥ d +
∫ t

t0

ϕ−1

(
1

Lr(s)

∫ ∞

s

g(η, d)dη

)
ds;

hence condition (18) implies u(t) →∞ as t →∞. Finally, since u(t) solves the
Cauchy problem (20), it holds

r(t)ϕ
(
u′(t)

)
=

∫ ∞

t

g
(
s, u(s)

)
ds

and by (7) we obtain r(t)ϕ
(
u′(t)

)
→ 0 as t → ∞. Consequently u(t) is a type

II non-oscillatory solution of equation (1) and the proof is complete. �

Remark 3 In [6, Theorem 3], the case when g(t, ·) is increasing for each t ≥ 0
was studied. Assuming conditions (5), (6) and the natural reformulation of
(18) in this context, i.e. with L = 1, the authors proved the existence of a
type II unbounded solution of equation (1). We recall that condition (5) was
introduced only to assure the equivalence between the necessary condition (6)
and the sufficient condition (7) (see Lemma 2). However, since we are interested
only in the sufficient condition, we don’t need any assumption on ϕ and we
directly assumed (7) instead of (6). Therefore, Theorem 3 is a generalization of
the quoted result in [6], since it deals with a more general function g and does
not require (5). In particular, Theorem 3 holds when ϕ(u) and r(t) behave as
in Example 1.

The following part of this section is mainly devoted to equation (12), e.g.

(u′|u′|α−1

(1 + t)β

)′
+ q(t)u|u|γ−1(a + b sin2 |u|) = 0,

with α, γ, a > 0, β ≥ −α and b ≥ 0. In this case, condition (18) reduces to

∫ ∞

0

(∫ ∞

t

q(s)ds

) 1
α

t
β
α dt = +∞. (21)

When q(t) = 1
(1+t)m , where m is an arbitrary constant, (13) holds if and only if

m > 1 + (1 + β
α )γ and (21) is satisfied if and only if m ≤ α + β + 1. Notice that

this implies that assumptions (7) and (18) are not always consistent, as follows
when γ ≥ α. On the contrary, when 0 < γ < α and 1+(1+ β

α )γ < m ≤ 1+α+β
both a type I and a type II unbounded solution exist. When α, a = 1, β, b = 0,
(12) reduces to the well known generalized Emden–Fowler equation (14). We
recall that its possible solutions of type I are asymptotically linear functions,
while the possible solutions of type II are asymptotically sub-linear functions.
As a consequence of the analysis above conditions 0 < γ < 1, 1 + γ < m ≤ 2
are sufficient for the contemporary presence, in equation (14), of a linear and a
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sub-linear unbounded solution. We stress that, while condition (6) is necessary
for the existence of an unbounded type I solution of (1), neither (7) nor (18)
are necessary for the existence of an unbounded type II solution of the same
equation. In fact, consider the generalized Emden–Fowler equation with m =
5/2 and γ = 2. Then

∫∞
0

q(t)t2dt = ∞ and
∫∞
0

q(t)t dt < ∞ implying that both
(7) and (18) are not satisfied; however this equation has the sub-linear solution

u(t) =
√

t+1
4 .

The following proposition shows that it is possible to determine the exact
asymptotic behavior of a type II non-oscillatory solution. In order to simplify
notation, we restrict our discussion to equation (12), though a similar investi-
gation could be repeated for the general equation (1).

Proposition 2 Consider equation (12) with α, a > 0, 0 < γ < α, β > −α, and
b ≥ 0. Given σ ∈ (0, 1 + β

α ), assume that
∫ ∞

0

q(t)tσγdt < ∞ (22)

and

t1+
β
α−σ

(∫ ∞

t

q(s)sσγds
) 1

α → Δ > 0 as t →∞. (23)

Then equation (12) admits a non-oscillatory solution of type II going at infinity
like tσ when t →∞.

Proof Let us introduce a continuous function ϑ0 : [0,∞) → R satisfying
ϑ0(t) = t for t ∈ [0, 1], ϑ0(t) = tσ when t ≥ 2 and ϑ0(t) > 0 for all t �= 0.
According to (22), it holds

∫ ∞

0

q(t)ϑγ
0(t) dt < ∞;

hence it is possible to define, for t ≥ 0, the function

ψ(t) =
∫ t

0

(1 + s)
β
α

(∫ ∞

s

q(η)ϑγ
0(η)dη

) 1
α

ds.

As a consequence of (23), it follows, as t →∞

t1−σ(1 + t)
β
α

(∫ ∞

s

q(s)ϑγ
0(s)ds

) 1
α → Δ,

implying ψ(t) →∞, because σ > 0, and

lim
t→∞

ψ(t)
ϑ0(t)

= lim
t→∞

t1−σ(1 + t)
β
α

(∫∞
t

q(s)sσγds
) 1

α

σ
=

Δ
σ

.

