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r-SYSTEMS OF UNARY ALGEBRAS I 

(On maximal and greatest J-classes of 

the direct product of unary algebras) 

IMRICH ABRHAN* — LADISLAV SATKO ** 

(Communicated by Tibor Katrirldk) 

ABSTRACT. The ./-equivalence class in the direct product of an r-system of 
unary algebras is described by the J-equivalence classes of the separate compo­
nents of the direct product. Also the greatest and the maximal ./-classes in the 
direct product of an /'-system of unary algebras are studied. 

Various types of ideals can be considered in semigroups. There are mini­
mal ideals, maximal ideals, prime ideals, completely prime ideals, and so on. 
In connection with this many authors studied the following problem: given a 
direct product of semigroups, which connection is between the ideals of this di­
rect product and the ideals of its semigroup components? These problems are 
investigated in [1], [2], [10], [11], [12], [13], [14]. 

In this paper, we study a similar problem for unary algebras. In [3], the 
following theorem is proved: 

Let A = (A; F) be a unary algebra with proper subalgebras and 0 / N C A . 
Then (TV; F) is a maximal subalgebra of A if and only if there exists a maximal 
J-class [x]J of the partially ordered set A/J of all J-classes of the algebra. A 
such that N = A\ [x]J . 

A similar theorem is valid for greatest subalgebras of unary algebras. From 
these results we can conclude that maximal (greatest) j-classes play a very 
important role in the description of maximal (greatest) subalgebras of a unary 
algebra. In the paper, we describe maximal (greatest) J-classes of a direct prod­
uct of unary algebras. We make use of the concept of an r-system of unary 
algebras. From our results one can derive well-known results concerning maxi­
mal £-classes of the direct product of semigroups. 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 08A60. 
Key w o r d s : Unary algebra, Direct product, Maximal equivalence class. 



IMRICH ABRHAN — LADISLAV SATKO 

1. Introduction 

We use the following notation. If AT is a subset of a set Y and X / 1 \ then 
we write X C Y . \X\ stands for the cardinality of the set X . We denote the 
Cartesian product of sets H2;, i G I, by Y\(Hi \ i € I). 

If a is an equivalence on a set X , then X/a is the set of all equivalence classes 
of the equivalence a. An equivalence class of the equivalence a containing an 
element x is denoted by [x]a. 

An algebra A is a pair (A; F) , where A is nonempty set and F is a family 
of finitary operations on A . By V(A), we denote the set of all nonempty subsets 
IV of the set A such that (IV; F) is a subalgebra of the algebra A . Let x G A . 
We denote by [x] the element of V(A) such that ([#]; F) is a subalgebra of the 
algebra A which is generated by x. 

Let A = (A;F) be an algebra. On the A, we define a binary relation J 
in the following way: xJy if and only if [x] = [y]. Evidently, this relation is 
reflexive, symmetric and transitive. Thus, it is an equivalence on A. 

On the set A/J, we now define a binary relation < in the following way: 
[x]J < [y]J if and only if [x] ^ [y] . Obviously, this relation is reflexive, anti­
symmetric and transitive. Thus, it is a partial order on the A/J , and (A/J\ <) 
is a partially ordered set. We briefly denote this set by A/J. 

We concentrate only on unary algebras. A unary algebra is the pair A = (A\ F), 
where F is a family of unary operations on the set A, i.e. f \ A —+ A is a 
mapping of the set A into A for each / £ F. 

Let A = (A]F) be a unary algebra and x G A. Let N = (N\F) be a 
subalgebra of A such that x G IV. Then, for any f± G F we have fi(x) G A , 
and again, for any / 2 G F, /2(/i(-c)) G IV. Inductively, for any / i . / o , . . . 
. . . , / f c G F we have fk(. . . f2(h(x)) .. .) G N . 

DEFINITION 1.1. Let A = (A; F) be a unary algebra and x G A. We defivc 
F+(x) to be the set of all y G A with the following property: 

There exist / i , . . . , fk G F such that y = fj~ ( . . . / 2 ( / i ( z ) ) • • •) • Thus, 

F+(x) = {y G A\ there exist / i , . . . , / f e G F such that y =- /A: (. . . fi2 ( / l ( - 0 ) • • • ) } • 

Via this notation, we have for any IV G V(A) and x G A7 : F+(^ ') ^ IV . it 
is a matter of routine to check that (F + (x ) ; F) is a subalgebra of the A . Also 
{x}UF+(x) G P ( A ) , and for any IV G V(A) , x e N we have {,r}Uf+(.r) g A" . 
Thus we proved the following lemma. 

LEMMA 1.1. Let A = (A;F) be a unary algebra and x G A. Tin a 
[x] = { X } U F + ( . T ) . 
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r-SYSTEMS OF UNARY ALGEBRAS I 

The nex t l emma shows a rela t ionship be tween the ordering of J-classes [x]J , 

[y]J for x ^ y, and the proper ty x E F+(y). 

