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POPRODUCT OF LATTICES

ZUZANA LADZIANSKA

The poproduct was introduced for the class of distributive lattices by R. Balbes
and A. Horn [2] under the name order sum. The notion of the ¥-poproduct for an
_ arbitrary equational class ¥ of lattices was defined in [11]. The ¥-poproduct is
a generalization of the 3-free product and the ordinal sum of lattices. M. Hoft [8]
defined the order sum for the class of partially ordered algebras and showed that
the order sum exists in each quasi-equational class. If ¥ is an equational class of
lattices, then the # -poproduct always exists and coincides with the order sum. The
H-poproduct was considered by T. G. Kucera and B. Sands [10] under the name

R EPL,,).

The present paper consists of five parts, in whlch various problems concerning
a poproduct are considered.

The word problem for the £-poproduct of lattices
Minimal representation of the elements of poproduct
Free-lattice-like sublattices of the poproduct of lattices
The poproduct decomposition of a lattice

Poproduct and direct (inverse) limits of lattices -

Nhwnoe=

1. The word problem for the £-poproduct of lattices

In [11] we have investigated the word problem for the &¥-poproduct. But the
solution stated there is not correct, as we worked with an inadequate definitior of
the cover of an element. In the present paper we shall improve this result.

Let R be a poset and let L,, re R be pairwise disjoint lattices. The lattice-
operations in each L, will be denoted by v, A. Let Q =uU(L,; r € R) be partially
ordered in the following way: for a, b e Q we put a=b if and only if one of the
conditions (1) and (2) holds:

(1) there is an r € R such that a, b e L, and the relation a=b holds in L, ;
(2) there are p,re R such that aeL,, b e L, and the relation p <r holds in the
poset R. - .

If f is a mapping from Q into a lattice M, then f, denotes its restriction on L,.
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Definition 1.1. Let % be an equational class of lattices. Let L, L, € 3 for re R
and let K. be a poset. The lattice L is said to be the J{-poproduct of the lattices L, if :

(1) there is an isotone injection i:Q— L such that for each re R, i, is a lattice
homomorphism;

(2) if M e J, then for every isotone mapping f:Q — M such that for each re R,
f. is a lattice homomorphism, there exists uniquely a lattice homomorphism
g:L— M such that goi=f.

From the definition it follows that L is generated by the set ((Q). If it does not
cause ambiguity we say simply that i:Q— L is a canonical embedding. We shall
mostly identify the sets Q and i(Q). We also say that Q is a skeleton of L.

The J-poproduct of the lattices L,, r € R will be denoted by P,(L,; re R). It is
easy to see that a poproduct exists in each equational class of lattices. From the
definition it follows that the 3 -poproduct form the J-free product if and only if R
is an antichain and that the Ji-poproduct forms the ordinal sum if and only if R is
a chain,

We shall consider the word problem for an £-poproduct of lattices, where £ 1s
the class of all lattices. #-poproduct of the lattices L,, r € R will be briefly called
poproduct and denoted by P(L,; re R). The poproduct is a special casc of the
FL(Q, A, B), the free lattice generated by the partially ordered set Q and
preserving finite joins and meets of elements of Q, defined by R. A. Dean in [3]
In our case, the set A = B consists of all comparable pairs of the set Q and of all
finite subsets of every lattice L,, re R.

Throughout the paper, Q will denote a skeleton of a poproduct Let us denote by
W(Q) the set of lattice polynomials (words, terms) over Q. These polynomials are
formed from symbols denoting elements of Q and from the symbols v, A. For
a, be W(Q) the symbol a=b means that a equals b as the elements of the
absolutely free algebra. In [3], the relation = between the elements of W(Q) was
defined, from that relation we get the equivalence = and FL(Q, A, B)
= W(Q)/=. For simplicity, we shall identify classes [a] in the equivalence = with
their representatives a, thus the lattices L, will be considered as sublattices of the
poproduct. Instead of a = b we shall usually write only a = b. Similarly as in [3], let
us denote J(a)={p:peQ,p=a}, M(a)={p:pe Q, p=Za}. For each ae W(Q)
define a natural number [(a) — the length of a — as follows: if a € Q, then
l(a)=1,if a, be W(Q), then l(avb) = 1(anb) = l(a)+1(b). For r e R, denote
by I(L,) the lattice of all nonempty ideals of L, and by D(L,) the lattice of all
nonempty dual ideals (filters) of L,. Denote I,(L,)=I(L,)u{@#} and D,(L,)
= D(L,)u{@}. The operations in lattices I,(L,) and DBy(L,) will be denoted by V
(join) and A (meet). Similarly as in [9], for each re R we shall define

a homomorphism T,:W(Q)—I(L,) and a dual homomorphism T":W(Q)—
Dy(L,) as follows:
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T.(a)={xeL,:x=a}=(a], T"(a)={xeL,: xZa}=[a) if a€L,
T.(a)=L,, T'(a)=@ if aeL,, p>r,

T.(a)=0, T'(a)=L, if a€L,, p<r,

T,(a)=0, T'(a)=@ if aeL,, p||r (p, r incomparable).

Since W(Q) is an absolutely free algebra, there exist uniquely the extensions of
the given mappings onto homomorphism and dual homomorphism, respectively,
hence the following holds:

T.(avb)=T.(a)VT,(b),

T (avb)=T (a)AT (b)=T'(a)nT'(b),
T (anb)=T'(a)VT'(b),

T.(anb) =T,(a)AT,(b) = T,(a)nT,(b).

