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r—SYSTEMS OF UNARY ALGEBRAS I

(On maximal and greatest .J-classes of

the direct product of unary algebras)

INRICH ABRHAN* — LADISLAV SATKO **

(Communicated by Tibor Katrindk)

ABSTRACT. The .J-equivalence class in the direct product of an r-system of
unary algebras is described by the J-equivalence classes of the separate compo-
nents of the direct product. Also the greatest and the maximal J-classes in the
direct product of an r-system of unary algebras are studied.

Various types of ideals can be considered in semigroups. There are mini-
mal ideals, maximal ideals, prime ideals, completely prime ideals, and so on.
In connection with this many authors studied the following problem: given a
direct product of semigroups, which connection is between the ideals of this di-
rect product and the ideals of its semigroup components? These problems are
investigated in [1], [2], [10], [11], [12], [13], [14].

In this paper, we study a similar problem for unary algebras. In [3]. the
following theorem is proved:

Let A = (A; F) be aunary algebra with proper subalgebras and § # N C A.
Then (N F) is a maximal subalgebra of A if and only if there exists a maximal
J-class [r]J of the partially ordered set A/J of all J-classes of the algebra A
such that N = A\ [x]J.

A similar theorem is valid for greatest subalgebras of unary algebras. From
these results we can conclude that maximal (greatest) J-classes play a very
important role in the description of maximal (greatest) subalgebras of a unary
algebra. In the paper, we describe maximal (greatest) J-classes of a direct prod-
uct of unary algebras. We make use of the concept of an r-system of unary
algebras. From our results one can derive well-known results concerning maxi-
mal £-classes of the direct product of semigroups.

ANMS Subject Classification (1991): Primary 08A60.
Key words: Unary algebra, Direct product, Maximal equivalence class.
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1. Introduction

We use the following notation. If X is a subset of aset Y and X # Y . then
we write X C Y. |X| stands for the cardinality of the set X . We denote the
Cartesian product of sets H;, i € I, by [[(H; |i€1).

If o is an equivalence on aset X , then X /o is the set of all equivalence classes
of the equivalence o. An equivalence class of the equivalence o containing an
element z is denoted by [z]o.

An algebra A is a pair (A; F), where A is nonempty set and F is a family
of finitary operations on A. By P(A), we denote the set of all nonempty subsets
N of the set A such that (N; F) is a subalgebra of the algebra A . Let x € .
We denote by [z] the element of P(A) such that ([z]; ') is a subalgebra of the
algebra A which is generated by x.

Let A = (A;F) be an algebra. On the A, we define a binary relation .J
in the following way: xJy if and only if [z] = [y]. Evidently, this relation is
reflexive, symmetric and transitive. Thus, it is an equivalence on A.

On the set A/J, we now define a binary relation < in the following way:
[z]J < [y]J if and only if [z] € [y]. Obviously, this relation is reflexive. anti-
symmetric and transitive. Thus, it is a partial order on the A/J, and (A/J: <)
is a partially ordered set. We briefly denote this set by A/J.

We concentrate only on unary algebras. A unary algebra is the pair A = (4: F).
where F is a family of unary operations on the set A, ie. f: 4 — A isa
mapping of the set A into A for each f € F.

Let A = (A;F) be a unary algebra and z € A. Let N = (N;F) be a
subalgebra of A such that x € N. Then, for any f; € F' we have fi(z) € N.
and again, for any fy € F, f2(f1($)) € N. Inductively, for anyv fi. fo....

..y fx € F we have fk(fz(fl(m)) ) €N.

DEFINITION 1.1. Let A = (A; F) be a unary algebra and r € A. We define
Ft(z) to be the set of all y € A with the following property:

There ezist fi,...,fr € F such that y = fi(... f2(fi(x))...). Thus.
F+(:c) = {y (S Ai there exist fl,..,,fk € F such that y = f;,;(. f2<f1(l)> .. )} .

Via this notation, we have for any N € P(A) and = € N: F*'(x) © N. [t
is a matter of routine to check that (F*(x); F) is a subalgebra of the A . Also

{z}UF*(z) € P(A),and forany N € P(A). r € N we have {+}UF" () & \.
Thus we proved the following lemma.

