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Abstract
The problem of continuous dependence for inverses of fundamental

matrices in the case when uniform convergence is violated is presented
here.
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1 Introduction

In this work we are dealing with the problem of continuous dependence for
inverses of fundamental matrices. We make use of the results from [A] and from
[T1, chapter 3].
In the second section a survey of known results concerning systems of gen-

eralized linear ordinary differential equations, fundamental matrix and adjoint
equation is given. Main results of [A] and [T1, chapter 3] are presented here,
too.
Our main result is formulated in Theorem 4. The case when uniform con-

vergence is violated is presented here.
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1.1 Preliminaries

The following notations and definitions will be used throughout this text: N =
{1, 2, 3, . . . } and N0 = N∪ {0}. R is the set of real numbers; Rm×n is the space
of real m× n matrices B = (bij)i=1,...,m

j=1,...,n
with the norm

|B| = max
j=1,...,n

m∑

i=1

|bij | ;

Rn = Rn×1 stands for the set of real column n-vectors b = (bi)n
i=1.

For a matrix B ∈ Rn×n, det B denotes the determinant of B. If det B �= 0,
then the matrix inverse to B is denoted by B−1. BT is the matrix transposed
to B. The symbol I stands for the identity matrix and 0 for the zero matrix.
If a, b ∈ R are such that −∞ < a < b < +∞, then [a, b] stands for the closed

interval {x ∈ R; a ≤ x ≤ b}, (a, b) is its interior and (a, b], [a, b) are the corre-
sponding half-closed intervals.
The sets D = {t0, t1, t2, . . . , tm} of points in the closed interval [a, b] such

that a = t0 < t1 < t2 < · · · < tm = b are called divisions of [a, b]. The set of all
divisions of the interval [a, b] is denoted by D[a, b].
Let B : [a, b] → Rm×n be a matrix valued function. Its variation varba B on

the interval [a, b] is defined by

varba B = sup
D∈D[a,b]

m∑

i=1

|B(ti)−B(ti−1)| .

If varba B < +∞, we say that the function B is of bounded variation on the
interval [a, b]. BVm×n[a, b] denotes the set of all m× n matrix valued functions
of bounded variation on [a, b]. We will write BVn[a, b] instead of BVn×1[a, b].
For further details concerning the space BVm×n[a, b], see e.g. [T2].
We will write briefly B(t+) = limτ→t+ B(τ), B(s−) = limτ→s−B(τ) and

Δ+B(t) = B(t+) − B(t), Δ−B(s) = B(s) − B(s−), ΔB(r) = B(r+) − B(r−)
for t ∈ [a, b), s ∈ (a, b], r ∈ (a, b).
If a sequence of m× n matrix valued functions {Bk(t)}∞k=1 converges uni-

formly to a matrix valued function B0(t) on [c, d] ⊂ [a, b], i.e.

lim
k→∞

sup
t∈[c,d]

|Bk(t)−B0(t)| = 0,

we write

Bk ⇒ B0 on [c, d].

We say that {Bk(t)}∞k=1 converges locally uniformly to B0(t) on a set M ⊂
[a, b], if Bk ⇒ B0 on each closed subinterval J ⊂ M .
We say that a proposition P (n) holds for almost all (briefly a.a.) n ∈ N if it

is true for all n ∈ N \K where K is a finite set.
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1.2 Kurzweil–Stieltjes integral

In this subsection we will recall the definition of the Kurzweil–Stieltjes inte-
gral (shortly KS-integral). We will work with the usual KS-integral which is
equivalent to Perron–Stieltjes integral; cf. [STV, I.4.5], [T2, section 5].
Let −∞ < a < b < +∞. For given m ∈ N, a division D = {t0, t1, . . . , tm} ∈

D[a, b] and ξ = (ξ1, ξ2, . . . , ξm) ∈ Rm, the couple P = (D, ξ) is called a partition
of [a, b] if

tj−1 ≤ ξj ≤ tj for all j = 1, 2, . . . ,m.