Lemma 1.1. For a € W(Q) both T,(a)=J(a)nL,,and T"(a) = M(a)nL, hold.

Proof. By induction with respect to the length of a.

Denote by 0,1 two new elements, which do not belong to the skeleton Q and
extend the partial ordering from the set Q to the set QU{0, 1} (U denotes the
disjuint union of sets) in the following way: for each q € Q the relation 0<g <1
holds.

Similarly as in [6], for each a € W(Q) and each r € R the upper r-cover a*” and
the lower r-cover a,, are defined as follows:

Definition 1.2.

1. Leta€elL,.
If p=r, then a,,=a"=a.
If p||r, i.e. p and r and incomparable, then a,,=0, a”=1. -
If p<r, then a,,=0, a”=0.
If p>r, then a,,=1, a”=1.
2. Leta=p(ay, ..., a,).
Then a¢,=p((ai)¢y ---» (@n)n) and
a®=p((a)", ..., (a)").
If a,, or a”eL,, it is called a proper cover.

Proceeding by induction on the length of a =p(as, ..., a,) one can easily prove
the following six propositions.

Proposition 1.1. Let a=p(a, ..., a.). If ai,, or a®” is proper, then there is at
least one i, 1 =i=nsuch that a; € L,. Hence, for a given a € W(Q) there exists only
a finite number of proper covers.

Proposition 1.2. If a=p(a,, ...,a,) and a, is proper, then there exists
a polynomial p'(b,, ..., b,) such that {b,,...,bn} S {a,...,a,} N L, and
as, = p'(by, ..., b,). And dually for a®.



Proposition 1.3. If u,, is proper, then a,,=a. Dually, if a®» is proper, then
a”=Za

If T,(a) is a principal ideal, denote its generator by a,, i.e. T.(a) = (a,]. If T'(a)is
a principal filter, denote its generator by a”, i.e. T'(a)=[a"). If L, has the smallest
clement, denote such an element by o,. If L, has the greatest element, denote such
an element by i,.

Propaosition 1.4. If a,, is proper, then a, exists and a,,= a,. If a*” is proper, then
a" cxists and a'"=aq". :

Conversely, if a, exists, it need not imply that a,, is proper and a,, = a,, for it can
happen that a, =i, and a,, is not proper.

Proposition 1.5. If g, exists and a,# i,, then a,, is proper and a, = a,. If a" exists
nd a'# o,, then a'” is proper and a" =a".

Proposition 1.6. If i, does not exist, then a,, is proper if and only if a, exists. In
such a case ., — a,. If o, does not exist, then a'” is proper if and only if a” exists. In
stch a case, a”=a’.

The following theorem gives a solution of the word problem for the poproduct

Theorem 1.1. Let L=P(L,; reR), let Q be a skeleton of L, let a, be W(O).
Then a =b if and only if one of the following holds:

(1) a=a,va, where a,=b and a,=b,

(2) a=a,Au-, where a;=b or a,=b,

(3) b=b,Ab,, where a=b, and a=b,,

(4) b=b,vb,, where a=b, ora=bh,,

(5) thereare p,reR (p=r)such thata®, b, are proper and a'” = b, holds.

Proof. Thioughout the proof, the following two lemmas will be used, which
easily follow from the definition of an r-cover.

Lemma 1.2, Let a=a,va, T'(a)+®, a” be not proper. Then T'(a\)— L.,

I'(a,)=L,. Dually, let a=a,Aa,, T,(a)#9, a., be not proper. Then T,(a,)=L,,
T.(a:)=L,.

Lemma 1.3. Let a=a,Aa,, T'(a)#@, a® be not proper. Then either 1" (a,) =

L, or T'{a,)=L,. Dually. let a=a,va,, T.(a)#9, a, be not proper. Then either
I.(a)=L, or T.(a,)=L,.

Now we shall prove Theorem 1.1. Theorem 7 of [3] characterizes a=b in the

free lattice FL(Q, A, B), using conditions (1)—(4) of Theorem 1.1 and the
condition

(59 M(a)nJ(b)#9.

Since P(L,; re R)=FL(Q, A, B) for suitable A and B, the conditions (1)—(5)
are sufficient for a=b. Conversely, let a, b€ W(Q) and let a=b. Then by
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Theorem 7 of [3], either one of (1)—(4) holds or (5') is true, i.e. there is an x € Q
such that a =x =b. Suppose that there exists an x € Q such that a =x =b and let
x€L,, reR. Therefore x e M(a)nL, = T"(a), xeJ(b)nL, = T,(b). If both a”,
b, are proper, then a”’=x =b,, and (5) holds. Let at least one of a*”, b,, not be
proper. If I(a)=1, I(b)=1,thenaeL,, bel, and a=a®=x=b,,=b and (5)
holds. Let at least one of I(a), I(b) greater than 1.

If a” is not proper and [(a)> 1, then if a =a,Vva,, using Lemma 1.2 we get (1), and
if a=a,Aa,, using Lemma 1.3, we get (2).

If b, is not proper and I(b)>1, then if b =b,Ab,, using Lemma 1.2 we get (3) and
if b=b,vb,, using Lemma 1.3, we get (4).

If a” is proper and I(a)>1, I(b) =1, we get (5).

If b, is proper and I(b)>1, l(a)=1, we get (5).