LEMMA 1.1. Let A = (A;F) be a unary algchra and o € X Thon
[x] = {x} U F*(x).
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The next lemma shows a relationship between the ordering of .J-classes [r} J,
ly]J for x # y, and the property = € F*(y).

LEMMA 1.2. Let A == (A; F) be a unary algebra and =,y € A, © #y. Then
(r]J < [y]J if and only if x € F*(y).

Proof.

a) Let [z]J < [y]J. Thus [z] C [y], i.e. {x} U FT(x) € {y} UF*(y). Now
r # y implies z € Ft(y).

b) Let « € F*(y). With respect to F*(y) € P(A), we have [z] € F*(y)
{yb U F*(y) = [y] and [z]J < [y]J.

oin

In what follows, we often pay attention to the fact whether = belongs or
not to 7 (z). The following lemma describes the difference between these two
possibilities.

LEMMA 1.3. Let A = (A; F) be a unary algebra. Then for any z,y € A,
a) if |[z]J] > 2, then z € Ft(y) for any y € [z]J;
b) z € Ft(y) for any y € [x]J if and only if x € F*(z);
¢) if v ¢ FH(x), then |[z]J]|=1.

Proof.

a) Since |[z]J| > 2, there exists y € [z]J such that y # z. For any y € [z].J
we have [z] = [y]. By Lemma 1.1, {z} U F*(z) = {y} U F*(y). As = # y, we
get v € F*(y) and y € F'(z). Part a) is proved in the case = # y. The rest
we obtain under the following consideration. As F*(z) € P(A), y € F*t(x)
implies [y] € F*(z). Hence z € F*(y) € {y} U F*(y) = [y] € F*(z). Thus,
r € Ft(y) for every y € [z]J.

b) If x € F*(y) for any y € [z]J, then also z € F*(z). Conversely, let
r € Ft(z). If there exists y € [z]J, y # z, then from a) we have z € F*(y).
Thus, z € F*(y) for any y € [z]J].

The part c) follows directly from a) and b). O

2. r-Systems

In this section, we concentrate on a direct product of an r-system of unary
algebras. First we give some definitions.

DEFINITION 2.1. Let {A; = (A;F) | i€ I} be a system of unary algebras
of the same type, |I| > 2. Set A =[[(Ai | i € I) to be the Cartesian product
of the sets A;. For every f € F we define a unary operation on A in the
following way: f(a)(i) = f(a(i)) forany i € I and any o € A. Then (A; F) =
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<H(A,- |iel); F> is a unary algebra. This unary algebra will be called a direet
product of A, i € I, and be denoted by A =T[(A; |i € I). (See. for example.
7.)

Now our considerations will concern J-classes in the direct product of unarv
algebras.
LEMMA 2.1. Let {A; = (A F) | i€ I}, [I| > 2. be a family of unary

algebras of the same type. Let o, € A=T[(A; |iel), and a € FY(3). Then
ali) € FY(B(i)) for every i € 1.

Proof. By our assumption, there exist f,..., fi € F such that
i ( - fo (fl ([ﬁ)) . ) = «. Then for any ¢ € [ we have a(/) =
S f2(f1(8) ) G@) = fe(oo f2(f1(B()))...) . Hence a(i) € FT(3(i)) for
any i € I. J

We give an example which shows that the converse need not be true. i.e.
a(i) € F(3(i)) for every i € I does not imply o € F1(3).

Example 1. Let A; ={0,a,b} and fy, f1 be unary operations defined
on A; by the following tables:

fo}Oab fl{(]a,b
|000 lOba

Put F = {fo, f1}. Then A} = (A;; F) is a unary algebra. Let A = 4, x 4,
B=(ba) € Ay x Ay, o= (a,a) € Ay x A;. We get a = fi(b). a = fi(fi(a)).
fl(ba ”’) = (fl(b)afl(a» = (a”b)ﬂ fl((va) = (baa), f()(b,(l,) = f()(”'b) - .f()<()~())
= (0,0) = f1(0,0). So a € F*(b), a € F*(a), but o = (a.a) ¢ F((b.a))
= FT(3).