LEMMA 1 .2. Let A = (A;F) be a unary algebra and x,y E A, x ^ y . Then 

[x]J < [y]J if and only if x E F+(y) . 

P r o o f . 

a) Let [x]J < [y]J. T h u s [x] Q [y] , i.e. {x} U F+(x) Q {y} U F+(H). Now 

x ^ y implies x E F+(y) . 

b) Let x E F+(H) • W i t h respec t to F+(y) E V(A), we have [x] g F+(y) Q 

{y}uF+(y) = [y] a n d [x]J <[y]J . U 

In wha t follows, we often pciy a t ten t ion to the fact whe ther x belongs or 
not to F+(x). The following l emma describes the difference be tween these two 
possibilities. 

LEMMA 1 .3 . Let A — (A\F) be a unary algebra. Then for any x,y E A , 

a) if \[x]J\ > 2, then x E F+(y) for any y E [x]J; 

b) x E F+(y) for any y E [x]J if and only if x E F+(x); 

c) if x £ F+(x), then \[x]J\ = 1 . 

P r o o f . 

a) Since \[x]J\ > 2 , there exists HE [x]J such that y ^ x. For any H E [x] J 

we have [x] = [y] . By L e m m a 1.1, {x} U F+(x) = {y} U F+(y) . A s x / y , we 

get x E F+(y) and H E F+(x). Pa r t a) is proved in the case x / y . T h e res t 

we ob ta in under the following considera t ion. As F+(x) E V(A), H E F+(J;) 

implies [H] C F+(x). Hence x E F+(H) g {y} U F+(H) - [y] Q F+(x). Thus , 

x E F+(y) for every H E [x ] J . 

b) If x E F+(y) for any y E [x ] J , t hen also x E F+(x). Conversely, let 

x E F+(x). If there exists y E [#] J , t / ^ x , then from a) we have x E F+(y). 

Thus , x E F+(y) for any H E [x ] J . 

The par t c) follows direc t ly from a) and b) . • 

2 . r - S y s t e m s 

In this section, we concen t ra te on a direc t p roduc t of an r - sys tem of unary 
algebras. Firs t we give some definitions. 

D E F I N I T I O N 2 . 1 . Let {A* == (A^F) | i E / } be a system of unary algebras 

of the same type, \I\ > 2 . Set A = Y[(Ai \ i E I) to be the Cartesian product 

of the sets A% . For every f E F we define a unary operation on A in the 

following way: f(a)(i) = f(a(i)) for any i E I and any a e_ A . Then (A; F) = 
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\ 0 ( ^ - i I * ^ 1)1 F) is a unary algebra. This unary algebra will be called a dinct 

product of A 2 i G I, and be denoted by A = 0 ( - ^ t I l ^ I) • (See. for example. 

[7]-) 

Now our considera t ions will concern J-classes in the direct product of unarv 

algebras. 

L E M M A 2 . 1 . Let {At = (At;F) \ i G 1} , |7| > 2 . be a family of unary 

algebras of the same type. Let a, (3 G A = 0 ( ^ l I l ^ -0 ' an(l a ^ F+(^) • Then 

a(i) G F + (/3(i)) for every i G 7 . 

P r o o f . By our assumpt ion, there exist / I , . . . , / A - £ F such that 

/ k ( - • • / 2 ( / i ( / 3 ) ) • • •) = o;. Then for any i G 7 we have a ( / ) 

h(...f2{h(P))...)(i) = / f c ( . . . / 2 ( / i ( / 3 ( i ) ) ) . . . ) . Hence « ( / ) e F + ( J ( / ) ) for 

any i G 7 . • 

We give an example which shows t h a t the converse need no t be t rue . i.e. 

a(i) G F+(f3(i)) for every i G 7 does not imply cv G F+( / J ) . 

E x a m p l e 1. Let y±i = { 0 , a , b } and / 0 , /1 be unary opera t ions defined 
on ALi by the following tables: 

/ 0 0 a b h 
0 0 0 

0 a b 

0 b 

P u t F = {/o, / 1} • Then A i = (Ai; F) is a unary algebra. Let .4 = .4i x . 4 [ . 

P= (6, a) G A i X i i , a = (a, a) G 4 i x Al . We get a = / x ( b ) , a = / i ( / i ( O ) ) . 

/ i ( M = ( A ( b ) , / i ( a ) ) = (a, 6 ) , / i ( a , b ) = (b, a ) , / 0 ( b , a ) = / 0 ( a , 6 ) = / 0 ( 0 , 0 ) 

= (0,0) = / i ( 0 , 0 ) . So a G F+(b), a G F+(a), but a = (a,a) £ F + ( ( b . O ) l 

= F + ( / 3 ) . 