It is now easy to see that every case leads to one of the above mentioned
possibilities and the theorem is proved.

Since for a given a € W(Q) there exists only a finite number of proper covers a”,
a., r€ R, the word problem is recursively solvable.

The word problem for a free product of lattices [6] is a corollary of Theorem 1.1.

The following result is a generalization of Theorem 4.1 from [9].

Let L,, re R be pairwise disjoint sublattices of the lattice L such that Q =
U(L,; reR) (with the usual ordering) generates L, [Q]=L. Denote by
T: W(Q)— L the function assigning to every word its value in L. Then T is an
epimorphism and T(x) = x for x € Q. Homomorphisms T,, T" are defined similarly
as for the poproduct.

Theorem 1.2. L is isomorphic to P(L, ; r € R) if and only if for every p, q € R,
xelL,, yeL,, a, b, c, de W(Q) the following conditions hold:

(1) x=y implies p=q,

(2) x=T(a) if and only if x € T,(a),

(3) xZT(a) if and only if x € T?(a),

(4) T(anb)=T(cvd) if and only if at least one of the following five conditions
holds: T(anb) =T(c), T(anb) = T(d), T(a) = T(cvd), T(b) = T(cvd),
T (anb) n T,(cvd)+#® for some reR.

Proof. The proof is similar to that of the corresponding theorem from [9].

A poset satisfies the m — chain condition if it contains no chain of cardinality m
(where m denotes an infinite cardinal). In [1] it was shown that the ¥"-free product
(where V' = £ or @) preserves the m-chain condition for uncountable regular m.

First it was shown that the completely free lattice CFL (P) preserves the m-chain
condition for uncountable regular m. Then it was proved that for V' =% or 9, the
V-free product of a family (L;;ielI) of lattices can be embedded into the
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completely free lattice generated by U(L; ; i € I). Especially Sorkin’s theorem for
the free product is an immediate consequence of this embedding.

Analogically, it can be shown that for 1"=% or % the ¥ -poproduct
Py(L,; re R) can be embedded into the completely free lattice generated by Q,
where Q is the skeleton of the poproduct.

Hence P, (L.; r € R), where V' =¥ or & preserves the m-chain condition for an
uncountable regular m.

As an immediate consequence of this embedding we have the following

Theorem 1.3 (the generalised Sorkin’s theorem). Let L = P(L, ; r € R), let M be
a lattice, let Q be a skeleton of L and let i: Q— L be the canonical embedding. Let
f: Q— M be an isotone mapping. Then there exists (not necessarily uniquely) an
isotone mapping g: L — M such that go.i=f.

2. Minimal representation of the elements of poproduct

In this paragraph generalizations of the results of [13] are given.

Each element ae W(Q) represents an element [aleL = P(L,;reR)
= W(Q)/=. A polynomial a e W(Q) is said to be minimal if no shorter
polynomial in W(Q) represents {a], we also say that a is a minimal representation
of [a] (J13]). A polynomial a € W(Q) is said to be a v-polynomial if a=bvc
where a# b, a# c. The dual concept is a A-polynomial. Thus each a € W(Q) is
either a v-polynomial or a A-polynomial ([13]).

Theorem 2.1. Let Q be a skeleton of an L-poproduct P(L,;reR). Let
ae W(Q).

(a) If I(a)=1, then a is minimal.

(b) If a is a v-polynomial and if a=a,v...vax.,, k>1, with no a; a
v-polynomial, then a is minimal if and only if the following five conditicns
hold:

(1) each a;, i<k is minimal,

(2) for each i<k ai£aov...va,.1VaV...Vag_,,

(3) if i<k, l(a)>, then M(a;))nJ(a)=0,

4) if (a)>1, ai=cnAd, then cEa and dZa,

5) ifi, j<k,p,qeR,p=q, aielL,, aq,eL,, then p=q and i=]j.

Proof. The proof is similar to the proof of the corresponding theorem of [13].
Part (a) is clear. The necessity of the five conditions in part (b) can be established in
a similar way to that [13]. We now establish their sufficiency. Let a satisfy these
conditions and let b € W(Q) be a minimal polynomial such that a =b. We shall
show that I(a)=1(b).

We first show that I[(b)>1. If [(b)=1, then there is a ¢ € R such that beL,.
From a =b it follows that b € M(a). In the same way a; =a infers M(a)SM(a,)
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and consequently b e M(a;). From b=a it follows that beJ(a). Therefore
b e M(a;)nJ(a) and M(a)nJ(a)# @ for each i <k. By condition (3) l(a)=1
holds for each i < k. Then by condition (5) the set S ={p: p € R and there is an i,
i <k, such that a; € L,} is an antichain. For each i < k there holds a;=a =b, hence
for p € S there is p=q. Since b =a, by the definition of = there exists i < k such
thata,eL,,peS,p=q, b=a, in Q. Therefore p=q and b=gq; in L. Since S is an
antichain and for each p € S p =q, the cardinality of S is 1, therefore I(a)=1, a
contradiction. Hence [(b)>1.