DEFINITION 2.2. Let {A,l- =(A;F)| i€ [}, [I] > 2, be a family of unary
algebras of the same type. Suppose the direct product A = [[(A; | i € 1) hax
the following property:
If o, € A=T[(A; | i €1) and (i) € FT(3(i)) for cvery i€ 1.
then a € F1(3).
In this case, the family {A; | i € I} will be called an r-system of unary algchras.

The next lemma is a direct consequence of Lemma 2.1 and Definition 2.2.
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LEMMA 2.2. Let {A; = (A;:F) | i€ I} be an r-system of unary algebras.
and a.3e A=T[(A; | ie€l). Then o € FT(B) if and only if a(i) € F'7(3(i))
forany i € 1.

Remark 1. Let S be a semigroup and H, T be subsemigroups of 5.
Then a nonempty subsetset A of S suchthat HASC A (HAC A and AT C A)
will be called (H, 0)-ideal ((H,T')-ideal) of S. In the case H = S = T, we have

a left ideal (an ideal) of the semigroup S'.

Now we give two examples. In the first one, we show a possibility how to assign
an r-system of unary algebras to any systems of semigroups. This assignment
induces a one-to-one correspondence between subalgebras of the unary algebras
and left ideals ((H,{)-ideals) of the single semigroups.

In the second example, any system of monoids is associated with an r-system
ol unary algebras such that to any subalgebra of the unary algebras an ideal
((H.T)-ideal) of the monoids is assigned and vice versa.

Example 2. Let |I] > 2, S; = (S;;-) be a semigroup and let H, =
(H;:-) be a subsemigroup of the semigroup S; for any ¢ € I. Set § =
[1(S: | i €I) and H = [[(H; | ¢ € I). Define a binary operation on S by
(a3 (@) = i) - B(i) for any o, 8 € S and every i € I. Then the direct prod-
uct S =T[(S; i€ I) is the semigroup (S;-). Evidently, H=[[(H; |i & I) is
a subsemigroup of the semigroup S.

Now for any H € H = [[(H; | i € I) and every i € I we define a unary
operation fz on S; in the following way: fr(y) = H(i) -y for every y € ;.
Let Fy ={fx| He€ H}. Then S gy = (S;; Fu) is a unary algebra for every
i € I, and all the unary algebras are of the same type.

Now. for any A € S;, A € ”P(S(i’H)) if and only if, for any y € A and
fr€ Fu, frly) € A. Hence fr(y) =H(i)-y€ A forany He H,and ye A.
However, for every H € H, H(i) € H;. On the contrary, for every h; € H; there
exists H € H such that h; = H(¢). Therefore, fy(y) € A for any fr € Fy
and every y € A if and only if h; -y € A for any h; € H; and every y € A.
So we have A € P(S(, y)) if and only if H;- A C A, ie. A is (H;,0)-ideal
of the semigroup S;. Moreover, in the case H; = S, there exists a one-to one
correspondence between subalgebras generated by one element and left ideals
ecnerated by the same element.

Now we show that a family {S(LH) [ ie [} is an r-system of unary algebras.
Let o, 3 be arbitrary elements of S = [[(S; |i € I), and (i) € F (3(i)) for
any ¢ € I. On that account, for any ¢ € I we can choose [fo,,...,fo, € Fy
such that o(i) = f., ( N P (fm (U(i))) .. ) = ((x/,,(i) cooan(i) oy (1)) - 3(i) .
Put =, = (o). caz(i) -y (i) . Obviously, z; € H; forany i € I. Let 7 ¢ 11
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be such that 7(i) = z; for every 7 € I. Then «(i) = z; - 3(i) = 7(¢) - 3(i) =
f-(3(i)) for any i € I. Consequently, o = 7-3 = f,(3) and « € Fy(3). Thus.
{S(,;ﬂ) | i€ I} is an r-system of unary algebras. 1l

Example 3. Let S; = (S;;-;1) be a monoid, H;, T; be submonoids of
S, forevery i € I, |I| >2.Let S=T[(S;|iel). H=][H; |i€ ).
T = [[(T; | i € I) be direct products of monoids. Let S = [[(S; | i € I).
H=T1[(H;|iel), T=1[(T;]ie€I) be Cartesian products.

