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(Communicated by Stanislav Jakubec) 

ABSTRACT. In 1993, E. Thomas conjectured tha t for certain families of Thue 
equations there are — up to solutions arising from finitely many polynomials over 
the integers Z — only finitely many further solutions over the integers. We give 
an example which shows tha t this conjecture cannot hold for arbitrary families 
of Thue equations where the coefficients are polynomials in one variable over the 
rational integers. Therefore we introduce the notion of Z -parameter solutions of 
a family of Diophantine equations, which means a solution in algebraic functions 
which has infinitely many specializations to rational integers. Wi th this revised 
setting, one might ask whether Thomas ' s conjecture holds for families of Thue 
equations. Using C L. Siegel's theorem on integral points on an algebraic curve 
and an idea going back to E. Maillet, we prove some general results showing tha t 
Z -parameter solutions generate very special function fields and have a very clear 
shape. 

1. Introduction 

For n > 3 let a l 5 . . . , an G Z[T] be polynomials in the variable T , put 

F = F(X, Y) = Xn + axX
n~xY + • • • + an_xXYn~x + anY

n G Z[T][X, Y], 

a normed, binary form of degree n over Z[T], and consider the Thue equation 

F(X,Y) = b (1) 

with 0 7- b G Z[T]. Following T h o m a s [Tho], we call a pair of polynomials 
(p,q) G Z[T] x Z[T] with F(p,q) = b a polynomial solution of (1). So for any 
t G Z the Diophantine equation 

F(X,Y)\T.=t = b(t) (2) 
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has the solutions (p(t),q(t)), where (p, q) runs through the polynomial solutions 
of (1), as well as further solutions, which we will call sporadic ones. T h o m a s 
called a family of Thue equations given by (1) stably solvable if there exist only 
finitely many polynomial solutions and only finitely many sporadic ones at all. 
(Here we disregard those values of t G Z for which the form F(X,Y)\T,=t 

becomes a power of a linear or of an indefinite quadratic form — the only cases 
where the Diophantine equation (2) might have infinitely many solutions in 
Z x Z.) 

T h o m a s conjectured that any family of Thue equations of the shape 

n 

l[(X-biY)±Yn = l, (3) 

with polynomials bx,..., bn G Z[T] satisfying bx = 0 < deg b2 < • • • < deg bn , is 
stably solvable. In [Tho] he proves this conjecture for degree n = 3 (assuming 
for the polynomials b2, b3 some further supposition), and in [Heu2], [Heu3], 
C. H e u b e r g e r proved this conjecture for arbitrary degree n > 3 (again with 
some mild restrictions on the polynomials b{). Although all one-parameter fam­
ilies of Thue equations which appeared since then in the literature are stably 
solvable (see e.g. [Heul] for an overview of such families), the example of the 
next paragraph makes one realize that this is not so in general. 

2. A non stably solvable family of Thue equations 

It is easy to see that the Thue equation1 

X6 - (T - 1)Y6 = T 2 (4) 

is not stably solvable. Considering the degree (with respect to T) one checks 
immediately that (4) has no solutions in Q[T] x Q[T]. On the other hand, we 
find infinitely many sporadic solutions, namely 

for T := t G {n6 : n G N} we have the solutions (±n 3 , ± n 2 ) ; 
for T := t G {n3 : n G Z} we have the solutions (±n, 0); 
for T := t G {-1 - n6 : n G N0 } we have the solutions (±1 , ± n ) ; 
for T := t G {-n6 - n1 2 : n G N} we have the solutions (±n 3 , ± n 2 ) . 

All these solutions arise from the following solutions of (4) in algebraic functions 
which belong to extension fields of the rational function field Q(T): 

(± ^ T , ± s/T ) is a solution in Q( # T ) ; 

xIf the reader minds tha t the form is not irreducible for infinitely many values T := t G Z , 
(s)he may substi tute T 2 for T . 
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(±\/T, 0) is a solution in Q(\/T ); 
(±1, i . y - 1 - T ) is a solution in Q( ty-l-T ) ; 

(±^/i(Vl-4T^ry, ± ^ / i ( V l - 4 T ^ i y ) is a solution in 

Q ( ^ I ( v T - 4 f - l ) ) . 

Having once seen this example, it is easy to produce many more examples of 
non stably solvable families of Thue equations. 

3. Z-parameter solutions of families 
of Diophantine equations 

Let Q(T) D Q(T) be an algebraic closure of Q(T) and O C Q(T) denote 
the integral closure of Q[T] in Q(T) . Let n G N, T, X1,..., Xn be algebraically 
independent and 

f = f(T,X1,...,Xn)eZ[T][X1,...,Xn] 

be a polynomial with integral coefficients. The variable T will play the role of the 
parameter, and we will always assume that each of T, X1,..., Xn really appears 
in / . Any n-tuple (xx,... , x n ) with all xi G O and with F(T,x1,... , x n ) = 0 
will be called a solution of 

/ = 0 . (5) 

For any solution (x1,...,xn) of (5) we put K = Q(T)(x1,... , x n ) , the field 
obtained by adjoining the components of the solution to Q(T). 