We show next that b cannot be a A-polynomial. If b = b,Ab,, then, since a=b,
for each i <k there holds a;=b. We have also b =a. If b =a arises by condition
(5) of theorem 1.1, then M(b)nJ(a)# @, hence there exists an u € Q such that
b=u=a=b, therefore b =u, which contradicts the minimality of b. Thus b=a
arises either by (2) or by (4) of theorem 1.1, that means that either b; = a for some
j<2,or b=ay_,, or b=aeVv...vax_,. The inequality b=a,Vv...va,-, cannot be
derived by condition (5) of theorem 1.1, because M(b) N J(aov...vax-2)# 9 and
J(a)2J(aov...va-;) imply M(b)nJ(a)#0, therefore the existence of a ue Q
such that b=u=a=b, hence b=u, which contradicts the minimality of b.
Continuing in this vein we find that either b; =a for some j <2 or b =a; for some
i<k.If b;=a, then b=b;=a=b, hence b = b;, which contradicts the minimality
of b. If b=a;, then q;=a=b =q, for i#j, which contradicts condition (2) of the
present theorem.

Consequently, b is a v-polynomial, b=bov...vb,_,, n=1, where no b; is
a v-polynomial. We observe that conditions (1)—(5) of the present theorem hold
for b, because it is a minimal polynomial. Suppose i <k and [(a;) > 1. There holds
a;=b. Since a; is a A-polynomial and b is a v-polynomial, a;=b cannot hold. If
a; = b arises by condition (5) of theorem 1.1, then M(a;,)nJ(b)+# @ and from b =a
it follows that J(b) = J(a), therefore M(a;)nJ(a) # @, which is a contradiction with
(3). If a;=b arises by condition (2) of theorem 1.1, it contradicts condition (4).
Therefore a;=b is derived by condition (4) of theorem 1.1. Continuing the
argument in this way we conclude that there is an f(i) <n such that a,=by. If
b, €L,, p€R, then from a, = b, it follows that M(a;)nJ (b)) # 0. Now J (b))
< J(b) and from b = a it follows that J(b) = J(a), hence J (b)) E J(a) and M(a;)
nJ(a)# @, contradicting condition (3). Hence I(bsw)>1. Since b also satisfies
conditions (1)—(5), we get that for each j <n such that [(b;)>1 there is a g(j) <k
such that b;=a,, hence g(f(i)) exists and @, =b;sy = a,qay. By condition (2)
g(f(i)) =i holds, and thus a; = b, by condition (1) [(a;) = I(bsw). Thus we have
established the following statement:

(») Foreach i<k suchthat I(a;)>1 there is an f(i)<n such that b= a: and
I(bsw) = l(a), and, similarly, for each j <n such that I(b;)>1 there is a g(j)<k
such that a,g,=b; and l(a,q;) = l(b)); furthermore, g(f(i))=1i and f(9(j))=].

Now suppose i < k and I(a;) =1, hence a, € L, for some p € R. Since a; = b, there
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holds T,(b)# @ and T,(a,)< T,(b). By the definition of T, we can suppose that
0<t=n and T,(b;)#9 if and only if j<t. Hence T,(b) = T,(bo)V...VT,(b, 1),
where V denotes the lattice join in the lattice of all ideals of the lattice L,. If
1(b,)>1for all j <t, then by (x) thereis l(a,;)>1 and T,(a,) = T,(b,) holds for
all j<t. Hence g(j)=i for all j<t. Now we have T,(bo)V ... VT,(b,-,)
= Ty(ag0)V ... VT, (ag¢-1) € T,(a0Vv ... vai.,va,,v ... Va,). Thus a, €
T,(a) €T,(b) € T,(awv ... vaiva..,Vv ... vai,), hence a=a,v
Vai- V@iV ... Vai-), contradicting condition (2). Consequently, there 1s an
f(i)<n such that T,(bs;,)#0 and I(bs,)=1, that is, b;, € Le,), F(p)Zp.
Similarly, if j<n and b; € L, for some g € R, then there exists g(j) <k such that
a4y € Low, G(q)=q. By condition (5), G(F(p))=p, hence F(p)=p, G(q)=q
and f(g(j))=j for each j<n such that I(b)=1. Thus we have established the
following statement:

(++) There are mappings

£:40, . k=1}={0, ..., n—=1}, g: {0, ... n=1}—{0, ..., k—1)

satisfying the conditions

(i) if i<k, then g(f(i))=i and if j<n, then f(g(j)) =],
(ii) if i<k and l(a,)>1, then b;,,=a; and l(b,;)) = [(a;) and similarly for any
j<n such that I(b;))>1,
(i) if i<k and a, e L,, p € R, then by € L,, and similarly for any j<n such that
beL,, qeR.

Consequently, k =n and f, g are permutations of the set {0, . —1}. Since
I(a;) = I(by) for all i <k, it follows that I(a)=1[(b). Since b is mmlmal a is also
minimal. Theorem 2.1 is proved.

If the set {u: ueQ, aa=u=a} is flmte for each i<k, then the proof of the
necessity in theorem 2.1 provides an algorithm for reducing any polynomial to an
equivalent minimal polynomial.

We now present an algorithm determining the case of the two minimal
polynomials representing the same element of L.

Theorem 2.2. Let Q be a skeleton of an L-poproduct L=P(L,;reR). Let
a, b e W(Q) be minimal polynomials. If [(a)=1, then a=b if and only if a=b. If
a=ayVv...vac_,, k>1, where no a; is a v -polynomial, then a="b if and only if b
can be written in the form b =b,v ...v b, _, such that the following conditions hold :

(1) no b; is a v-polynomial,

(2) for each i<k and peR, a,c’L, if and only if b;e L,,

(3) for each i<k, l(a)>1 if and only if [(b,))>1 and in this event a, =b,,

(4) foreachi<kandp eR from a; € L, it follows that a, € T,(b) and from b, € L, it
follows that b, € T,(a).
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The proof is similar to the one of the corresponding theorem of [13].