DEFIN IT ION 2 .2 . Let {A* = (A,; F ) | i G 7} . |7| > 2 , be O family of unary 

algebras of the same type. Suppose the direct product A = 0 ( A > I l' ^ y ) n(l>! 

the following property: 

If a,P G A = Yl(At I i G 7) and a(i) G F+( / i ( / ' ) ) / « r every i G / . 

lbeH a G F+( /?) . 

In this case, the family {A; | i G 7} uji/l be called an r-system of unary algebras. 

The nex t lemma is a direct consequence of Lemma 2.1 and Definition 2.2. 
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L E M M A 2 . 2 . Let { A ; = (Af,F) | i G / } be an r-system of unary algebras, 

and o , 3 G A = [ ] (A / | z G I) . Tften cr G F+(/3) z/ and on/y z/ a(i) G F+(/i(t)) 

/ O r (///// / G / . 

R e m a r k 1. Let 5 be a semigroup and # , T be subsemigroups of 5 . 
Then a nonempty subsetset A of 5 such t h a t HA Q A (IIA £ A and A T Q / 1 ) 

will be called ( # , 0) -ideal ( ( # , F) -ideal) of S. In the case H = S = T, we have 
a left ideal (an ideal) of the semigroup S. 

Now we give two examples. In the first one, we show a possibility how to assign 

an /--system of unary algebras to any systems of semigroups. This assignment 

induces a one-to-one correspondence between subalgebras of the unary algebras 

and left ideals ( ( # , 0)-ideals) of the single semigroups. 

In the second example, any sys tem of monoids is associated wi th an r -sys tem 
of unary algebras such t h a t to any subalgebra of the unary algebras an ideal 
( ( / / , T) -ideal) of the monoids is assigned and vice versa. 

V x a m p i e 2. Let | / | > 2 , S?; = (Sf •) be a semigroup and let H ? = 

(#•/;•) be a subsemigroup of the semigroup S?; for any i G I. Set S = 

YK^i I l £ I) a n ( l H — Yl(Hi M £ ^) • Define a b inary opera t ion on S by 

(n • ii)(i) = a(i) • f3(i) for any a , /3 G S and every i G I. T h e n the direct prod­

uct S = Yl(Si \i € I) i s t n e semigroup ( 5 ; •) . Evidently, H = n ( H > \i G J) is 

a subsemigroup of the semigroup S . 

Now for any # G # = r i ( ^ M £= -0 a n <^ e v e r v z G / we define a unary 
opera t ion / ^ on 5 ? in the following way: fn(y) — ^ ( 7 ) * y f ° r every y G £ ? . 
Let FH = {fn \ % G # } . Then <%,#) = (S^; FH) is a unary algebra for every 
/ G / , and all t he unary algebras are of the same type . 

Now, for any A ^ *S?, A G V(S{i^H)) if a n d only if, for any y G A and 

/ H E F/y , fn(y)£A. Hence /h:(H) = W(i) • y G A for any H G # , and ye A. 

However, for every H G # , # ( ? ) G # ? . On the contrary, for every hi G #?; there 

exists H G # such t h a t b? = T~L(i). Therefore, fn(y) £ -4 for any / ^ G F/v 

and every y £ A if and only if b?; • y G A for any b? G # i and every y £ A . 

So we have A G V(S(rM)) if and only if # ? : • Al Q A, i.e. A is ( # ? , 0)- ideal 

of the semigroup S ? . Moreover, in the case Hi = Si , there exists a one-to one 

correspondence between subalgebras generated by one element and left ideals 

generated by the same element.. 

Now we show t h a t a family \S{i H) | z G / } is an r - sys tem of unary algebras. 

Let (\ . /i be a rb i t ra ry elements of S = YK^i I ?' ^ I) > a n ^ a ( 0 ^ Pn(ft(^)) f ° r 

any /' G / . On t h a t account , for any i G / we can choose / a i , . . . , / f n , G F// 

such t hat o ( / ) = / r v , (. . . f„2 ( / , n (fl(i))) ...) = (ak(i) • . . . • cv2(z) • rv, (/)) • /*(/) . 

Put :, = (n-A.('/)' • • -•^2(i)-(*\(i)) • Obviously, zt G # ? for any /' G / . Let r F / / 
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be such t h a t T(I) = Zi for every i G / . Then a(i) = zrh • 3(i) = T(I) • 3(i) —-

fT(ft(i)) for any i G / . Consequently, a = T • (3 = / r ( /3 ) and a G FH(3) . Thus . 

{<%,//) I ^ ^ / } is an r -sys tem of unary algebras. • 

E x a m p l e 3. Let S?; = (S^; •; 1) be a monoid, H ? , T ? be submonoids of 
Si for every i G I, | / | > 2 . Let S = Y[(St \ i G / ) , H = n ( H ; I - e / ) . 
T = n ( T i | i E / ) be direct p roduc ts of monoids. Let S = YK^i I z £ I) -

H = Yl(Hi | i G I), T = n ( T f | i G / ) be Car tes ian products . 