The set of all partitions of the interval [a, b] is denoted by P[a, b].
An arbitrary positive valued function δ : [a, b] → (0,+∞) is called a gauge

on [a, b]. Given a gauge δ on [a, b], the partition

P = (D, ξ) =
(
{t0, t1, . . . , tm}, (ξ1, ξ2, . . . , ξm)

)
∈ P[a, b]

is said to be δ-fine, if

[tj−1, tj ] ⊂
(
ξj − δ(ξj), ξj + δ(ξj)

)
for all j = 1, 2, . . . , m.

The set of all δ-fine partitions of the interval [a, b] is denoted by A(δ; [a, b]).
For functions f, g : [a, b] → R and a partition P ∈ P[a, b],

P =
(
{t0, t1, . . . , tm}, (ξ1, ξ2, . . . , ξm)

)

we define

SP (f Δg) =
m∑

i=1

f(ξi)[g(ti)− g(ti−1)].

We say, that I ∈ R is the KS-integral of f with respect to g from a to b if
∀ε > 0 ∃δ : [a, b] → (0,+∞) ∀P ∈ A(δ; [a, b]) : |I − SP (f Δg)| < ε. In such a

case we write I =
∫ b

a
fdg or I =

∫ b

a
f(t)dg(t).

It is known (cf. [T2, 5.20, 5.15]) that the KS-integral
∫ b

a
fdg exists, e.g. if

f ∈ BV[a, b] and g ∈ BV[a, b]. For the basic properties of the KS-integral, see
[T2] and [STV].
If F : [a, b] → Rm×n, G : [a, b] → Rn×p and H : [a, b] → Rp×m are matrix

valued functions, then the symbols
∫ b

a

F d[G] and
∫ b

a

d[H]F

stand for the matrices
( n∑

j=1

∫ b

a

fij d[gjk]
)

i=1,...,m
k=1,...,p

and
( m∑

i=1

∫ b

a

fki d[hij ]
)

k=1,...,p
j=1,...,n

,

whenever all the integrals appearing in the sums exist. Since the integral of
a matrix valued function with respect to a matrix valued function is a matrix
whose elements are sums of KS-integrals of real functions with respect to real
functions, it is easy to reformulate all the statements from section 5 in [T2] for
matrix valued functions (cf. [STV], I.4).
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2 Generalized linear differential equations and
the adjoint equation

Here we describe some fundamental properties of generalized linear differential
equations, fundamental matrices and adjoint equations. More detailed informa-
tion can be found in [STV]. We restrict ourselves to the interval [0, 1]. The mod-
ification to the case of an arbitrary closed interval [a, b] ⊂ R in place of [0, 1] is
evident.

2.1 Definition and basic properties

Assume that A ∈ BVn×n[0, 1] and consider the equation

x(t) = x(s) +
∫ t

s

d[A]x. (2.1)

Let [a, b] ⊂ [0, 1]. We say that a function x : [a, b] → Rn is a solution of (2.1)

on [a, b] if there exists the KS-integral
∫ b

a
d[A]x ∈ Rn and (2.1) holds for all

t, s ∈ [a, b].
Moreover, if t0 ∈ [a, b] and x̃ ∈ Rn are given, we say that x : [a, b] → Rn is

a solution of the initial value problem (2.1), x(t0) = x̃ on [a, b] if it is a solution
of (2.1) on [a, b] and x(t0) = x̃, i.e. if

x(t) = x̃ +
∫ t

t0

d[A]x (2.2)

for all t ∈ [a, b].
Notice that, under the assumptionA ∈ BVn×n[0, 1], each solution of the equa-

tion (2.1) on [0, 1] is of bounded variation on [0, 1] (see [STV, III.1.3]).

Theorem 1 ([STV, III.1.4]) Let A ∈ BVn×n[0, 1]. If t0 ∈ [0, 1], then the initial
value problem (2.2) possesses for any x̃ ∈ Rn a unique solution x(t) defined on
[0, 1] if and only if det[I−Δ−A(t)] �= 0 on (t0, 1] and det[I +Δ+A(t)] �= 0 on
[0, t0).