In general, an element of L has several different minimal representations ([13]).
In a special case we can choose one, well-defined up to commutativity and
associativity, which we call the normal representation.

Suppose that for each aeL, the ideal T,(a) and the dual ideal T"(a), if
non-empty, are principal.

Definition 2.1. If a e W(Q) and l(a)=1, then a is a normal polynomial. If
[(a)>1, then a is normal if and only if the following two conditions hold :

(1) a is a minimal polynomial,

(2) ifaisa v-polynomial, i.e.a=ao,Vv...vax_i, k>1 and no a;is a v-polynomial,
then each a, is normal and if for some i < k there is a; € L,, then T,(a;,) = T,(a).
Dually for a a-polynomial a.

Theorem 2.3. Let for each a € L be T,(a) and T'(a), if non-empty, principal for
every re R. Then there holds:

(1) Each x € L has a normal representation,
(2) for each x € L, its normal representation is unique up to commutativity and
associativity.

The proof is similar to the one of the corresponding theorem of [13].

The poproduct is said to admit canonical representations if a minimal represen-
tation of every element is unique up to commutativity and associativity ([13]).
Under the assumptions of theorem 2.3, the poproduct admits canonical representa-
tions if and only if every minimal polynomial is normal.

3. Free-lattice-like subiattices of the poproduct of lattices

In this paragraph we generalize the results of [5]. We shall show that certain
sublattices of the poproduct of lattices satisfy the same conditions as the sublattices
of a free lattice.

A free lattice is known to satisfy the following conditions ([5]):

(F) if xAy=uvwv, then one of the following four possibilities occurs: x=uvv,
YySUVU, XAY=U, XAY=V;

(F2) ifu=xvy=xvz, then u=xv(yaz);

(F3) if u=xAy=xnAz, then u=xn(yvz).

Suppose that for every r € R the lattice L, contains the greatest element i, and
the smallest element o,. Hence for every nonempty ideal T,(a) there exists its
generator g, and for every nonempty filter T"(a) there exists its generator a’.

Lemma 3.1. Let Q be a skeleton of a poproduct P(L, ; r € R) of the bounded
11



lattices L,, re R. Leta, b, ¢, d € W(Q). Then a Ab =c v d if and only if one of the
following conditions holds :

(1) there are p, q € R such that there exist a”, b’€L,, c,, d,e L, and a* Ab® =
cavdy;

(2) anb=coranb=d;

(3) a=cvdorb=cvd.

Proof. The necessity of the conditions. By the solution of the word problem we
can restrict ourselves to the case that neither (2) nor (3) holds and there are p,
q € R (p =q) such that (aAb)®, (cvd), exist and (aAb)® = (cvd)y. By the
definition of covers there are the following possibilities for the covers (a Ab)?®’ and
(cvd),, respectively: The (a Ab)® equals one of the following: a”Ab", a”,
b®. The (cvd)q equals one of the following: ¢ Vvdwa), Cu)y dw)- Now if
(anb)?'=a® (or b®), then a=a® = (anb)” = (cvd)y, = cvd (or
b =cvd), hence (3) holds, which contradicts the assumption. If (¢ vd),= ¢, (or
dw), then cZc,y = (cvd)y = (anb)® = anb (or d=anb), hence (2) holds,
a contradiction. Therefore, (anb)® = a®Ab® and (cvd)y = CwVda.
Consequently a? Ab® = a®PAb® <cyVvdy = ¢, Vvd,.

The sufficiency of the conditions: If a®? Ab® = ¢,vd,, then froma=a”, b=b",
¢, =c, d,=d there follows anb = a°Ab® = ¢,vd, = cvd. The lemma is
proved.

Lemma 3.2. Let Q be a skeleton of a poproduct P(L, ; r€ R). Let ue W(Q).
Then u can be written as u=uoV...VUu._,, n=1, where u;, j<n satisfy the
following conditions :

(1) ifu;é U(L,; r e R), then u; = a; A b; for some a,, b; € W(Q) withu; <a,, u;<b;;
(2) for each j<n, n>1 there holds u;# uoV...VU;-\VUj1V...VU._1;

(3) if j<n and u; ¢ U(L,; re R), then M(u)nJ(u)=9;

(4) if for j<n we have u;=aAb, where a, b>u,;, then afu, b¥u;

(5) ifj, k<n,p,qeR, p=q, ujelL,, uu€eL,, then p=q and j=k.

Proof. Let ue W(Q).If ue Q or u is a A-polynomial, we put n =1 and u,= u.
If u is a v-polynomial, we take its minimal representation u =uyv...vu,_,, n>1
(theorem 2.1).

Theeorem 3.1. Let L be a poproduct of the bounded lattices L, ; r € R. For each
re R let K, be a sublattice of L, and let K be a sublattice of L such that for each
a€ K, reR if a, exists, then a, € K, and if a” exists, then a"€ K". Let ne€ {1, 2, 3}.
If, for all r € R, the sublattice K, satisfies (Fn), then the sublattice K satisfies (Fn).

Proof.