For any ri G H and each i G / , we define a unary opera t ion / ^ on the 

set £?; in the following way: fu(y) = ^ ( 0 ' 2/ f ° r every y G 5 ; . Similarly, for 

any T E T, i G / we define on $?; a unary operat ion fT bv / r ( y ) = U ' T ( l ) 

for every y G S z . Let F H = { /„ | H e H} , F T = {/ r | r G T}\ Then 

<%,H,T) — (^5 -^H u ^T) i s a unary algebra for each i G / . By the same way as 

in Example 2, to any subalgebra of this unary algebra is assigned ( i / ? , T;) -ideal 

of S?; and vice versa. Moreover, in the case Hi = Si = T} , there exists a one-to-

one correspondence between subalgebras generated by one element and ideals 

generated by the same element. 

Unary algebras S^HT) — (Si\ FH U FT) are of the same type . By the same 

token as in Example 2, we could show t h a t {<S(?;,LTT) I 2 G / } is an r -system of 

unary algebras. • 

Now we concentra te on a relat ionship of J-classes in a direct p roduc t of unary 
algebras and J-classes of components of this direct p roduc t . 

L E M M A 2 . 3 . Let {A^ = (Ai\F) \ i G / } be an arbitrary family of unary 

algebras, and A = n ( ^ i I ^ ^ -0 be a direct product of these algebras. Let 

a. /3 be arbitrary elements of A — Y\(Ai | i G / ) . / / [a] J < [3] J, then 

[a(i)]j < [f3(i)]J for any i G / . 

P r o o f . Clearly, [a] J < [f3]J implies [a] Q [f3] and, consequently, a G [3] . 

T h e n either a = (3, or there exist / i , . . . , / f c £ F such t h a t a = 

A-(••• f2 ( / i (/?))•••) • Thus , for any i G / , either a(i) = 3(t) or a(i) = 

fk(- • • f2(fi(/3(i)) • • •) • In any case, for every i G / there holds a(i) G [3(i)] • 

and so [a(i)] Q [(3(i)] , i.e. [a(i)]j < [(3(i)]J for any i e l . • 

If we consider an r - sys tem of unary algebras, we prove, in a cer ta in sense. 
the converse of L e m m a 2.3. 
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L E M M A 2 .4 . Let {A2- — (At;F) | i G 1} be an r-system of unary algebras, 

and A = [ ] ( A ^ \ i € I) . Let a E A = Yl(Ai M £ -0 > a £ F+(a) . Then for any 

J £ A 

a) [a]J < [/3]J if and only if [a(i)]j < [/3(i)]J for each i E I, 

b) [ft] J < [a]J if and only if [/3(i)]j < [a(i)]J for every i £ / . 

P r o o f . By L e m m a 2.3, we have only to prove that [ a ( i ) ] J < [ / i ( i ) ] j 

( [ft(i)]J < [a(i)]J) for every i E I implies [a]J < [f3]J ( [ft] J < [a]J). 

Let a, ft £ A , a £ F+(«) and [0.(2)]./ < [ / ? W ] J ( [ £ ( 0 ] ^ < [<*(0]-') 

for any / E / • From a E F + ( a ) , we have a ( i ) E F + ( a ( i ) ) for each i E 1, 

and, by L e m m a 1.2, for any i E 7 , ei ther a ( i ) -= /3(i) or a ( i ) E F + ( / ? ( i ) ) 

(/i(v) E F + ( a ( I ) ) ). So, for any I E / we have ei ther a(I) = /3(i) E F + ( a ( i ) ) = 

F + ( / i ( I ) ) or a(i) E F + ( / ? (« ) ) ( £ ( 0 £ F+(a(i))). It implies a(I) E F+((3(i)) 

(ft(i) £ F+(a(i))) for any I E / . Then , by the definition of an r -sys tem, 

a E F+ (ft) (ft E F+(a)). Hence, ei ther a = ft, or a ^ ft, which implies (by 

Lemma 1.2) [a]J < [ft]J ( [ft]J < [a]J). D 

The following is a direc t consequence of L e m m a 2.4. 

COROLLARY 2 . 1 . Let {A,- = (A,; F) | i e 1} be an r-system of unary 

algebras, A = Yi(^i \ i € I) • Let a e A = Y\(Ai \ i ^ I) and a £ ^ + ( a ) • 
Then, for any ft E A, [a] J = \ft]J if and only [a(i)]j = [ft(i)]j for any i E I. 

Now we are able to s ta te the main resul t of this par t . 

T H E O R E M 2 . 1 . Let {Az- — (Ai\F) \ IE/} be an r-system of unary algebras, 

A = I ] ( A , I I E I) . Let aeA = Y[(At \i E I) . Then, 

a) if a E F+(a), then [a] J = I 1 ( K 0 R I i t J) / 

b) if a £ F+(a), then \a]J = {a} . 