For algebraic function fields in one variable we will use the notions and def­
initions as explained e.g. in the textbooks of H. S t i c h t e n o t h [St] or of 
M. R o s e n [Ro]. Let K0 denote the constant field of if, i.e. the field of all 
elements of K which are algebraic over Q. A place P of K is the valuation 
ideal of a discrete valuation ring Op with K0 C Op C K. TTP: OP -r OP/P 
denotes the evaluation map at the place P , and d e g P := [Op/P : K0] the 
degree of P. Let FK denote the set of all places of K. 

DEFINITION 1. Let (#-_,... ,xn) be a solution of (5) and K be as above. 

a) A place P of K is called a Z -realization of the solution ( x l 5 . . . , xn) if 

7Tp(T), 7Tp(x1), . . . , 7Tp(xn) G Z . 

b) The solution (x1,..., xn) is called a Z -parameter solution of (5) if there 
exist infinitely many Z-realizations of (x-p . . . , # ) . 

R e m a r k s . If a place P is a Z-realization of the solution ( x 1 ? . . . ,xn), then 
(np(x1),..., nP(xn)) G Z n is a solution of the Diophantine equation f\T. (T) 

= 0. 

467 



GUNTER LETTL 

Since over each place (T — t) of Q(T) with t G S there are only finitely 
many places of if, any Z-parameter solution ( x 1 , . . . , x n ) yields solutions for 
infinitely many Diophantine equations of the family given by (5). 

Instead from Z[T] we could have taken the coefficients of the polynomial 
/ from the ring of all integer-valued polynomials in Q[T], but this yields no 
essential generalization. 

Considering again families of Thue equations as given by (1) we can ask 
whether any such family admits only finitely many Z -parameter solutions. In 
case of an affirmative answer one might investigate the finiteness of the set of 
sporadic solutions of any family (1) with respect to this new setting. 

4. Some results on Z-parameter solutions 

Our first result is a consequence of S i e g e l ' s theorem on integral points on 
a curve: 

PROPOSITION 1. Let ( x 1 , . . . , x n ) be a solution of (5) and put K = 
Q ( T ) ( x l 5 . . . , x n ) . 

a) If there exists a Z -realization P G P K of ( x 1 ? . . . , xn), then K/Q(T) is a 
geometric extension (i.e., Q is algebraically closed in K); in particular, 
0P/P = Q. 

b) If (x1,... , x n ) is a Z -parameter solution, then K is a rational function 
field over Q; in particular, K has genus 0. 

P r o o f . 
a) Let P G f>

K be a Z-realization of ( x 1 ? . . . , xn). Since K is generated over 
Q by T, x 1 ? . . . , xn, the residue class field at P , Op/P, is generated over Q by 
7TP(T), 7Tp(x1),..., np(xn), thus it equals Q. 

b) Looking at the proof of the theorem on primitive elements for field ex­
tensions (e.g. [Jac; p. 290]) one finds by an inductive argument that there exist 
k2,...,kn G Z such that z = x1 + k2x2 + • • • + knxn generates K over Q(T). 
The minimal polynomial of z over Q(T) defines an affine curve over Q with 
infinitely many points in Z x Z (arising from the infinitely many Z -realizations 
of (x1,..., xn); here it is essential to have ki G Z ) , thus by S i e g e 1 's theorem 
(see [Sie]) this curve, and therefore K, has genus 0. By a), there exist places of 
degree 1 in if, thus if is a rational function field with constant field Q. • 

The next result gives a very clear description of Z-parameter solutions as 
well as of the function fields K generated by them. The proof generalizes an 
idea going back to E. M a i 11 e t [Mai]. 
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PROPOSITION 2. Let ( x l 5 . . . ,xn) be a Z-parameter solution o/(5) , put 
K = Q(T)(xx,..., xn), let 71 C ¥K denote the (infinite) set of all Z -realizations 
of this solution, and denote the pole of T in Q(T) by oo0 = (^) G P ^ m • 

A. 7/ £/iere exists a place oo G ¥K of degree 1, lying over oo0 , £/ien there 
exists a Z G K such that K = Q(Z) and the following properties hold: 

(i) For every P G IZ one has 7rp(Z) G Z . 
(ii) T , x 1 ) . . . , x n G Q [ Z ] . 

(iii) oo0 is completely ramified in K, i.e., eoo/oCo = [K : Q(T)] . 
B. If there is no place of degree 1 in FK lying over oo0 , then there exists 

a Z G K such that K = Q(Z) and the following properties hold: 
(i) There exist polynomials ip0, ipx,..., <pn, q G Z[Z] tvi£/i gcd((/?0,... 

. . . . <^n, g) = 1. deg z q = 2, q irreducible in Q[Z] and discg > 0, 
and a n r n E N such that 

T = ^ - , x- = -^- , . . . , x n = % and deg z <p0 = 2m . 