1. n=1.Letall K, satisfy (F1). We shall show that K also satisfies (F1). Let a, b,
c,deK,anb=cvd.Bylemma 3.1 one of the ¢onditions (1), (2), (3) holds. If (2)

12



or (3) holds, the proof is accomplished. If (1) holds, then a” Ab”® =, vd, for some
P, q€R, p=q. There are two cases:

First, if p<q,thena=a"<c¢,=c,a=a"<d,=d,b=b"<c¢,=c,b=b"<d,=d,
this implies that anb=c, aAnb=d, a=cvd, b=cvd.

Second by, if p =g, then a”? Ab” =c¢,vd, in K, S L, and because K, satisfies (F1),
at least one of the following holds:

asa"=c,vd,=cvd, b=b’=c,vd,=cvd, anb=a’Ab’=c,=c, aAb=
a’Ab°=d,=d.

2. n=2.Letall K, satisfy (F2). We shall show that K also satisfies (F2). Let x, y,
z, uek, let xvy=xvz=u. It is enough to prove that u=xv(yAz). By
lemma 3.2 the element u can be written in the form u =u,v...vu,-,, n =1, where
u,, j <n satisfy the conditions (1)—(5) of lemma 3.2. We shall show that for each
j<n there holds u;=x v (yAz). There are two possibilities: u; ¢ Q or u, € L, for
some p € R. ‘

Let j<n, y;eL,, peR. Then y;e T,(u) = (u,], y;=u,.
For u=xvy there are three possibilities:

Yp if Tp(x)=ﬂa Tp()’)#ﬂ;

x, it T,(x)#0, T,(y)=0;
u, =
<x,,vy,, if T,(x)#0, T,(y)+#0.

For u=xvz there are three possibilities:

X, if T,(x)+#0, T,(z)=0;
u,,=<z,, if T,(x)=0, T,(z)#0;
x,vz, if T,(x)#0, T,(z)#0.

If u,=x,, then y=u,=x,=x=xv(yAz).
If u, =y,, then T,(x) =9, therefore T,(z)# 0 and u, = z,. It implies u;=u, =y, =
y, =u,=z,=z, hence yy=yArz=xv(yaz).
If u, =z,, then, similarly to theé preceding case, we get u;=xv(yAz).

If u,=x,vy,, then T,(x)#@ and there holds either u,=x,, which implies
u,=xv(yAz),oru,=x,vz,, which implies u, =x, vy, = x,Vvz, in K, and by the
assumption concerning K, we have now y;=u, =x,v(y,A2,) = xVv(yAz).

If u, =x,vz,, then, similarly to the preceding case, we get u; =x(yAz).

Let j<n, u; ¢ Q. Applying lemma 3.2 we conclude that there exist a, b € L such
that a>uw;, b>u; and anb=uw,. Nowaab = w, = xvy,henceanb = xvy and
by lemma 3.1 there are three possibilities:

13



If aSxvy or b=xvy, we get a contradiction to (4) of lemma 3.2

If a®? AbP=x,vy,, then M(y,) 2 T?() = [a”Ab?), J(W)2 T, (u) = (x,vy,l],
p=gq, hence T?(u,)nT,(u) #+ @, therefore M(u;)nJ(u)# 0, a contradiction to (3)
of lemma 3.2.

Therefore the third case must hold, that is, either aAb =y or aAb = x. Then either
u;=x or u, =y and, similarly, either 4, =x or u,=z Hence ©y,=xVv(yAz)

We have shown that for each j<n there holds u,=xv(yAz) and therefo e
Uu=Exv(ynaz).

3. n=3. The case of (F3) is dual to the case of (F2). The theorem i« proved.

Corollary I. The poproduct of bounded distributive lattices satisfies (F2) a d
(F3).
Proof. Any distributive lattice satisfies {F2) and (F3).

Corollary 2. Let L be a poproduct P(L,; reR). If K is a sublattice of the
poproduct L such that for each a € K and each r € R, If a, exists, then a = o, and if
a’ exists, then a" =i,, then K satisfies all (Fn).

Proof. For each reR there is K, < {o,, i,} and therefore satisfies all (Fn)

4. Poproduct decomposition of a lattice

In this section we generalise for the case of poproduct the results of [7] about
a common refinement of any two representations of a lattice as a free J{-product.
Susspose that the equational class J of lattices satisfies the following property:

(J) If L is a K-poproduct of the lattices (L,, r € R), A, is a sublattice of the lattice
L, for each r € R and A is the sublattice of L generated by U(A,; r € R), then
A is the ¥-poproduct of lattices (A,, r € R)

Let R, S be partially ordered sets. Let (A,, re R), (B;, s € S) be two systems of
pairwise disjoint lattices. Let L =Py (A,; re R) = Py(B;:se€S). We shall show
that in such a case L = P,(A,NB,: (r,s) € R X S), where the set R X § is partially
ordered in the following way: (r,, s;) = (ry, s,) is and only if r,=r, and s, =s,.
Since (A,, re R), (B,,s€S) can be considered as a family of pairwise disjoint
sublattices of the lattice L respectively, this ordering is well defined.

