
Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Naturalium. Mathematica

Cemil Tunç
Some stability and boundedness results for the solutions of certain fourth order
differential equations

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 44 (2005), No.
1, 161--171

Persistent URL: http://dml.cz/dmlcz/133385

Terms of use:
© Palacký University Olomouc, Faculty of Science, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/133385
http://project.dml.cz


Acta Univ. Palacki. Olomuc., Fac. rer. nat.,
Mathematica 44 (2005) 161–171

Some Stability and Boundedness
Results for the Solutions of Certain
Fourth Order Differential Equations

Cemil TUNÇ
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Abstract

Sufficient conditions are established for the asymptotic stability of the
zero solution of the equation (1.1) with p ≡ 0 and the boundedness of
all solutions of the equation (1.1) with p �= 0. Our result includes and
improves several results in the literature ([4], [5], [8]).
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1 Introduction

In the current paper, we consider the nonlinear differential equation of the form

x(4) + a(
..
x,

...
x)

...
x +b(x,

.
x)

..
x +c(

.
x) + d(x) = p(t, x,

.
x,

..
x,

...
x). (1.1)

It can be written in the phase variables form

.
x = y,

.
y = z,

.
z = u,

.
u = −a(z, u)u− b(x, y)z − c(y)− d(x) + p(t, x, y, z, u),

(1.2)
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in which the functions a, b, c, d and p depend only on the arguments displayed
and the dots denote differentiation with respect to t. The functions a, b, c, d
and p are continuous for all values of their respective arguments.The derivatives
∂a(z,u)

∂u ≡ au(z, u), ∂b(x,y)
∂x ≡ bx(x, y), dc

dy ≡ c′(y), and dd
dx ≡ d′(x) exist and are

continuous. Moreover, the existence and the uniqueness of the solutions of (1.1)
will be assumed.
It is well known that the stability and boundedness of solutions of ordinary

differential equations are very important problems in the theory and applications
of differential equations. So far, perhaps, the most effective method to study
the stability and boundedness of solutions of nonlinear differential equations is
still the Lyapunov’s direct (or second) method. In the relevant literature, for
the fourth order nonlinear differential equations, many stability and bounded-
ness results have been established by using this method. We refer to [1-8] and
the references cited there for some of those topics. In [5], Ponzo discussed the
stability of solutions of the equation (1.1) in the case p(t, x,

.
x,

..
x,

...
x) = 0. Nearly

four decades later, Hu [4] proved that the result of Ponzo [5] was not true in
general, except the special case b(x, y) ≡ constant and d(x) ≡ cx (c is a con-
stant) in (1.1). Recently, in [8], Wu and Xiong also investigated the asymptotic
stability of the zero solution of the differential equations described as follows:

x(4) + a1
...
x + a2

..
x + a3

.
x + f(x) = 0

and
x(4) + a1

...
x + f(x,

.
x)

..
x +a3

.
x + a4x = 0,

in which a1, a2, a3 and a4 are constants. The motivation for the present work
has come from the papers of Ponzo [5], Hu [4], Wu and Xiong [8] and the papers
mentioned above. Our aim is to obtain similar results and improve some results
in the papers stated above. It should also be noted that the domain of attraction
of the zero solution x = 0 of the equation (1.1) (for p ≡ 0) in the following first
result is not going to be determined here.

2 The stability and the boundedness results of solutions
of (1.2)

In what follows we shall use the following notations:

a1(z, 0) :=

⎧
⎨
⎩

1
z

∫ z

0

a(z, 0)dz, z �= 0

a(0, 0), z = 0

and

c1(y) :=

⎧
⎨
⎩

c(y)
y , y �= 0

c′(0), y = 0.

For the case P ≡ 0 in (1.1) the following result is established.



Some stability and boundedness results for the solutions . . . 163

Theorem 1 Further to the basic assumptions on the functions a, b, c and d
assume that the following conditions are satisfied (α, β, μ, γ, δ, η, ε and ε1—some
positive constants):

(i) 0 ≤ a(z, u)− α ≤ ε1 for all z and u.

(ii) c1(y) ≥ β for all y �= 0, c(0) = 0.

(iii) 0 ≤ b(x, y)− μ ≤
√

δε1
4β and

y

∫ y

0

bx(x, y)y dy ≤ −
(

β2

αγ

)
y2

for all x and y.

(iv) d(x)x > 0 for all x �= 0, 0 ≤ γ − d′(x) ≤
√

δ
2 for all x, and d(0) = 0.

(v) αβμ− βc′(y)− αγa(z, u) ≥ δ for all y, z and u.