P r o o f . 

a) Suppose that a E F + ( a ) . T h e n ft E [a] J if and only if [ft] J = [a] J . 

By Coro l lary 2.1, [/3]J = [a]J if and only if [ft(i)]J = [a(i)]J for any IE/. 

The last equality holds if and only if ft(i) E [ a ( i ) ] J for any i E I. However, 

3(i) E [a(i)]J for any I E I if and only if ft E ] 1 ( [ « W ] J M £ I) - Thus , 

J E [a] J if and only if ft E j~[([a( i ) ]J | i E i") . This proves par t a ) . 

Part b) is a direc t consequence of L e m m a 1.3 c). D 

Now we1 s ta te a resul t in the case a ^ F+(a) . In an r -sys tem, there exists 

/ G I such tha i n(i) £ F+(a(i)). Pu t h = {i E I | a(I) £ F + ( a ( I ) ) } . 

Obviously, /i / 0 . 
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THEOREM 2 .2 . Let { A , = (A^F) \ i G / } be an r-system of unary algebras. 

a G A = Y[(A, | i G / ) , and a <£ F+(a) . Let I, = {/ G / | o ( / ) (/ F+(a(i))} . 

and 3 be an element of A such that there exists j G I{ with 3(j) = (\(j) . Tlu n 

a) W = {0), 
h) if fl ¥" a > then J-classes [a] J and [3] J are incomparable. 

P r o o f . 

a) Clearly, ft(j) = a(j) (/ F+(a(j)) = F+(ft(j)) . In an /--system of unary 

algebras, ft ^ F+(ft) . By Lemma 1.3c), \[ft]J\ = I , and the first part of our 

theorem is proved. 

b) Let ft ± a , ft(j) = a(j) $ F+(a(j)) = F+(3(j)) . Obviously, {o} ----

[a]J ^ [ft]J = {ft} . Assume tha t [a]J < [ft)J. By Lemma 1.2. o e F+(3) . But 

it is t rue for an / '-system if and only if a(i) E F+(3(i)) for any / G I . This 

is a contradict ion to our assumpt ion a(j) (/ F+ (3(j)) . By similar reasoning. 

we obta in a contradict ion also in the case [ft] J < [a] J . Hence classes [o]J and 

[ft] J are incomparable . Q 

3 . M a i n r e s u l t s 

This par t of the paper is devoted to maximal and greatest J-classes of the 

part ial ly ordered set of all J-classes of a direct product of unary algebras. 

THEOREM 3 . 1 . Let {At = (A,:; F) \ i G / } be an r-system of unary alg<bras. 

and A = Y\(AL | i G / ) . Let a G A = Y[(Ai I i t I) be such that a G F"(o) . 

Then [a] J is a maximal element in A/J if and only if [o ( / ' ) ] j is a maximal 

elenient in At/J for every i G / . 

P r o o f . 

a) [a]J is a maximal element of A/J if and only if for any 3 G A the 

condit ion [a]J < [ft] J implies [a]J = [ft]J. Let j G / . and 3j G A} be 

an a rb i t ra ry bu t fixed element . Let [c\(j)]J < [ft3]J • Let 3 G .4 be a fixed 

element such t h a t ft(i) = a(i) for each i G / , i ^ j , and 3(j) = 3}. Then 

[a( i)] J < [ft(i)] J for any i G / , and, by L e m m a 2.4. [a]J < [ft] J . Assuming the 

maximal i ty of an element [a] J we get [a] J -- [ft]J . By Corollary 2 .1 . [o( l) j J 

[ft(i)]j for each i G / , hence [ a ( j ) ] J = [ftj]J . Thus [a(j)]J is a niaxinud 

element of Aj/J. 

b) Let a G -A, and [a( /)] J be a maximal element of A,/J for any / G I . 

Let ft G A and [a]J < [ft]J. By L e m m a 2.3, [a(i)]j < [ft(i)]J for any / G I . 

Assuming the maximal i ty of classes [o ( / ' ) ] j we get [ o ( / ) ] J = [ft(i)]j for eacu 
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/ £ / . Fur ther , by Corollary 2.1, [a] J = [fi]J. T h u s [a] J is a maximal elemen t 

of A/J . • 

L E M M A 3 . 1 . Let {A7 = (Af,F) \ i £ / } be an r-system of unary algebras, 

A = \\(A, | i £ I) . Let a £ A = Y\(Ai I 7' £ -0 ^e S 7 i C^ ^ a ^ ^ e r e e-n.ste j ( ) £ / 

tcith the property: a (jo) £ F + ( a (jo)) , ana7 [ a ( j o ) ] J is a maximal element 

in the set Aj{)/J. Then, for arbitrary fi £ A with fi(jo) = a( j ( ) ) , l/ic c/a.s.s 

[,^]J = { J } i.s a maximal element of the set A/J . 