For any ‘H € H and each i € I, we define a unary operation f3 on the
set S; in the following way: fr(y) = H(i) -y for every y € S;. Similarly. for
any 7 € T, ¢ € I we define on S; a unary operation f; by f.(y) = y- 7(i)
for every y € S;. Let Fy = {fyy | He H}, Fr = {f, | 7€ T}. Then
Si,u,ry = (Si; Fu U Fr) is a unary algebra for each i € I. By the same way as
in Example 2, to any subalgebra of this unary algebra is assigned (H;,T;)-ideal
of S; and vice versa. Moreover, in the case H; = S; = T}, there exists a one-to-
one correspondence between subalgebras generated by one element and ideals
generated by the same element.

Unary algebras S(; g1y = (Si; Fy U Frr) are of the same type. By the same

token as in Example 2, we could show that {S(,;‘H_T) | ie I} is an r-syvstem of
unary algebras. 0

Now we concentrate on a relationship of J-classes in a direct product of unarv
algebras and J-classes of components of this direct product.

LEMMA 2.3. Let {A; = (A;F) | i€ I} be an arbitrary family of unary
algebras, and A = [[(A; | i € I) be a direct product of these algebras. Let
a, [ be arbitrary elements of A = [[(4; | i € I). If [a]J < [3]J. then

[a(i)]J < [B(G)]J for any i€ I.

Proof. Clearly, [a]J < [3]J implies [o] € [3] and, consequently, a € [J].

Then either o« = 3, or there exist fi,...,fi € F such that a =
(o f2(f1(B))...). Thus, for any @ € I, either a(i) — 3(i) or a(i) -
Je(--- f2(f1(B()) ...) . In any case, for every i € I there holds a(i) € [3(i)].
and so [a(i)] € [B(i)], i.e. [a(i)]J < [B(i)]J for any i€ I. a

If we consider an r-system of unary algebras, we prove, in a certain sense.
the converse of Lemima 2.3.
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LEMMA 2.4. Let {A;, = (A;F) | i€ ]} be an r-system of unary algebras,
and A =T[(Ailiel). Let c € A=T[(Ai|i€I), a € F(a). Then for any
3e A
a) [a]J < [8]J if and only if [a(i)]J
b) [8]J < [alJ if and only if [B(i)]J

Proof. By Lemma 2.3, we have only to prove that [(y(z)]J < [H(/i)}./

([3(D)]J < [a(i)]J) for every 1 € I implies [o]J < [3]J ([8]J < [o]]).

Let a3 € A, a € F'(a) and [a(i)]J < [B(i)]J ([B()]J < [o(i)]])
for any i € I. From a € F*(a), we have a(i) € F*(a(i)) for each i € I,
and. by Lemma 1.2, for any i € I, either «(i) = B(i) or i) € F*(3(i ))
(13(i) € F*(a(i))). So, for any i € I we have either a(i) = (i) € F(a(i)) =
F(p(i) or a(i) € FY(B(1) (B(i) € F*(a(i))). It implies a(i) € F*(3(i))
(8(i) € F™(a(i))) for any i € I. Then, by the definition of an r-system,

a € FH(3) (B € F*(a)). Hence, either a = 3, or «a # 3, which implies (by
Lemma 1.2) [a]J < [8]J ([3]J < [a]J). O

< [B(z)]J for each i €1,
< [a(i)]J for every i e 1.

The following is a direct consequence of Lemma 2.4.

COROLLARY 2.1. Let {A; = (A;F) | i € I} be an r-system of unary
algebras, A = [[(A; |i € I). Let a € A=]](A; |i € I) and o € F*(a).
Then, for any B € A, [o]J = [B)J if and only [a(i)]J = [B(i)]J forany i€ I.

Now we are able to state the main result of this part.

THEOREM 2.1. Let {Ai =(A;F)| i€ I} be an r-system of unary algebras,
A=]I(A;|i€l). Let c € A=][(A;|i€I). Then,

a) if « € F(a), then [a]J =T[([a(d)]J | i€ I);

b) if a ¢ F'(«a), then |a]J = {a}.

Proof.

a) Suppose that o € FT(a). Then g € [a]J if and only if [3]J = [a]J/.
By Corollary 2.1, [8].] = [a].J if and only if [3(i)]J = [a(i)].J for any i€ [.
The last equality holds if and only if 3(i) € [a( )] J for any © € 1. However,
3(i) € { ()] J for any ¢ € I if and only if g € H( NJ | i e I) Thus,
3 € [a]J if and only if 8 € []([(i)]J | i € I). This proves part a).