We mtroduce some notations. If p is a lattice polynomial symbol, then denote by
p the polynomial symbol arising from p in the way that the symbols v, A will be
replaced by V, A, respectively (V, A denote the lattice operations in the lattice of
ideals and dual ideals, respectively). If L,, L, are two subsets of the J-poproduct,
then L, <L, will denote that for the ideals (L,],(L.],(L;]<(L-] holds. Especially,
L,=L, denotes that |, =1, for each pair [, eL,, l,e L,.
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Theorem4.1. Let L =Py(A.,;reR) = Py(B,;seS) and let ¥ satisfy the
condition (J). Then L = P,(A,NnB,; (r,s) € RXS). Moreover, forreR, A, =
Px(A,nB,;s€S) and for s €S, there is B, = Py(A,nB,;reR).

To prove the theorem, two lemmas will be needed.

Lemma 1. Ifa e A, and the lower cover a; of a in B, is proper, then a, € A,NB;.

Proof. Let ae A,, let a, be proper. As L is generated by the set U(B,; s€S),
the element a can be written in the form
(1) a=p(b,.1y «oes bsyny ooy by, -oes by, Where p is an (n, +...+ n,)-ary
polynomial, sy, ..., sy €S and b,, .€B,, for h=1, ..., k, L=m=n,. Therefore
(2) T,(a)=p(T,(b,,.1), ..., T.(b,,.»)), where T,(a)=J(a)nA,.

Without loss of generality we can suppose that s =s,, then from (1) we get
(3) T\‘(a(‘)) = TS(a) = p-(TS(bsn‘l)’ A Ts(b-n-m)9 Ts(bsz‘l)a A ’I;(bs;u"k))’ where
b, 1, ..., b, ., € B,.Let us consider now the expressions T(b., .) for s;# s(=s1).
The following holds:

(i) If s€s; in S, hence if B,£B,, then T,(b,, ) =9,
(i) If s<s in S, hence if B,=B,, then T,(b,, .)=B..
(Note that in both cases b, ¢ B,.)

If USL, denote T,(U)=u(T,(u); ueU).

As T,(b) is an isotone function of its argument b, there holds that T.(a)
= T,(T,(a)) and from (2) we get
4) T.(aw) = T(T.(a))=p(T.(T.(bs, 1)), ..., T(T:(bsi.n)))-

Moreover, the following holds:
(iii) If s£s; in S, hence if B,£B,, then B, T,(b..m)-
Since if there were B, <T,(b,, ), it would imply T.(b,. .)<B, and hence by
transitivity B, <B,,, a contradiction.)
Now from B, % T,(b., ) it follows that T,(T,(b,, .)) =9 (because b e T.(T,(Bs.»))
would imply b=b,, ., b € B,, contradicting B,% B;,).
@iv) T,(b,, »)<T,(b, ) and s=s; in S yield
T(T,(by, W) < T(T, (b, ) = T.(bs, ).
Now the following inequalities hold:

T (bsy w) > To(byy ) > To(To (i)

(%)
T (bs,m)> X, m > T.(T,(b,, m)) for si#s,,

where X, ,. will be suitable defined as follows:

V) X,.m=0 it T(b,..))=0. 5
See (i). Evidently T,(b,, »)<T,(bs..) infers T,(T.(bs.»))) < T.(bs. ) and
is correct.

(vi) X, .=B, for T.(b, ,)=B..
15



Now from (3) and (4), using (5), we get

(6) n(a(51)=ﬁ(7;(bl|-l)7 RERS] ’Ts(bsp "1)’ T‘S(bsz l)’ LERY] TV(bSk.ﬂk))>
>p~(T’(b51~1)7 AR ] Tr(bsl n,)’ st.l, RS ] X.\k n,)>
>P(T(T(bs,.), .., T(T.(b, o)) = T.(ag,).

From (6) we obtain
(7) n(a(s]) :p(’I‘!(bshl), ey Tr(b;,,nl)a st,1> ceey X\'k.nk)7

where X, ,, is either §§ or B;.
By proposition 1.2 there follows the existence of the polynomial symbol g such that

(8) as=q((by)oys -5 (b)),

where b+, ..., by, I, =mn are such from among the b,, ,, ..., b,,, ., for which there
exist their lower covers in the lattice A,. Since by, € A, fort=1, ..., v by (8) there 15
also a(,, € A, and because by definition of a,), a, € B,, we now have a., € A,NB,.
Lemma 1 is proved.

Lemma 2 (the ,,associativity‘‘ of the poproduct). Let S be a partially ordered set.
Let there be R, a partially ordered set for each s € S. Assume the sets R, to be
pairwise disjoint. Denote by R =U(R,;s€S) a partially ordered set with the
following ordering: r,=r, holds for r,, r,e R if at least one of the following
conditions hold:

1. there is an s €S such that r,, r,e R, and r,=r, in R, ;

2. there are s,, s,€ S such that r,eR,, r,e R,, and s,<s..

Let foreachre Rbe L, € i and let L,, r € R be pairwise disjoint lattices. Then the
poproducts P, (L,; re R) and Pyx(Px(L,; reR,); s €S) are isomorphic.

Proof. The idea how to prove the lemma is as follows:

Let Q denote the skeleton of Px(L,;reR). We show first that Q can be
embedded into P« (Px(L,; reR,); s €S). Then, in the second step, let M € % and
let f: Q— M be an isotone mapping. We prove that there exists a unique
homomorphism h: Px(Px(L,; reR,); s€S)—M such that f=h/Q. Therefore,
Px(L,;reR) = Py(Pyx(L,;reR,); seS), because the poproduct is defined
uniquely (up to isomorphism).