V r o o f . Let 3 £ .4 be such that (i(J()) = a ( j 0 ) £ F + ( a ( J ( ) ) ) = F + (/i(.v())) . 

As we consider an / '-system, J ^ F + ( / ^ ) and [ft] J = {/}} . Let us suppose that 

there exists r e A, r ^ J, with [fi]J < [T]J . T h e n [/3(?)] J < [ r ( t ) ] J for 

any / £ / . Since U(J{)) = a U o ) and [a(j ( ))] J is a maximal element of Aju/J . 

[n U,,)] J = [ r (J ( , ) ] J . Since a ( j ( ) ) ĉ  F + ( a ( J ( ) ) ) and [a(J{))]J = {>(J<,)}, we 

have a (./o) = J U o ) = rU'o) • Now, by Theorem 2.2 b) and the assumpt ion r / /i , 

classes [3] J and [r] . / are incomparable . T h u s [6] J is a maximal element of 

A/J. • 

Now we describe maximal J-classes of a direct p roduc t of an r-system of 

unary algebras in the case a (jt F + ( a ) . 

T H E O R E M 3 .2 . Let {At = ( A , ; F ) | i e 1} be an r-system of unary algebras, 

A n ( A t \ i € I) • Lef a € A = ]J(Ai | i £ I) be an element such that 

(\ (f / / + ( a ) . Then [a] J is a maximal element of A/J if and only if there exists 

at feast one j £ / such that a(j) £ F + ( a ( j ) ) ; and [a(j)]j is a maximal 

etc meat of A-JJ . 

V r o o f . 

a) Let us suppose a £ F + ( a ) , and [a] J is a maximal element of A/J . As we 

consider an r -system, there is j £ / such t h a t a(j) (/ F + ( c v ( j ) ) . We denote by 

/i the set of all j £ / wi th t he proper ty a(j) £ F + (a(j)) . Obviously, I, / if). 

Lor any j £ I\ , by L e m m a 1.3 c), we get [a ( j ) ] J = { a U ) | . Now we show an 

existence of an element j £ Ii such t h a t [o:U)] J is a maximal element of A-JJ . 

Let us suppose to the contrary t ha t for any j £ I\ there exists J} £ A such 

that a U ) / fij and \a(j)]j < [fi:i]J. Let fi £ A be such t h a t fi(j) = fjj for 

any j £ 1! , and /3(i) = a(i) for any i £ I \ Ii . By the definition of the element 

.-/ and Lemma 1.2, we have a ( i ) £ F + ( / ? ( i ) ) for any i £ I. Therefore, in the 

/•-system, a £ F + ( / 3 ) , and thus [a ] J < [fi]J . Since a (̂  F+(a), [a] J = { a } . 

Wi th respect to a / /U we have [a]J ^ [/i]J. Therefore [a]J is not a maxima] 

element of A/J, and this contradicts our assumpt ion . T h u s there exists at least 
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one j G fi such that [a(j)] J is a maximal element of Aj/J. (Clearly, j G IL 

implies a(j) £ F+(a(j))). 

b) If j G I\ and [a(j)] J is a maximal element of Aj/J , then, by Lemma 3.1. 
[a] J is a maximal element of A/J . • 

Now we focus on the greatest J-class of the direct product of unary algebras. 

LEMMA 3.2. Let {A^ = (Af,F) | i G 1} be an arbitrary system of unary 
algebras, A = I I (Ai \ i E I) . Let a G i = I~I(^- \ i € I) . If [a] J is the greatest 
element of A/J . then [a(i)]j is the greatest element of Ai/J for any i G I. 

P r o o f . Let a G A and [a]J be the greatest element of A/J. Let I E 7 
be an arbitrary element of I, and j3j be an arbitrary element of Aj . Suppose 
j3 G A has the property (3(i) = a(i) for any i G 7, i / j , and /3(j) = ,3j . Since 
[a] J is the greatest element of A/J, we have [/3]J < [a]J. By Lemma 2.3. 
[P(i)] J < [a(i)]J for any i G 7. Therefore, also for j G 7 we have [/ij]J == 
[/3(j)] J < [a(j)] J , and, consequently, [a(j)] J is the greatest element of Aj/J . 

• 

In the case of an r-system of unary algebras and a G F+(a), also a converse 
of Lemma 3.2 is valid. 

THEOREM 3.3. Let {A^ = (Ai]F) \ i G I} be an r-system of unary algebras, 
A = n(A^ \ i e I) . If a e A = Y\(Ai | i G I) has the property a G F+(a) , 
l/ien [a] J is the greatest element of A/J if and only if [a(i)]j is the greatest 
element of Ai/J for any i G I. 

P r o o f . By Lemma 3.2, we have only to prove the case: If [a(i)] J is the 
greatest element of Ai/J for any i G / , then [a]J is the greatest element of 
A/J. 