(vi) c′(y)− c1(y) ≤ η < 2δγ
αβ2 for all y �= 0, and a1(z, u)− a(z, u) ≤ ε < 2δ

α2β for
all z �= 0 and u.

(vii) γyau(z, u) + βzau(z, u) ≥ 0 for all y, z and u.

Then the trivial solution of the system (1.2) is asymptotically stable.

Remark 1 From the conditions (ii) and (v) of Theorem 1 we can obtain

a(z, u) <
βμ

γ
and c′(y) < αμ.

Remark 2 When a(
..
x,

...
x) = α, b(x,

.
x) = μ, c(

.
x) = β

.
x and d(x) = γx, equa-

tion (1.1) reduces to the linear constant coefficient differential equation and
conditions (i)–(vii) of Theorem 1 reduce to the corresponding Routh–Hurwitz
criterion.

Remark 3 Theorem 1 includes and revises the result of Ponzo [5], and also
includes and improves the result of Hu [4] except the restrictions on a(z, u),
b(x, y) and d(x), that is, a(z, u) ≤ α + ε1,

b(x, y) ≤ μ +

√
δε1

2β
, y

∫ y

0

bx(x, y)y dy ≤ −
(
β2α−1γ−1

)
y2

and γ − d′(x) ≤
√

δ
2 , and the results of Wu and Xiong [8] except the same

restrictions on b(x, y).

In the case p �= 0 we have the following result
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Theorem 2 Suppose the following conditions are satisfied:

(i) conditions (i)–(vii) of Theorem 1 hold,

(ii) |p(t, x, y, z, u)| ≤ (A + |y| + |z| + |u|)q(t), where q(t) is a non-negative
continuous function of t, and satisfies

∫ t

0

q(s) ds ≤ B < ∞

for all t ≥ 0, A and B are some positive constants.

Then for any given finite constants x0, y0, z0 and u0, there exists a constant
K = K(x0, y0, z0, u0), such that any solution (x(t), y(t), z(t), u(t)) of the system
(1.2) determined by

x(0) = x0, y(0) = y0, z(0) = z0, u(0) = u0

satisfies for all t ≥ 0,

|x(t)| ≤ K, |y(t)| ≤ K, |z(t)| ≤ K, |u(t)| ≤ K.

If p is a bounded function, then the constant K above can be fixed independent
of x0, y0, z0 and u0, as will be seen from our the following result.

Theorem 3 Assume that the conditions (i)–(vii) of Theorem 1 hold, and that
p(t, x, y, z, u) satisfies

|p(t, x, y, z, u)| ≤ A < ∞
for all values of t, x, y, z and u, where A is a positive constant. Then there exists
a constant K1 whose magnitude depends α, β, μ, γ, δ, η, ε and ε1 as well as on
the functions a, b, c and d such that every solution (x(t), y(t), z(t), u(t)) of the
system (1.2) ultimately satisfies

|x(t)| ≤ K1, |y(t)| ≤ K1, |z(t)| ≤ K1, |u(t)| ≤ K1.

Remark 4 Theorem 2 and Theorem 3 based on the results in ([4], [5], [8]) give
additional results to those obtained in ([4], [5], [8]).

The proofs of Theorem 1 and Theorem 2 depend on some certain fun-
damental properties of a continuously differentiable Lyapunov function V =
V (x, y, z, u) defined by:

V = αγ

∫ x

0

d(x) dx + αγ

∫ y

0

b(x, y)y dy −
(

βγ

2

)
y2 + αβ

∫ y

0

c(y) dy

+
(

βμ

2

)
z2 + αβ

∫ z

0

a(z, 0)z dz −
(αγ

2

)
z2 +

(
β

2

)
u2 + αβd(x)y

+ βd(x)z + βc(y)z + αγy

∫ z

0

a(z, 0) dz + αγyu + αβzu. (2.1)

The first property of V is stated in the following.
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Lemma 1 Assume that the conditions of Theorem 1 hold. Then

(I) V (x, y, z, u) = 0 at x2 + y2 + z2 + u2 = 0. (2.2)

(II) V (x, y, z, w) > 0 if x2 + y2 + z2 + u2 > 0; (2.3)

V̇ |(1.2)≤ 0 for all t ≥ 0. (2.4)

(III) Any of the positive semi-trajectory of the system (1.2) is bounded.

(IV) The setM =
{
(x, y, z, u) : V̇ = 0, (x, y, z, u) ∈ R4

}
, except (x, y, z, u) = 0,

does not contain the entire positive semi trajectory of the solution of the
system (1.2).