Part b) is a direct consequence of Lemma 1.3 ¢). O

Now we state a Ieault in the case @ ¢ FT(a). In an r-system, there exists
Pe 1 osuch that a(i) ¢ FH(a(). Put I = {i e I| ofi) ¢ Fr(a(i)}.
Obvioushv. ) # 0.
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THEOREM 2.2. Lct {A~ = (A F) | i€ 1} be an r-system of unary algebras.
aeA=T[(A;liel).,and o ¢ FT(a). Let Iy = {iel| a(i) ¢ F*(ali)}.
and 3 be an element of A such that there exists j € Iy with 3(j) = o(j). Then

a) [l ={8}.
b) if B # «, then J-classes [a]J and [3]J are incomparable.

Proof.

a) Clearly, 8(j) = a(j) ¢ F™(a(j)) = F*(3(j)). In an r-system of unary
algebras, 3 ¢ FT(3). By Lemma 1.3¢), |[8]J] = I, and the first part of our
theorem is proved.

b) Let B # a, 33) = o(j) ¢ F(a(j) = FT(3(j)). Obviously. {a}
[ # [3]J = {B}. Assume th(\i [ < [5]J. By Lemma 1.2, o € F'' (). But
it is true for an r-system if and only if a(i) € 1’+( f(/)) for anyv /€ [. This
is a contradiction to our assumption a(j) ¢ F ( (J)) - By similar reasoning.
we obtain a contradiction also in the case [i3].J < [a]J. Hence classes (o] and
[3]J are incomparable. a

3. Main results

This part of the paper is devoted to maximal and greatest J-classes of the
partially ordered set of all J-classes of a direct product of unary algebras.

THEOREM 3.1. Let {A, =(A;F) | i€ [} be an r-system of unary alycbras.
and A =T[(A; |iel). Let c € A=T[(Ai|i€ 1) be such that a € [ ().
Then [oJ is a marimal element in AL] if and only if [(1(/)}./ is a marimal
clement in A; )] for every i € 1.

Proof.

a) [a]J is a maximal element of A/J if and only if for any 3 A the
condition [a]J < [3]J implies [a]J = [3]J. Let j € I. and J; € A, be
an arbitrary but fixed element. Let [a(j)].J < [3;]J. Let 3 € A be a fixed
element such that (3(i) = (i) for each i € I. i # j.and J(j) = 3;. Then
l(i)]J < [B(i)]J forany i € I, and, by Lemma 2.4, [a]J < [3].J. Assuming the
maximality of an element [a]J we get [o]J = [3].J. By Corollary 2.1. Lu(/)j,/
[3(i)].J for each i € I, hence [(y(j)}./ = [3;]J. Thus [a(j)].] is a maximal
element of A;/J.

b) Let o« € A, and [n( )} J be a maximal element of A;// for any i € [.
Let € A and [a]J < [8]J. By Lemma 2.3, [a(i )} J < [3(/’)],] for anv i€ 1.
Assuming the maximality of classes [(y( )} J we get [(\(/)J./ = [.1’(/)},/ for eacn
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i ¢ [. Further, by Corollary 2.1, [«o]J = [3]J. Thus [a]J is a maximal element
of AL, 0l

LEMMA 3.1. Let {A; = (Ais F) | i eI} bean r-system of unary algcbras.
A A |iel). Let o€ A=T[(A; |i€I) be such that there ecxists j, € [
with the property: «(jo) ¢ F7 ((v(m)), and [(x(j())} J is a maximal elermendt
in the set A ). Then, for arbitrary 3 € A with 3(jy) = «(jy). the class
A= {3} is a maximal element of the set AJJ .