2.2 Fundamental matrix

Lemma 1 ([STV, III.2.10, III.2.11]) For a given A ∈ BVn×n[0, 1] such that

det[I−Δ−A(t)] �= 0 on (0, 1] and det[I +Δ+A(t)] �= 0 on [0, 1) (2.3)

there exists a unique U : [0, 1]× [0, 1] → Rn×n such that

U(t, s) = I +
∫ t

s

d[A(r)]U(r, s)

for all t, s ∈ [0, 1].
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Moreover, there exists a unique matrix valued function X : [0, 1] → Rn×n

such that det X(t) �= 0 for t ∈ [0, 1],

U(t, s) = X(t)X−1(s) for all s, t ∈ [0, 1] (2.4)

and

X(t) = I +
∫ t

0

d[A]X, t ∈ [0, 1] . (2.5)

Furthermore, the inverse matrix X−1(t) is of bounded variation on [0, 1] and
it satisfies the relation

X−1(t) = X−1(s)−X−1(t)A(t) + X−1(s)A(s) +
∫ t

s

d[X−1]A (2.6)

for t, s ∈ [0, 1].

For a given t0 ∈ [0, 1], the unique solution x(t) of (2.2) on [t0, 1] (see Theo-
rem 1) is given by

x(t) = X(t)X−1(t0) x̃.

Definition 1 The matrix X : [0, 1] → Rn×n given by Lemma 1 is called
the fundamental matrix of the homogenous generalized linear differential equa-
tion (2.1) or briefly the fundamental matrix corresponding to the given matrix
function A.

2.3 Adjoint equation

The equation (2.6), which is satisfied by the matrix function X−1, is not a gen-
eralized linear differential equation of the type (2.1). This leads us to the con-
sideration of adjoint equations, i.e. the equations of the form

yT (t) = yT (s)− yT (t)A(t) + yT (s)A(s) +
∫ t

s

d[yT ]A . (2.7)

Theorem 2 ([ST, 2.7]) Let A ∈ BVn×n[0, 1] satisfy (2.3). Then the initial
value problem (2.7), yT (1) = ỹT has for every ỹ ∈ Rn a unique solution
y : [0, 1] → Rn on [0, 1]. This solution is of bounded variation on [0, 1] and is
given on [0, 1] by

yT (s) = ỹT X(1)X−1(s). (2.8)

Moreover, every solution yT (t) of the equation (2.7) on [0, 1] possesses the
onesided limits yT (t+), yT (t−) where the relations

yT (t+) = yT (t)− yT (t+)Δ+A(t) for all t ∈ [0, 1) ,

yT (t−) = yT (t) + yT (t−)Δ−A(t) for all , t ∈ (0, 1]
(2.9)

hold.
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2.4 Convergence results for generalized linear ordinary
differential equations

In [T1, Theorem 3.3.2] the continuous dependence of the fundamental matrix
X of (2.1) on a parameter was described. Let us recall this result. To this aim
we need the following notations.

Notation 1 Let a sequence {Ak}∞k=1 ⊂ BVn×n[0, 1] and A0 ∈ BVn×n[0, 1].
For a k ∈ N and an arbitrary closed interval J = [α, β] ⊂ [0, 1], define

AJ
k (t) = Ak(t)−Ak(α) for k ∈ N0, t ∈ J.

Theorem 3 ([T1, Theorem 3.3.2]) Let Ak ∈ BVn×n[0, 1] for k ∈ N0 and
det[I−Δ−A0(t)] �= 0 on (0, 1]. Furthermore, assume that there is a finite set
D ⊂ [0, 1] such that:

AJ
k (s) ⇒ AJ

0 (s) on J for any closed interval J ⊂ [0, 1] \D, (2.10)

sup
k∈N
varAk < +∞ and det[I−Δ−Ak(t)] �= 0 for all t ∈ D and for a.a. k ∈ N,

(2.11)

if τ ∈ D, then ∀ξ ∈ Rn and ∀ε > 0 ∃δ > 0 such that

∀ δ
′ ∈ (0, δ) ∃k0 ∈ Nsuch that the relations

|uk(τ)− uk(τ − δ
′
)−Δ−A0(τ)[I−Δ−A0(τ)]−1ξ| < ε,

|vk(τ + δ
′
)− vk(τ)−Δ+A0(τ)ξ| < ε

are satisfied ∀k ≥ k0 and ∀uk, vk such that

|ξ − uk(τ − δ
′
)| ≤ δ, |ξ − vk(τ)| ≤ δ and

uk(t) = uk(τ − δ
′
) +

∫ t

τ−δ′
d[Ak]uk(s) on [τ − δ

′
, τ ],

vk(t) = vk(τ) +
∫ t

τ

d[Ak] vk(s) on [τ, τ + δ
′
].