Proof Part (I): V (0, 0, 0, 0) = 0, since c(0) = d(0) = 0. Hence (2.2) is verified.
Rewrite the function V (x, y, z, u) as follows:

V =
(

αβ

2c1(y)

)[
d(x) + c(y) +

c1(y)z
α

]2

+
(

αβ

2a1(z, 0)

)[
u + za1(z, 0) +

γ

β
ya1(z, 0)

]2

+
(

βμ

2

)
z2 −

(
βc1(y)

2α

)
z2 −

(αγ

2

)
z2

+ αγ

∫ y

0

b(x, y)y dy −
(

βγ

2

)
y2 −

(
αγ2a1(z, 0)

2β

)
y2

+
(

β

2

)[
1− α

a1(z, 0)

]
u2 +

3∑

i=1

Wi, (2.5)

where

W1 = αγ

∫ x

0

d(x)dx− αβd2(x)
2c1(y)

,

W2 = αβ

∫ y

0

c(y) dy − αβc2(y)
2c1(y)

,

W3 = αβ

∫ z

0

a(z, 0)z dz − αβa1(z, 0)
2

z2.

Part (II): Now we verify (2.3). To do this we have four cases.
(a) Let y �= 0, z �= 0. From (iv) of Theorem 1 it follows that

W1 ≥ αγ

∫ x

0

d(x) dx− αd2(x)
2

≥ α

∫ x

0

d(x)[γ − d′(x)] dx ≥ 0.

Now note that

yc(y) ≡
∫ y

0

c(y) dy +
∫ y

0

c′(y)y dy.
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Therefore,

W2 = αβ

∫ y

0

c(y) dy − αβc(y)
2

=
αβ

2

∫ y

0

[c1(y)− c′(y)]y dy ≥ −
(

αβη

4

)
y2

by (vi). From the identity
∫ z

0

za(z, 0) dz ≡ z

∫ z

0

a(z, 0) dz −
∫ z

0

za1(z, 0) dz

we find

W3 = αβ

∫ z

0

a(z, 0)z dz − αβ

2
z

∫ z

0

a(z, 0) dz

=
αβ

2

∫ z

0

[a(z, 0)− a1(z, 0)]z dz ≥ −
(

αβε

4

)
z2

by (vi) of Theorem 1. On gathering the estimates forW1,W2 andW3 into (2.5),
we have that

V ≥ α

∫ x

0

d(x)[γ − d′(x)] dx +
(

αβ

2a1(z, 0)

) [
u + za1(z, 0) +

γ

β
ya1(z, 0)

]2

+
(

αβ

2c1(y)

) [
d(x) + c(y) +

c1(y)z
α

]2

+
(

βμ

2

)
z2

−
(

1
2α

) [
βc1(y) + α2γ +

α2βε

2

]
z2 + αγ

∫ y

0

b(x, y)y dy

−
(

βγ

2

)
y2 −

(
γ

2β

)[
αγa1(z, 0) +

αβ2η

2γ

]
y2

+
(

β

2

) [
1− α

a1(z, 0)

]
u2. (2.6)

Now consider the terms

W4 =
(

βμ

2

)
z2 −

(
1
2α

)[
βc1(y) + α2γ +

α2βε

2

]
z2

and

W5 = αγ

∫ y

0

b(x, y)y dy −
(

βγ

2

)
y2 −

(
γ

2β

) [
αγa1(z, 0) +

αβ2η

2γ

]
y2

which are contained in (2.6).
By using the assumptions (i), (v), (vi) of Theorem 1 and the mean value

theorem (for derivative), we find

W4 =
(

1
2α

) [
αβμ− βc′(θ1y)− α2γ − α2βε

2

]
z2

≥
(

1
2α

) [
αβμ− βc′(θ1y)− αγa(z, u)− α2βε

2

]
z2

≥
(

1
2α

) [
δ − α2βε

2

]
z2 > 0,
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where 0 ≤ θ1 ≤ 1. Similarly, from (iii), (v), (vi) of Theorem 1 and the mean
value theorem (for integral), we obtain

W5 ≥
(

γ

2β

)[
αβμ− β2 − αγa1(z, 0)− αβ2η

2γ

]
y2

=
(

γ

2β

)[
αβμ− β2 − αγa(θ2z, 0)− αβ2η

2γ

]
y2

≥
(

γ

2β

)[
δ − αβ2η

2γ

]
y2 > 0,

where 0 ≤ θ2 ≤ 1. On substituting the estimate for W4 and W5 into (2.6) we
have

V ≥ α

∫ x

0

d(x)[γ − d′(x)] dx +
(

αβ

2a1(z, 0)

) [
u + za1(z, 0) +

γ

β
ya1(z, 0)

]2

+
(

αβ

2c1(y)

) [
d(x) + c(y) +

c1(y)z
α

]2

+
(

1
2α

)[
δ − α2βε

2

]
z2

+
(

γ

2β

)[
δ − αβ2η

2γ

]
y2 +

(
β

2

) [
1− α

a1(z, 0)

]
u2 > 0.