Let a G F+(a) and (3 G A be an arbitrary element. If [a(i)] J is the greatest 

element of Ai/J for any i G I, then [/3(z)] J < [a(i)] J for any i G 7. Then, by 
Lemma 2.4, we have [/3]J < [a]J. It means that [a] J is the greatest element of 
A/J. " n 

In what follows, we focus on the greatest J-class of the direct product of 
unary algebras in the case a ^ F+(a) . 

LEMMA 3.3. Let (A\F) be a unary algebra and a G A be such that 
a £ F+(a). Then [a]J is the greatest element of A/J if and only if A = 
[a] = { a } U F + ( a ) . 
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P r o o f . 

a) If A = { a } U F + ( a ) , then for any (3 G F+(a) we have [f3] g F+(a) C [ a ] , 
and, consequently, [{3] J < [a] J for every ft G A. Thus, [a]J is the greatest 
element of A/J . 

b) Let [a] J be the greatest element of A/J, and a ^ F+(a). Then 
[a] J = {a} , and for any ft G A, /? 7̂  a , we have [/3] J < [a] J. By Lemma 1.2, 
rf G F+(a) . Hence A g F+(a) U {a} .. The converse of this inclusion is obvious. 
Thus A = { a } U F + ( a ) . • 

THEOREM 3.4. Let {A* = (A^F) \ i G J} be an r-system of unary algebras, 

A = n(A?; I i G J) . Let a G A = f l ( ^ | i 6 -T) and a £ F+(a) . F/ieH 
[a] J is the greatest element of A/J if and only if there exists j G J such that 

a(j) ^ F+(a(j)) . [a(j)] J is lbe greatest element of Aj/J, and. /Or amy i G I, 
/ V J , l-4i| = l . 

P r o o f . Let a ĉ  F+(a). Then there is j G J such that a ( j ) £ F+ (a(j)) . 

a) Let [a]J be the greatest element of A/J. By Lemma 3.2, [a(z)] J is the 
greatest element of A^/J for any i G J . By the definition of an r-system, we 
have |J| > 2. The condition a(j) £ F+(a(j)) implies \Aj\ > 2. Let us suppose 
that there exists i G J , i ^ j , such that | ^ | > 2. Now we consider (3 G A 
such that /3(j) = a ( j ) , and, for any i G / , i ¥" 3 i P(i) £ -4i is an arbitrary 
element. As we assumed an existence of such i G J , i ^ j , that |A^| > 2, there 
exists at least one element j3 G A, /? ^ a , satisfying our conditions. However, 
by Lemma 3.1, both [a] J = {a} and [/3] J = {/?} are maximal elements of A/J . 
Since a / / ^ , [a] J cannot be the greatest element of A/J. Thus, for any i G J , 
i ^ 3 , we have | ̂  | = 1. 

b) If for any z £ J , i ^ j . there holds \Ai\ = 1, then the direct product 
A = n(A-i I i £ J) is isomorphic to a unary algebra Aj . In this case, evidently, 
if [a(j)] J is the greatest element of -Aj/J, then [a]J is the greatest element of 
A/J. • 

By Lemma 3.2, if [a] J is the greatest J-class of the direct product of an 
arbitrary system {A^ = [Ai] F) \ i G J} of unary algebras, then [a(i)] J is the 
greatest J-class of unary algebra A^ for any i G J . If {A^ = (Ai\F) | i G J} 
is an r-system of unary algebras and a G F+(a), then we have shown also the 
converse implication. If a £ F+(a), we have proved the converse implication 
in the case of the existence of j G J such that a(j) ^ F+(a(j)) , [a(j)J J is 
the greatest element of Aj/J, and for any i G J , i ^ j , |A?;| = 1 • Our aim is 
to describe the case when there exists i G J , i ^ j , such that | A;| > 2. For the 
sake of convenience we introduce the following concept. 
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Let A = (A;F) be a unary algebra and 0 / 7\I Q A. By M/J we denote 
Lire set of all J-classes [a] J G A/J such that [a] J £ M . 

Let A = (A; F) be a unary algebra and jV G V(A) . Obviously. N = 
IJ{[O]J | o G i V } . Further, for any jV G 7>(A), jV/J = {[O]J G A/J | O G N} . 

Let {Aj = (A7;F) | i G I} be an r-system of unary algebras. A = 
[\(Ai | i G I), a G A = n(-4* | « G I), and a (/ F+(a). To simplify the 
formulation of the next theorem, we denote by Ix the set of all j G I such that 
a(f) £ F+(a(j)) . Clearly, Jx = {j G I | a(j) G _F+(a(j))} / 0 . In addition. 
let N0 = U(X; | X{ = A, for z G I \ Ii and X, = A, \ | a ( / ) } for / G I!) . 