Proof. Let 3 € A besuchthat 3(jy) = a(jo) ¢ F (o)) = F*(30n)) .
As we consider an r-system, 3 ¢ F*(3) and [3]J = {3} . Let us supposc that
there exists 7€ A, 7 # 3, with [3]J < [7]J. Then [ﬂ(’l’)].] < [T(i)]./ for
anyv i € . Since 3(jo) = «(ju) and [ (/u)] J is a maximal element of Aj //.
laljn)]J = [ (jo)|J . Since a(jy) ¢ F* ((jo)) and [a(jo)]J = {a(jo)} . we
have a(jo) = 3(jo) = 7(jo) - Now, by Theorem 2.2 b) and the assumption 7 # .3,

(3]

classes and [7].J are incomparable. Thus [5]J is a maximal element of

AL )

Now we describe maximal J-classes of a direct product of an r-system of
mary algebras in the case o ¢ F*1(a).

THEOREM 3.2. Let {A,- = (A F)| i€ ]} be an r-systemn of unary algebras,
A JIA; | ied). Let « € A =T][(A; | ¢ € I) be an element such thal
a ¢ ' (a). Then [«]J is a marimal clement of ALT if and only if there crists
al least one j e I such that o(j) ¢ F*(a())), and ()] is a maximal
clement of Ajfl .

Proof.

a) Let us suppose o ¢ F'(a), and [o]J] isa maximal element of A/LJ. As we
consider an r-systen, there is j € I such that a(j) ¢ F7*(«(j)). We denote by
[y the set of all j € [ with the property «f ¢ F(af; (4)) - Obvmusl\ Iy #0.
For any j € I, . by Lemma 1.3¢), we get [(v(] ] J = {n/ } Now we show an
existence of an element j € I such that {(y( )] J s a maximal element of A;//J.

Let us suppose to the contrary that for any j € I there exists 3; € A such
that a(j) # 3; and ’(1(})]] < [Bj]J. Let 3 € A be such that 3(j) = 3; for
;m)' Je Iy and 3(i) = «(i) for any ¢ € I'\ I;. By the definition of the element

7 and Lemma 1.2, we have (i) € F'*(3(i)) for any i € I. Therefore, in the
r-svstenn, o€ FH(3), and thus [o]J < [3]J. Since o« ¢ F (), [a]] = {a}.
With respect to « £ 3. we have [o]J < [3]J. Therefore [a]J is not a maximal
clement of A/, and this contradicts our assumption. Thus there exists at least
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one j € I such that [a(j)]] is a maximal element of A;/J. (Clearly. j € I,
implies a(j) ¢ F*(a(j))).

b)If j € I and [a(j)]J is a maximal element of A;/J, then. by Lemma 3.1.
[@]J is a maximal element of A/J. 0

Now we focus on the greatest J-class of the direct product of unary algebras.

LEMMA 3.2. Let {A; = (A;;F) | i € I} be an arbitrary system of unary
algebras, A =[[(A;|i€I). Let c € A=1[(A; |ie€l). If [a]] is the greatest
element of AJJ, then [a(z)] J is the greatest element of A;/J for any {1 € I.

Proof. Let a € A and [a]J be the greatest element of A/J. Let j € I
be an arbitrary element of I, and 3; be an arbitrary element of A;. Suppose
3 € A has the property 3(i) = a(i) forany i € I, i # j, and 3(j) = 3, . Since
[«]J is the greatest element of A/J, we have [8]J < [a]J. By Lemma 2.3.
[/)’(i)]] < [a(z)]] for any ¢ € I. Therefore, also for j € I we have [3;]J =
[[J’(j)] J < [a(j)].], and, consequently, [a(j)].] is the greatest element of A;/J .

(]

In the case of an r-system of unary algebras and a € F'*(a), also a converse
of Lemma 3.2 is valid.

THEOREM 3.3. Let {A; = (A;;F) | i € I} be an r-system of unary algebras.
A=J[A;|itel). If a € A=T[(A; | i € I) has the property o € F*(a),
then [a]J is the greatest element of A/J if and only if [a(i)].J is the greatest
element of A;/J for any i€ I.

Proof. By Lemma 3.2, we have only to prove the case: If [a(z’)]J is the
greatest element of A;/J for any ¢ € I, then [a]J is the greatest element of
Al . :

Let o € F*(a) and 3 € A be an arbitrary element. If [a(i)]J is the greatest
element of A;/J for any i € I', then [[3(2’)].] < [a(z)]] for any i € I. Then. by

Lemma 2.4, we have [3]J < [a]J. It means that [a].J is the greatest element of
AT . |

In what follows, we focus on the greatest J-class of the direct product of
unary algebras in the case a ¢ F*(a).