(b) Let y2 + z2 = 0. Then it follows from (2.5) that

V ≥ αγ

∫ x

0

d(x) dx +
(

β

2

)
u2 > 0 if x2 + u2 > 0.

(c) Let y �= 0, z = 0. Similarly, it is easy to see that

V ≥ α

∫ x

0

d(x)[γ − d′(x)] dx

+
(

αβ

2a1(0, 0)

) [
u +

γ

β
ya1(0, 0)

]2

+
(

αβ

2c1(y)

)
[d(x) + c(y)]2

+
(

γ

2β

) [
δ − αβ2η

2γ

]
y2 +

(
β

2

)[
1− α

a1(0, 0)

]
u2 > 0.

(d) Let y = 0, z �= 0. It is clear from (a) that

V ≥ α

∫ x

0

d(x)[γ − d′(x)] dx

+
(

αβ

2a1(z, 0)

)
[u + za1(z, 0)]2 +

(
αβ

2c1(0)

)[
d(x) +

c1(0)z
α

]2

+
(

1
2α

)[
δ − α2βε

2

]
z2 +

(
β

2

)[
1− α

a1(z, 0)

]
u2 > 0

by (2.5). Because of the estimates given by (a)–(d) we get the desired result
(2.3).
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From (2.1) and (1.2) it is trivial that the time derivative of V as follows:

V̇ = −αβ

[
c(y)
y

γ

β
− d′(x)

]
y2

−
[
αβb(x, y)− βc′(y)− αγ

(
1
z

) ∫ z

0

a(z, 0) dz

]
z2

− β [a(z, u)− α] u2 − β [b(x, y)− μ] zu− β [γ − d′(x)] yz

+ αγy

∫ y

0

bx(x, y)y dy

− αγ [a(z, u)− a(z, 0)] yu− αβ [a(z, u)− a(z, 0)] zu.

Hence the assumptions (i)–(v) of Theorem 1 and the mean value theorem (for
the integral) show that

V̇ ≤ − [αβμ− βc′(y)− αγa(θ3z, 0)] z2

− (βε1)u2 − β [b(x, y)− μ] zu− β [γ − d′(x)] yz

+ αγy

∫ y

0

bx(x, y)y dy

− αγ [a(z, u)− a(z, 0)] yu− αβ [a(z, u)− a(z, 0)] zu, (0 ≤ θ3 ≤ 1),

≤ −
(

3βε1

4

)
u2 −

(
δ

2

)
z2 −

(
3β2

4

)
y2 −W6 −W7 −W8, (2.7)

where

W6 =
(

δ

4

)
z2 + β [b(x, y)− μ] zu +

(
βε1

4

)
u2,

W7 =
(

β2

4

)
y2 + β [γ − d′(x)] yz +

(
δ

4

)
z2,

W8 = αγ [a(z, u)− a(z, 0)] yu + αβ [a(z, u)− a(z, 0)] zu.

From (iii) of Theorem 1

W6 ≥
(

δ

4

)
z2 − β [b(x, y)− μ] |zu|+

(
βε1

4

)
u2 =

[√
δ

2
z ±

√
βε1

2
u

]2

≥ 0.

Similarly, by (iv) of Theorem 1, we find

W7 ≥
(

β2

4

)
y2 − β [γ − d′(x)] |yz|+

(
δ

4

)
z2 =

[
β

2
y ±

√
δ

2
z

]2

≥ 0.

The assumption (vii) of Theorem 1 (for u �= 0) also shows that

W8 = α [γyau(z, θ4u) + βzau(z, θ4u)]u2 ≥ 0, 0 ≤ θ4 ≤ 1,

but W8 = 0, when u = 0. Hence W8 ≥ 0 for all y, z and u.
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On combining the estimates for W6,W7 and W8 into (2.7) we find

V̇ ≤ −
(

3βε1

4

)
u2 −

(
δ

2

)
z2 −

(
3β2

4

)
y2.