Moreover it holds

lim
t→0+

ψ(t)
ϑ0(t)

=
(∫ ∞

0

q(s)ϑγ
0(s)ds

) 1
α

> 0.
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We can then determine two positive constants 0 < m1 < m2 such thatm1ϑ0(t) ≤
ψ(t) ≤ m2ϑ0(t) for all t ≥ 0. Let

d = m
α

α−γ

2 (a + b)
1

α−γ , δ =
a

1
α−γ m

α
α−γ

1

d

and put ϑ(t) = dϑ0(t). Since d > 0 and 0 < δ < 1, we can then introduce the
closed, convex and bounded set of functions Ω = {w ∈ C[0,∞) : δϑ(t) ≤ w(t) ≤
ϑ(t), t ≥ 0}. According to (22) the operator

T : Ω → C[t0,∞)

w → T (w)(t) =
∫ t

0

(1 + s)
β
α

(∫ ∞

s

q(η)wγ(η)(a + b sin2 w(η))dη
) 1

α

ds

is well defined. Now we show that T (Ω) ⊆ Ω. In fact, given w ∈ Ω, we have

T (w)(t) ≤ (a + b)
1
α d

γ
α ψ(t) ≤ (a + b)

1
α d

γ
α−1m2ϑ(t).

Due to the definition of d it holds (a+b)
1
α d

γ
α−1m2 = 1, implying T (w)(t) ≤ ϑ(t)

for all t ≥ 0. Moreover, since a
1
α d

γ
α−1m1δ

γ
α−1 = 1, we get

T (w)(t) ≥ δ
γ
α a

1
α d

γ
α ψ(t) ≥ a

1
α d

γ
α−1m1δ

γ
α−1δϑ(t) = δϑ(t).

Hence T (Ω) ⊆ Ω.
As in the proof of Theorem 1, one can apply Schauder–Tychonoff theorem

to T in order to show that it has a fixed element u(t); then it is easy to see that
u(t) is a solution of equation (12). Finally, according to the definition of the set
Ω, u(t) is a type II unbounded solution of (12) satisfying u(t)

tσ → l ∈ [dδ, d] as
t →∞. �

Notice that, since σ ∈ (0, 1 + β
α ), (13) implies (22). Consider again q(t) =

(1+ t)−m. As already showed, equation (12) with 0 < γ < α and 1+(1+ β
α )γ <

m ≤ 1 + α + β has both a type I and a type II solution. Moreover, take
σ = α+β+1−m

α−γ . Then σ ∈ (0, 1 + β
α ) and this implies m − σγ > 1. Therefore,

according to Proposition 2, (12) has a type II solution with asymptotic growth
tσ at infinity. In particular, the generalized Emden–Fowler equation (14), with
0 < γ < 1 and 1 + γ < m < 2, contemporarily admits a linear and a sub-linear
unbounded solution and the latter one is asymptotic to t

2−m
1−γ .

4 Non-oscillatory theorems

In this section we restrict our attention to equation (3), obtained by (1) when
assuming ϕ(u) = u. Concerning (3), we state a non-existence result of bounded
oscillatory solutions and a non-oscillatory result. Both these problems were
extensively investigated and also recent contributions appeared. We refer, in
particular, to [3], [5], [10] and [12]. Nevertheless they all treat the cases when
g(t, ·) is monotone or g(t, u) = q(t)f(u) often assuming f(u) = |u|γ−1u for some
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γ > 1. Instead, in Theorems 4 and 5, g(t, u) simply satisfies condition (17),
hence no monotonicity is required on it. First notice that now conditions (6)
and (7) are equivalent (see Remark 2) and they become

∫ ∞

0

∣∣∣∣ g

(
t, k

∫ t

0

1
r(s)

ds

)∣∣∣∣ dt < ∞ (24)

with k �= 0.

Theorem 4 Assume condition (24) for some k > 0 and let (17) hold. Suppose
further that for each v > 0 there exist V ≥ v and T ≥ 0 satisfying

sup
u∈[0,v]

g(t, u)
u

≤ inf
u≥V

g(t, u)
u

(25)

for each t ∈ [T,∞). Then equation (3) has no bounded oscillatory solutions.

Proof Let y(t) be an oscillatory solution of (3) and suppose that there exists
t0 ≥ 0 such that y(t) ≤ 0 for all t ≥ t0. Take t̄ ≥ t0 satisfying y(t̄) = 0; then
also y′(t̄) = 0 and integrating twice (3) in [t̄, t], by (2) we obtain

y(t) = −
∫ t

t̄

1
r(s)

∫ s

t̄

g
(
σ, y(σ)

)
dσ ds > 0, for all t > t̄

in contradiction with the sign of y(t). Hence y(t) has positive values for arbi-
trarily large t. Suppose now that |y(t)| ≤ v for some positive v and all t ≥ 0; let
V and T satisfying (25) and take t1 and t2, with T ≤ t1 < t2, such that

y(t1) = 0, y′(t2) = 0, y′(t) > 0 for all t1 ≤ t < t2.

According to Theorem 2, we get the existence of an unbounded increasing so-
lution u(t) of (3) satisfying, with no loss of generality, u(t) ≥ V in [t1, t2].
Therefore we obtain, for t ∈ [t1, t2],

d

dt

[
r(t)u′(t)y(t)− r(t)y′(t)u(t)

]
=

(
r(t)u′(t)

)′
y(t)−

(
r(t)y′(t)

)′
u(t)

= y(t)u(t)
[
g(t, y(t))

y(t)
− g(t, u(t))

u(t)

]
≤ 0.