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

Then for a.a. k ∈ N the fundamental matrix Xk corresponding to Ak is defined
on [0, 1] and

lim
k→∞

Xk(t) = X0(t) on [0, 1]. (2.13)

A similar assertion concerning inverses of fundamental matrices will be proved
in Theorem 4.

Remark 1 Theorem 3 is a slightly modified version of [T1, Theorem 3.3.2].
Notation is simplified and, in particular, from the proof given in [T1, Theo-
rem 3.3.2] it follows that the assumption det[I−Δ−Ak(t)] �= 0 on (0, 1] for all
k ∈ N used in [T1] is not necessary and it can be replaced by a weaker one, i.e.
det[I−Δ−Ak(t)] �= 0 for all t ∈ D, for a.a. k ∈ N.
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Conditions (2.10)–(2.12) characterize the concept of emphatic convergence
introduced by J. Kurzweil (cf. [K2, Definition 4.1]). For more details see [T1,
Definition 3.2.8] or [S].

In the proof of Theorem 4 the following two lemmas are needed. The former
one is from [A, Lemma 2]. The latter one is based on [T1, Theorem 3.2.5] and
on [A, Lemma 2].

Lemma 2 ([A, Lemma 2]) Let −∞ < a < b < +∞, Ak ∈ BVn×n[a, b] for
k ∈ N0 and let det[I +Δ+A0(t)] �= 0 on [a, b) and det[I−Δ−A0(t)] �= 0 on (a, b].
If Xk ⇒ X0 on [a, b], then X−1

k ⇒ X−1
0 on [a, b].

Lemma 3 Let −∞ < a < b < +∞, Ak ∈ BVn×n[a, b] for k ∈ N0 and
det[I +Δ+A0(t)] �= 0 on [a, b) and det[I−Δ−A0(t)] �= 0 on (a, b]. Assume that
the sequence {Ak}∞k=1 satisfies the following two conditions

(i) sup
k∈N
varba Ak < +∞,

(ii) [Ak(t)−Ak(a)] ⇒ [A0(t)−A0(a)] on [a, b].

Then for k = 0 and for a.a. k ∈ N there exists the fundamental matrix Xk

corresponding to Ak on [a, b] and X−1
k ⇒ X−1

0 on [a, b].

3 Main result

Theorem 3 deals with a sequence of fundamental matrices. According to def-
inition, each fundamental matrix corresponding to a given matrix function A
fulfills for all s, t ∈ [0, 1] the equation

X(t) = X(s) +
∫ t

s

d[A]X.

This fact is essentially used in the proof of Theorem 4. Furthermore, we take
into account that the inverse of fundamental matrix X−1(t) satisfies relation

X−1(t) = X−1(0)−X−1(t)A(t) + X−1(0)A(0) +
∫ t

0

d[X−1]A, (3.14)

which is adjoint to (2.5), see (2.6) and (2.7).
We want to prove assertion analogous to Theorem 3 for inverses of funda-

mental matrices. To this aim it is necessary to suppose also the regularity of
[I +Δ+A0(t)] for each t ∈ [0, 1) and the condition (3.15) which is a modification
of (2.12) for relation (3.14). This is our main result.
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Theorem 4 Let the assumptions of Theorem 3 are satisfied. Furthermore as-
sume that det[I+Δ+A0(t)] �= 0 on [0, 1) and the following conditions hold:

if τ ∈ D, then ∀η ∈ Rn and ∀ε > 0 ∃δ > 0

such that ∀δ′ ∈ (0, δ) ∃k0 ∈ Nsuch that the relations

|wT
k (τ)− wT

k (τ − δ
′
) + ηT Δ−A0(τ)| < ε ,

|zT
k (τ + δ

′
)− zT

k (τ) + ηT [I +Δ+A0(τ)]−1 Δ+A0(τ)| < ε

are satisfied ∀k ≥ k0 and ∀wk, zk ∈ Rn fulfilling (3.16), (3.17)

and such that

|ηT − wT
k (τ − δ

′
)| ≤ δ, |ηT − zT

k (τ)| ≤ δ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

where

wT
k (t) = wT

k (τ − δ
′
)− wT

k (t)Ak(t) + wT
k (τ − δ

′
)Ak(τ − δ

′
)