This completes the proof of Part (II).
The proofs of Part (III) and Part (IV) follow the lines indicated in [4], except

some minor modification. And hence the proof is omitted.
This completes the proof of the lemma. �

The proof of Theorem 1 From Lemma 1, we see that the function V (x, y, z, u)
is a Lyapunov function for the system (1.2). Hence, the zero solution of the sys-
tem (1.2) is asymptotically stable (see [8]).
This completes the proof. �

The proof of Theorem 2 The proof of this theorem is similar to that of
Theorem 2 of Tunc [7] and hence is omitted.
Finally, the actual proof of Theorem 3 will rest mainly on the existence of a

piecewise continuously differentiable function V1 = V1(x, y, z, u) satisfying

V1(x, y, z, u) ≥ −D for all (x, y, z, u), (2.8)

V1(x, y, z, u) →∞ as x2 + y2 + z2 + u2 →∞; (2.9)

and also such that the limit

V̇ +
1 (t) = lim sup

h→0+

»
V1(x(t + h), y(t + h), z(t + h), u(t + h))− V1(x(t), y(t), z(t), u(t))

h

–

(2.10)

exists corresponding any solution (x(t), y(t), z(t), u(t)) of the system (1.2), and
satisfies

V̇ +
1 (t) ≤ −1 if x2(t) + y2(t) + z2(t) + u2(t) ≥ D1,

where D and D1 are certain positive constants to be determined in the proof.
Once the existence of such a V1 is established an appeal to Yoshizawa’s

argument (see [2]) concludes the proof of Theorem 3.
We define the required V1 as follows:

V1 = V0 + V, (2.11)

where

V0(x, u) :=
{

x sgnu, if |u| ≥ |x|
u sgnx, if |u| ≤ |x| (2.12)

and V is defined by (2.1).

The property of V̇ +
1 is required and is stated in Lemma 2.

Lemma 2 Subject to the conditions of Theorem 3, the function V1 defined in
(2.11) satisfies the properties in (2.8), (2.9) and (2.10).
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Proof Let (x, y, z, u) be any solution of the system (1.2). From (2.12) we
obtain |V0(x, u)| ≤ |u| for all x and u. It follows that |V0(x, u)| ≥ − |u| for all x
and u. Now, V here is the same as the function V defined by (2.1). Since V is
positive definite, then it has infinite inferior limit and infinitesimal upper limit,
that is, there exists a positive constant τ such that

V (x, y, z, u) > τ(x2 + y2 + z2 + u2).

From these estimates for V0 and V we get the estimate for V1 as

V1 > τ(x2 + y2 + z2 + u2)− 2 |u| = τ(x2 + y2 + z2) + τ

(
|u| − 1

τ

)2

− 1
τ

.

So it is evident that (2.8) and (2.9) are verified, where D = 1
τ .

Next, in accordance with the representation V1 = V + V0 we have a rep-
resentation v1 = v + v0. Hence, the function v1 = v1(t) can be defined by
v1(t) = V1(x(t), y(t), z(t), u(t)). Then, the existence of

.
v
+
1 , that is,

.
v
+
1 (t) = lim sup

h→0+

[
v1(t + h)− v1(t)

h

]

is quite immediate, since v has continuous first partial derivatives and v0 is
easily shown to be locally Lipschitizian in x and u so that the composite function
v1 = v + v0 is at the least locally Lipschitizian in x, y, z and u. Subject to the
assumptions of the theorem an easy calculation from (2.11) and (1.2) shows that

.
v
+
1 =

.
v +

.
v
+
0 ≤ −

(
3βε1

4

)
u2−

(
δ

2

)
z2−

(
3β2

4

)
y2+D2(|y|+|z|+|u|), if |u| ≥ |x|

or

.
v
+
1 =

.
v +

.
v
+
0 ≤ −

(
3βε1

4

)
u2 −

(
δ

2

)
z2 −

(
3β2

4

)
y2 − d(x)sgnx + |c(y)|

+ D3(1 + |y|+ |z|+ |u|), if |u| ≤ |x| .

The following arguments are similar to those in [3] and hence we omit the
details of the proof. The proof of this lemma is now complete. �

The proof of Theorem 3 By considering the results obtained in Lemma 2,
the usual Yoshizawa-type argument (see the result established in [2]) applied to
(2.8), (2.9) and (2.10) would then show that, for any solution (x, y, z, u) of the
system (1.2), we have

|x(t)| ≤ K1, |y(t)| ≤ K1, |z(t)| ≤ K1, |u(t)| ≤ K1,

for all sufficiently large t, which proves the theorem.
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