On the other hand,

∫ t2

t1

d

ds

[
r(s)u′(s)y(s)− r(s)y′(s)u(s)

]
ds ≥ r(t2)u′(t2)y(t2) + r(t1)y′(t1)V > 0,

which gives a contradiction. �
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Remark 4 Similarly as in the previous theorem, the non-existence of bounded
oscillatory solutions for (3) can be obtained when assuming (24) for some k < 0,
(17) and the condition that for each v < 0 there exist V ≤ v and T ≥ 0 such
that

sup
u∈[v,0]

g(t, u)
u

≥ inf
u≤V

g(t, u)
u

for each t ∈ [T,∞).

Remark 5 Cecchi–Marini–Villari [3] obtained the non-existence of bounded
oscillatory solutions in the case when g(t, u) = q(t)f(u), assuming, instead of
(25), the existence of θ ∈ [0,∞) such that

lim
u→0+

f(u)
u

= θ and lim
u→+∞

f(u)
u

= ∞. (26)

Notice that, in this case, (25) is equivalent to assume that for each v > 0 there
exists V ≥ v such that

sup
u∈[0,v]

f(u)
u

≤ inf
u∈[V,∞)

f(u)
u

,

which is weaker than (26). In fact, (25) does not require the super-linearity of
f(u)

u at infinity, being, for example, fulfilled by any increasing f(u)
u .

Under stronger conditions on r(t) and g(t, u), now we give a non-oscillatory
result for (3). On this purpose, given a solution u(t) of (3), we introduce the
function

Vu(t) =
1
2
(
r(t)u′(t)

)2 + H(t, u(t)), t ≥ 0 (27)

where

H(x, y) = r(x)
∫ y

0

g(x, s) ds, x ≥ 0, y ∈ R.

The following estimate is satisfied.

Lemma 3 Assume that Hx(x, y) exists for (x, y) ∈ [0,∞)× R and satisfies

Hx(x, y) ≤ ρ(x)H(x, y), x ≥ 0 (28)

where ρ(t) is a non-negative locally integrable function. Then each solution u(t)
of (3) satisfies

Vu(t) ≤ Vu(τ)e
R t

τ
ρ(s)ds

for all 0 ≤ τ ≤ t.

Proof Given a solution u(t) of (3), consider the function Vu(t) defined in (27).
By (28) we get

d

dt
Vu(t)′ ≤ ρ(t)H(t, u(t)) ≤ ρ(t)Vu(t)

for all t ≥ 0 and the conclusion follows by dividing by Vu(t) and integrating on
[τ, t]. �
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Remark 6 Notice that when g(t, u) = q(t)f(u) with q(t) > 0 and q(t)r(t)
absolutely continuous on [0,∞), then condition (28) holds with

ρ(t) =

(
(qr)′(t)

)
+

r(t)q(t)
=

max{(qr)′(t), 0}
r(t)q(t)

and previous lemma can be found in [8].

Theorem 5 Let (24) be satisfied for every k > 0. Assume conditions (17) and
(28) with ∫ ∞

0

ρ(t)dt < ∞. (29)

Suppose that there exist a ≥ 1 and T ≥ 0 such that (25) is satisfied, for all v > 0
and t ∈ [T,∞), with V = av. Then equation (3) has no oscillatory solutions.

Proof Assume, by contradiction, the existence of an oscillatory solution y(t)
of (3) and consider the function Vy(t) defined in (27). According to (29) and
Lemma 3, Vy(t) is bounded on all [0,∞). Hence we get the existence of k > 0
such that |r(t)y′(t)| ≤ k for t ≥ 0. As already showed in the proof of Theorem
4, it is possible to prove that y(t) has positive values for arbitrarily large t and
to find t1 and t2, with T ≤ t1 ≤ t2 such that y(t1) = 0, y′(t2) = 0 and y′(t) > 0
for all t1 ≤ t < t2. Put h = ak

m . According to (24) and reasoning as in the proof
of Theorem 2, from (17) we obtain

∫ ∞

0

max
mh

R t
0

ds
r(s)≤u≤h

R t
0

ds
r(s)

g(t, u) < ∞.

Therefore we can find t0 ≥ T satisfying

∫ ∞

t0

max
mh

R t
0

ds
r(s)≤u≤h

R t
0

ds
r(s)

g(t, u) < h(1−m).

Notice that it is not restrictive to assume t0 ≤ t1. Reasoning as in Theorem 1,
it then follows the existence of a solution u(t) of (3) satisfying

u(t) ≥ mh

∫ t

t1

ds

r(s)
≥ ay(t) for all t ∈ [t1, t2].

Hence condition (25) can be applied, with V = av, implying

g(t, y(t))
y(t)

− g(t, u(t))
u(t)

≤ 0, for t ∈ [t1, t2].

The contradiction then follows when reasoning as in the proof of Theorem 4.
�
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