LEMMA 3.3. Let (A;F) be a unary algebra and o € A be such that
a ¢ F*(a). Then [a]J is the greatest element of A/J if and only if -\
[a] = {a}UF*(a).
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Proof.
a)lf A={a}UF*(a),thenforany € F*(a) we have 3] € F*(a) C [o],
and, consequently, [8]J < [a]J for every 8 € A. Thus, [a]J is the greatest
element of A/J.
b) Let [a]J be the greatest element of A/J, and o ¢ F7T(a). Then
[a]J = {a}, and for any B € A, 8 # a, we have [8]J < [a]J. By Lemma 1.2,

3 € F*(a). Hence A € F*(a)U{a}. The converse of this inclusion is obvious.
Thus A = {a} UFT(a). O

THEOREM 3.4. Let {Ai =(A;F) | i€ I} be an r-system of unary algebras,
A=TJ[(A;|ie€el). Let a € A=][(4; |i€l) and a« ¢ F*(a). Then
[a]J is the greatest element of A/J if and only if there exists j € I such that
a(j) ¢ Fr(a(y)), [a(])]J is the greatest element of A;/J , and, forany i € I,
i #J, [Ail=1.

Proof. Let « ¢ F*(a). Then thereis j € I such that a(j) ¢ F*(a(j)).

a) Let [a]J be the greatest element of A/J. By Lemma 3.2, [a(z)]] is the
greatest element of A;/J for any i € I. By the definition of an r-system, we
have |I| > 2. The condition a(j) ¢ FT(a(j)) implies |A;| > 2. Let us suppose
that there exists ¢ € I, ¢ # j, such that |A;| > 2. Now we consider 3 € A
such that 3(j) = a(j), and, for any ¢ € I, i # j, B(i) € A; is an arbitrary
element. As we assumed an existence of such ¢ € I, i # j, that |A;| > 2, there
exists at least one element 3 € A, 8 # «, satisfying our conditions. However,
by Lemma 3.1, both [a]J = {«} and [3]J = {3} are maximal elements of A/J.
Since « # 3, [a]J cannot be the greatest element of A/J. Thus, for any i € I,
i # 7, we have |A;] =1.

b) If for any 7 € I, i # j. there holds |A;| = 1, then the direct product
A =T]J(A; |7 € I) is isomorphic to a unary algebra A ;. In this case, evidently,
if [a(j)] J is the greatest element of A;/J, then [a]J is the greatest element of
Al . O

By Lemma 3.2, if [a]J is the greatest J-class of the direct product of an
arbitrary system {A; = (A;; F) | i € I} of unary algebras, then [a(i)]J is the
greatest J-class of unary algebra A; for any i € I. If {Ai = (A F)| iel}
is an r-system of unary algebras and o € F*(a), then we have shown also the
converse implication. If a ¢ F*(«a), we have proved the converse implication
in the case of the existence of j € I such that a(j) ¢ F* (a(y)) , la()]J s
the greatest element of A;/J, and for any i € I, i # j, |A;| = 1. Our aim is
to describe the case when there exists i € I, i # j, such that [A;] > 2. For the
sake of convenience we introduce the following concept.
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Let A = (A; F) be a unary algebra and 0 # ]\1 C A. By AM/J we denote
the set of all J-classes [a]J € A/J such that [a]J € A

I.
Let A = (A4;F) be a unary algebra and N € P(A). Obviously. N =
U{lalJ | a € N}.Further, for any N € P(A), N/J = {[a]l] € A/T| a e N}
Let {A; = (AsF) | i€ I} be an r-system of unary algebras. A =
[I(A; |iel), a e A=T[(A; |ieI),and o ¢ Ft(a). To simplifv the
f()rmulation of the next theorem, we denote l)y I, the set of all j € I such that
) ¢ F(a(j)). Clearly, I, = {j € I'| «(j) € F(a()))} # 0. In addition.
k,t NU = H()(, | X;=A; for iel\I; and X; = A4, \{a(/)} for i € 1)).