+
∫ t

τ−δ′
d[wT

k ]Ak on [τ − δ
′
, τ ], (3.16)

zT
k (t) = zT

k (τ)− zT
k (t)Ak(t) + zT

k (τ)Ak(τ) +
∫ t

τ

d[zT
k ]Ak on [τ, τ + δ

′
]. (3.17)

Then for a.a. k ∈ N the fundamental matrices Xk corresponding to Ak and
their inverses X−1

k are defined on [0, 1],

lim
k→∞

Xk(t) = X0(t) on [0, 1] (3.18)

and
lim

k→∞
X−1

k (t) = X−1
0 (t) on [0, 1]. (3.19)

Moreover, (3.19) holds locally uniformly on [0, 1] \D.

Proof First notice that Lemma 3 implies that (3.19) holds locally uniformly
on [0, 1] \D and (3.18) immediately follows from Theorem 3.
Assume that D = {τ}, where τ ∈ (0, 1); i.e. D consists of one point τ ∈ (0, 1)

only and m = 1.
Recall that the existence of the fundamental matrices Xk for a.a. k ∈ N and

(3.18) immediately follows from Theorem 3. Since each fundamental matrix is
regular, we get the existence of X−1

k for a.a. k ∈ N. For ỹ ∈ Rn and for a.a.
k ∈ N0, denote by yT

k the solution of the equation

yT
k (t) = ỹT − yT

k (t)Ak(t) + ỹT Ak(0) +
∫ t

0

d[yT
k ]Ak on [0, 1]. (3.20)

The rest of the proof splits into three steps. First, we prove that (3.19) is true
for t ∈ [0, τ), then for t = τ and finally for t ∈ (τ, 1].
• Step 1. Let α ∈ (0, τ) be given. Then by Lemma 3 the relation (3.19) holds
uniformly on [0, α]. Therefore (3.19) is true for any t ∈ [0, τ).
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• Step 2. Now we will prove, that (3.19) is true also for t = τ . For each
δ

′ ∈ (0, τ) and k ∈ N we get using (2.9) the estimate

|yT
0 (τ)− yT

k (τ)| ≤ |yT
0 (τ) + yT

0 (τ−)Δ−A0(τ)− yT
0 (τ − δ

′
)|

+ |yT
0 (τ − δ

′
)− yT

k (τ − δ
′
)|+ |yT

k (τ − δ
′
)− yT

0 (τ−)Δ−A0(τ)− yT
k (τ)|

= |yT
0 (τ−)− yT

0 (τ − δ
′
)|+ |yT

0 (τ − δ
′
)− yT

k (τ − δ
′
)|

+ |yT
k (τ)− yT

k (τ − δ
′
) + yT

0 (τ−)Δ−A0(τ)| .

Let ε > 0 be given. According to (3.15) we can choose δ ∈ (0, ε) in such a way
that for all δ

′ ∈ (0, δ) there exists k1 ∈ N with the property

|wT
k (τ)− wT

k (τ − δ
′
) + yT

0 (τ−)Δ−A0(τ)| < ε (3.21)

holds for any k ≥ k1 and for each solution wT
k (t) of (3.16) fulfilling

|yT
0 (τ−)− wT

k (τ − δ
′
)| ≤ δ.

Set wT
k (t) = yT

k (t) on [τ − δ
′
, τ ]. Choose δ

′ ∈ (0, δ) so that

|yT
0 (τ−)− yT

0 (τ − δ
′
)| < δ

2
.