(ii) Of er oo0 ttere /zes exactly one place oo G P K , and this has degree 2; 
*-ev e ^ / ^ = [K : Q(T)] /2 and degoo = 2. 

P r o o f . By Proposition 1 we know already that i f is a rational function 
field over Q and all places of 1Z have degree 1. 

A. Let Q,oo G VK be places of degree 1 with oo | oo0 and Q \ oo0 , and 
choose Z0 G K with principal divisor (Z0) = Q - oo; thus we have K = Q(Z 0 ) . 
We can find (p,i/> G Z[Z0] with gcd((/?,V0 = 1 a n d -T = ¥>/V>- S i n c e t n e P o l e o f 

Z0 lies over the pole of T , one has d = degtp > degi/; = d'. Let cd G Z be the 
leading coefficient of cp. 

We claim that for all P G 1Z we have cd 7rP(Z0) G Z . 
Let P G ^ and TT P (Z 0 ) = ^ / z 2 G Q with z ^ ^ G Z and gcd(z1?z2) = 1. 

Since the denominator of 

^V(t) vfe) < z 2 / _ 

f*(%) *(%) 
= ҡP{T) € Z 

, d 

is an integer, we obtain z^ (/?(f-) = cd-^r H G Z , which yields z2 \ cd and 

so proves the above claim. Putting Z = cdZ0 concludes the proof of (i). 
Now let Z G K satisfy (i). Then there exist <p0,..., ipn,ty G Z[Z] with 

T = ip0/ip, xx =<p1/il>, . . . , xn = ¥n/^ and gcd(<p0,... ,<pn,^) = 1. Therefore 
we can find A 0 , . . . , A n + 1 G Z[Z] and / G N such that 

(^0A0 + --- + (^nAn + ^ A n + 1 = / . (6) 

For any P G K denote z = TT P (Z) G Z . NOW apply 7TP to (6) to obtain 

^ ( Z ) ( T T P ( T ) A 0 ( Z ) + TTpCx-jA-.OO + • • • + 7r p (x n )A n W + An + 1(z)) = I. 
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Since all factors in this expression are integers, we obtain infinitely many z G Z 
with ip(z) | /, therefore ip must be constant and we deduce (ii). Since T is a 
polynomial in Z , (iii) follows at once. 

B. Since 11 is infinite, we can choose places Q, oo G FK of degree 1, where 
oo is no zero of T. Let Z G K with principal divisor (Z) = Q — oo, so K = Q(Z) 
and T = (p/ip with £>,-0 G Z[Z] and gcd(^, ^ ) = 1. Since there exists no place 
of degree 1 over oo0, the pole of T, we see that oo is neither a zero nor a pole 
of T, thus 71-̂  (T) G Q x and we have deg (p = deg ip > 2. 

As above, there exist cp0,... ,</?n,^ G Z[Z] with T = (p0/ip, x1 = ^p1/ip, • . . 
. . . , x n = <pn/V, gcd(</?0,...,<pn,VO = 1, and furthermore from T = fi/ip = 
(p0/ip we obtain deg(p0 = deg^ = d>2. Again we can find A 0 , . . . , An + 1 G Z[Z] 
and / G N satisfying (6). 

Let ip = cdZ
d + -- + c1Z+c0 with c 0 , . . . , cd G Z , p u t ip0(ZvZ2) = Zdip(^) 

the homogenization of ^ , define d' = maxjdegA^ : 0 < i < n + l } and put 
D := d + d' > 2. For any P G 7£ let 7rp(Z) = z-_/z2 G Q with zx, z2 G Z and 
gcd(^,2:2) = 1. 

We claim that 

^o(*i>*2) l / c ? - (7) 

Applying 7TP to (6) and multiplying with z2 we obtain 

%(Z1,Z2)(TP(T)-4XO(^)+WP(X1)-Z^X1(^)+... 

••• + Kp(xn)-4'K(%) + 4'K+AW)=lz?' 
from which we conclude that 

a := %(z^z
2) = cdz\ + '" + coz2 I l z2 • 

For any rational prime p G P let v (m) denote the exact power of p dividing 

m G Z \ {0}. If *;p(£2) < vp(cd), we have t>p(a) < vp(lz$) < vp(lcg), and if 
Vp(Z2) > Vp(Cd)> W e § e t Vp(a) = ^p(Cd) < Vp(lcd)> W h i c h P r 0 V e S ( 7 ) ' 

Since 7£ is infinite we obtain infinitely many (z^z^) G Z x Z with 
ip0(zl,z2) \lcd , so some divisor of / c ^ is represented infinitely often by the 
binary form ^0 • By Thue's theorem, ^ 0 must be the power of a linear or of an 
irreducible indefinite quadratic form from Q[ZX, Z 2 ] . The former would yield a 
place of K over oo0 of degree 1, therefore the latter must hold, concluding the 
proof of (i). 

From T = Volo"1 an<^ deg^n = 2m we see that (q) G FK is the only place 
of K lying above co0 , thus also (ii) is proved. • 
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