THEOREM 3.5. Let {A; = (A;;F) | i €1} bean r-system of unary algchras.
A =T[(A;|i€ 1), and let there exist at least two m,n € I, m # n. such tha!
Apl =2 and A, > 2. Let a e A=T[(A;|i€l), a ¢ F'(a). and {(1(/’)}.1
be the greatest element of A;/J for any i € [ . Then
a) NoU{a} € P(A), and [a]J is the greatest element in (NyU{a})/) :
b) (A\No)/MJ ={[BlJ| B€A\Ny}. [(A\No)/J| > 2. and (A\Ny)/)
is the set of all maximal J-classes of A/JJ .

Proof.

a) For any j € I, a(j) ¢ F*(a(j)). In such a case, A4;| > 2 and
[2(j)]J = {a(j)}. According to our assumption, [a(j)]J is the greatest cl-
ement of A;/J. It is well known (see for example [3]) that then A;\ [a(j)].] =

A\{a(j)} € P(A;). Therefore No = [[(X; | X; = A; for i € I\I;, and .\, =
A;\{a(i)} for i € I;) € P(A). Now we prove that also N, U {a} € P(A).

We assumed « ¢ Ft(a). As (No; F') is a subalgebra of the algebra (A: F).
we have only to prove that f(a) € Ny for any f € F.

For any i € I, a(i) ¢ F*(a(i)). Thus, for any ¢ € I, and any [ € F.
f(a(i)) # a(i). Therefore, for any i € I; and f € F, f(a(i)) € 4;\ {a(i)}.
Obviously, for any ¢ € I\ I; and any f € F we have f(a(z)) € A;. Thus.
fla)e No=T[(Xi| X;=A4; for ie I\, and X; = A,;\{(.y(i)} for 1 € I,)
for any f € F. This proves NoU {a} € P(A).

In the following part we prove [3]J < [a].J for any 8 € NyU{a}. 3 #a.

From 8 # «, 8 € NyU{a}, we get g3 € Ny . Therefore 3i) e AN\ {(\(' } fon
any i € Iy . This implies (3(i) # (i) for any ¢ € I . Since [a(i)].J is the greatest
element of A;/J for any i € I, we have [/3’('17)]J < [(y(fi)]J for anv i € I. For any
1€ I\Iy, a(i) € F*(a(i)). On that account, from [3(:)].J < [a(i)].J it follows
that [B(i)] = {B(i)} U F*(3()) C [a()] = {a()} U FT(a(i)) = F'(ai).
Thus, 3(i) € F*(a(i)) forany ie I\ 1.
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For any 7 € Iy, 3(i) # a(i) and {,[3(7?)].] < [ur(i)].]. By Lemma 1.2,
(i) e Fr(a(i)).

We have proved 3(i) € F*(a(i)) for any i € I. As we consider an r-system,
we get 3 e 7 (a) . and, by Lenuna 1.2, the condition a # 3 implies [3].] < [a].].
Henee [a]J is the greatest element in (Ny U {a}) /).

) By the definition of the set Ny, A\ Ny = {ﬁ € A | there exists such
je 1y that J3(j) = (I(J)}. With respect to I; # 0 and the existence m,n € I,
m # n.such that [A4,,| > 2, [A,] > 2, we get [A\ No| > 2. Further, a(i) ¢
F(a(i)) for any i € I} and thus, 3 ¢ FT(8) for any 3 € A\ Ny. As
(4 — {3} forany 3 € A\ Ny, (A\ No)/J = {[[3]] | 5€ A\ N(J} and
(AN N = A\ Ny > 2.

For any 3 € A\ N, there exists j € I, such that 5(j) = «a(j), «(j) ¢
Fr(a())) . and [u(j)].] is the greatest element of A;/J. By Lemma 3.1, [/3]./
is a maximal element of A/J . Since [a]J = {a} and [a]J] is the greatest element
of (NoU{a})/J, it is clear that no element of Ny/J is a maximal element of

AL Thus (A\ No)/J is the set of all maximal elements of A/J. Obviously, by
[(A\ Ny)/J| > 2, there does not exist any greatest element of A/J. O

We have described maximal and greatest J-classes of the direct product
of an r-system of unary algebras. Now we are able to describe the greatest
and maximal subalgebras of this direct product. This work will be done in a
forthcoming paper devoted to J-subalgebras of unary algebras.
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