Considering that yT
k (t) → yT

0 (t) on [0, τ) as k → ∞ we get the existence of
a k0 ∈ N, k0 ≥ k1 such that |yT

0 (τ − δ
′
) − yT

k (τ − δ
′
)| < δ

2 for all k ≥ k0.
Therefore the estimate

|yT
0 (τ−)− yT

k (τ − δ
′
)| ≤ |yT

0 (τ−)− yT
0 (τ − δ

′
)|+ |yT

0 (τ − δ
′
)− yT

k (τ − δ
′
)| < δ

is true for k ≥ k0. By (3.21) we have

|yT
k (τ)− yT

k (τ − δ
′
) + yT

0 (τ−)Δ−A0(τ)| < ε.

To summarize, we have

|yT
0 (τ)− yT

k (τ)| < δ

2
+

δ

2
+ ε < 2 ε for all k ≥ k0 ,

i.e. yT
k (τ) → yT

0 (τ) for k →∞.
• Step 3. Proof of the convergence on (τ, 1] consists of two parts. First, we
show that there is a δ > 0 such that yT

k (t) → yT
0 (t) on (τ, τ + δ) as k → ∞.

Then we extend this result to the whole interval (τ, 1]. Let ε > 0 be given and
let δ0 ∈ (0, ε) be such that

|yT
0 (s)− yT

0 (τ+)| < ε for all s ∈ (τ, τ + δ0).

By the assumption (3.15), there exists δ ∈ (0, δ0) such that for all δ
′ ∈ (0, δ)

there exists k1 = k1(δ
′
) ∈ N and such that

|zT
k (τ + δ

′
)− zT

k (τ) + yT
0 (τ) [I +Δ+A0(τ)]−1 Δ+A0(τ)| < ε (3.22)
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is true for each solution zT
k (t) of (3.17) with the property |yT

0 (τ) − zT
k (τ)| ≤ δ.

Now the distance between yT
0 (τ + δ

′
) and yT

k (τ + δ
′
) can be estimated. In view

of (2.9) we get

|yT
0 (τ + δ

′
)− yT

k (τ + δ
′
)| ≤ |yT

0 (τ + δ
′
)− yT

0 (τ) + yT
0 (τ+)Δ+A0(τ)|

+ |yT
0 (τ)− yT

k (τ)|+ |yT
k (τ)− yT

0 (τ+)Δ+A0(τ)− yT
k (τ + δ

′
)|

= |yT
0 (τ+δ

′
)−yT

0 (τ+)|+|yT
0 (τ)−yT

k (τ)|+|yT
k (τ)−yT

0 (τ+)Δ+A0(τ)−yT
k (τ+δ

′
)|.

Considering that yT
k (τ) → yT

0 (τ) for k → ∞, we get the existence of k0 ∈ N,
k0 ≥ k1 such that |yT

0 (τ)− yT
k (τ)| < δ for all k ≥ k0. Since τ + δ

′ ∈ (τ, τ + δ0),
we have |yT

0 (τ + δ
′
)− yT

0 (τ+)| < ε. Setting zT
k (t) = yT

k (t) on [τ, τ + δ
′
], we get

by (3.22) the relation

|yT
k (τ)− yT

0 (τ+)Δ+A0(τ)− yT
k (τ + δ

′
)| < ε for all k ≥ k0 .

To summarize, for any k ≥ k0 the estimate

|yT
0 (τ + δ

′
)− yT

k (τ + δ
′
)| ≤ ε + δ + ε < 3 ε

is valid, as well. Therefore yT
k (t) → yT

0 (t) on (τ, τ + δ) as k →∞. Now, choose
an arbitrary σ in (τ, τ +δ). Making use of Lemma 3 with [a, b] = [σ, 1] the proof
of this step can be completed.
Having solution yT

k (t) to (3.20) for each ỹ ∈ Rn, we can determine the matrix
function X−1

k (t) from yT
k (t) using (2.8). Indeed, since Xk(1) is regular, we can

choose ỹT in such a way that yT
k (t) is i-th row of X−1

k (t). This consideration
completes the proof of the validity of (3.19) for any t ∈ [0, 1].
The extension to the case m > 1 is obvious. �
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