THEOREM 3.5. Let {A} = (A?;;F) | i G I} 6e aH r-system of unary algdmis. 
A = fl(A7; | i G I) . and /el there exist at least two m, /j G I , Ol / n . .such !7/O/ 
A m | > 2 ana7 |An | > 2 . Fel a G A = H(Ai \i G I), a ^ F + ( o ) , anrf [a(i)]J 
be the greatest element of Ar/J for any i G I. ITien 

a) IV0 U {a} G P(A) . and [a] J is the greatest element in (IV(, U {a })/J : 

b) (A \ N0)/J = {[/3] J | P G A \ N0} , |(A \ N0)/J| > 2 , and (A \ N())/J 
is the set of all maximal J-classes of A/J . 

P r o o f . 

a) For any j G Ii , a(j) ^ F+(a(j)) . In such a case, \Aj\ > 2 and 

[a ( j ) ] J = {a(j)} . According to our assumption, [a ( j ) ] J is the greatest el­

ement of Aj/J. It is well known (see for example [3]) that then Aj \ [a(j)]J = 
Aj\{<x(j)} € V(AJ) • Therefore N0 = Yi(Xt \ Xx = A% for i G I\Ii , and X} = 

Ai \ {a(i)} for i G Ii) G V(A). Now we prove that also IV0 U {a} G V(A). 

We assumed a £ F+(a). As (N0; F) is a subalgebra of the algebra (A: F) . 
we have only to prove that f(a) G No for any / G F. 

For any i G Ii , a( i) <̂  F+(a(i)) . Thus, for any i G Ii and any / G F. 

f(a(i)) / a ( i ) . Therefore, for any i G Ii and f E F, f(a(i)) G A/ \ { a ( 0 } • 

Obviously, for any i G I \ Ii and any / G I7 we have f (a(i)) G A/. Thus, 

/(a) G N0 = ntXi I *i = -4* for iel\h, and N, = Az \ {a(/)} for / G Ii) 
for any / G F . This proves N0 U {a} G V(A). 

In the following part we prove [f3]J < [a] J for any /3 G No U {a} , J / a . 

From j3 ^ a , /j G N0U{a}, we get /3 G N0\ Therefore 8(i) G A,:\ {o(/)} for 

any i G Ii . This implies /3(i) ^ a( i) for any i G Ii . Since [ot(i)] J is the greatest 

element of Ai/J for any i G I , we have [/i(?')] J < [a(z)] J for any / G I . For any 

? G I\Ii , a( i) G F + ( a ( i ) ) . On that account, from [ft(i)]J < [c\(i)]J it follow-

that [0(i)] = {f3(i)}uF+(p(i)) g [a(i)] = {a(i)}uF+(n(i)) = F+(a(i)). 

Thus, /?(i) G F+(a(i)) for any z G I \ Ii . 

66 



r-SYSTEMS OF UNARY ALGEBRAS I 

For any / G h , fi(i) ^ Q'(t) and [/3(i)]J < [a(i)]J. By Lemma 1.2, 

^ ( , ) G F + ( o ( / ) ) . 

We have proved ft(i) G F + ( o : ( i ) ) for any i G 7 . As we consider an r -sys tem, 

we get 3 G 7 ? + ( n ) , and, by L e m m a 1.2, the condit ion a / ft implies [ft] J < [a] J. 

Hence [(\]J is the greatest element in (/V0 U {a})/J . 

b) By the definition of the set NQ , .4 \ /V0 = {ft G A | there exists such 

j G I\ tha t J ( j ) = a( j i )} . W i t h respect to 7i ^ 0 and the existence ra, n G / . 

//. / / / . snch t ha t \An]\ > 2 , \An\ > 2 , we get | - 4 \ / V 0 | > 2 . Fur ther , n ( t ) ^ 

K+(n(/')) for any i G 7 : and thus , ft £ F+(ft) for any ft G yl \ /V0. As 

[ 4 1 - {ft} for any £ G A \ A 0 , (A \ N0)/J = {[/3]J | P € A \ /V0} and 

\(A\Nl))/J\ = \A\N0 > 2 . 

For any ft € A\ A 0 there exists j G 7i snch t h a t ft(j) = a(j) , rv(y) ^ 

/ M " ( n ( . / ) ) < and [ a ' ( i ) ] 7 i« the greatest element of Aj/J. By L e m m a .3.1, [ft] J 

is a maximal element of A/J . Since [cr] J = {a} and [a] J is the greatest element 

of (jV(, U { a } ) / J , it is clear t h a t no element of NQ/J is a maximal element of 

A/J . T h u s (A \ N0) /J is t he set of all maximal elements of A/J . Obviously, by 

|( . l \ /V0) /J | > 2 , there does not exist any greates t element of A/J. • 

We have described maximal and greatest J-classes of the direct product 
of an / '-system of unary algebras. Now we are able to describe the greatest 
and maximal subalgebras of th is direct p roduc t . This work will be done in a 
forthcoming paper devoted to J - suba lgebras of una ry algebras. 
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