Let Q;=uU(L,;reR,) be a skeleton of Py(L,: reR,), se€S. Clearly, Q=
u(Q,; s € 8S)is askeleton of Px(L,; re R). Suppose Q' =uU(P«(L.; reR,);s€S)
to be a skeleton of Px(Px(L,;reR,); seS). Since Q, can be embedded into
Py(L.;reR,), we see that Q can be embedded into Py(Px(L,;reR,);seS).
Now let f: Q — M be an isotone mapping such that f,: L,— M is a homomorphism.
It is easy to see that there exists a unique homomorphism g;: P,(L,; re R)—»>M
such that g,/Q, =f/Q, for every se€S. Evidently, s,<s, in S implies t,=t, for
t: € f(Q.), i =1, 2 by definition of the mapping f. Therefore, t, =t, for t, € [f(Q, ) Im>
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i=1,2, where [A]m means the sublattice of M generated by A =M. Hence,
g: Q' —> M is an isotone mapping such that g/Px(L,; r € R,) = g,. Thus there exists
a unique homomorphism h: Py(P,(L,; r € R,); s € S)— M such that h/Q' = g and
consequently 4/Q = f and the proof of lemma is complete.

Proof of theorem 4.1. Let L =Px(A,; re R) = Py(B,;seS). Using the
definition of lower covers and the fact that a € A,, i.e. a = a(,, we get from (2) the
existence of the polynomial symbol o such that

)] a=o0((bp)eys --» b))

where b, e B, fori=1, ..., m; m=n,+...+n, and b;, are such from among the
b,,.1, ..., by, n, for which there exist (by,),,,. By lemma 1 (b;),,, € B,nA, holds for
~i=1, ..., m.From (9) it follows now that a belongs to the sublattice of L generated °
by the set U(A,NB,;seS) for each ae A,. Therefore A, is generated by the set
U(A,NnB,; s €S). Since (A,NnB,, s € S) are sublattices of A,, using the property (J)
we get that A,=P,(A,nB,;se€S). Then by lemma?2 it follows that L
= Py(A,nB;; (r,s) € RxS) and theorem 1 is proved.

5. Poproduct and direct (inverse) limits of lattices

The aim of the present section is to investigate the interchangeability of the
operators of poproduct and of the limit of lattices. In the case of the direct limit
these operators are interchangeable, in the case of the inverse limit a weaker result
is obtained. }

(For the definition of direct and inverse limit see [4]).

Poproduct and direct limit

Let R be a partially ordered set, J a directed partially ordered set and let for each
pair re R, jeJ A, be a lattice. Let the lattices A,; be pairwise disjoint. Denote by
Q; the poset U(A,;; re R),wherea=b in Q;iffa=b insome A oraeA,;,be A,
and r<s in R. The system {Q,;,jeJ} becomes directed if there are isotone
mappings @;: Q;— Q; for any i =j such that ¢;/A,; are homomorphisms, @ - @; =
@« and @; =id for every i € J. Now we can define P(A,;; r € R) for every je J and"
this system becomes directed because any @;: Q;— Q; can be uniquely prolonged
into a homomorphism ¢;: P(A.; re R) — P(A,; r e R) (see definition 1.1). It is
not difficult to verify that @ o@; = @u if i=j=k and @, =id forevery ie J. This
leads to a direct limit L_P=L_(P(A,;reR);jel).

By [4] there exists for each r € R the direct limit A, =L_(A,;; j€J). Since the
lattices A, are pairwise disjoint, wo can define a poset Q = U(A, ; r € R) such that
a=b in Q iff a=b in some A, or ae€ A, and b € A, for some r<s in R. This
enables us to define L_,=P(L_(A,;ieJ): reR).
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Before studying the connections between the lattices PL_, and L_P we need the
following observation (using the notation from [4]).

Lemma 5.1. Let (Ai; @,,i€J) and (B;;vy,, i€eJ) be directed families of
algebras of the same type. Let for every i€ J, h;: A;— B; be a homomorphism such
that any diagram

h, -
A. _— > D;
Py l wrl
A,——B,
h;

commutes for i =j. Then there exists a homomorphism h: L_A;— L_B, defined
by the rule h(a) = (h,(a)), wherc aea and a € A,. Moreover, the diagram
h;
A, ———— B,
o | | v
L_.A,' —> L—-Bi
h

commutes for every i€ J.
The proof is straightforward (see [4]).

Theorem 5.1. Let ¥ be an arbitrary equational class of lattices. Then the lattices
Py(L_(A,;jet); reR) and L_(P.(Ar;; re R); jelJ) are isomorphic.

Proof. Suppose i;: Q;— P(A,; r € R) to be a canonical embedding for j € J. By
lemma 5.1 there exists an isotone mapping h: Q—L_P such that h/A, is
a homomorphism. The diagram

Q. ——— P(A.;reR)

%‘J l%‘
Q——P(A,;reR)

commutes for i=j, hence we can apply lemma 5.1.
Now the upper part of the diagram 1

Q ——P(A,;;reR)—% —, pL_
(p[“’ ‘l( h @jm g l id
Q > L_P PL_,
PL_, L_P PL_,
diagram 1

18



commutes. This fact and the definition 1.1 imply the existence of a homomorphism
h: PL_— L_P such that the lower part of the diagram 1 commutes. Conversely,
starting with
Qj i
Qj >Q —[Q]=PL..,

we obtain by definition 1.1 and lemma 3.1 a commuting diagram

l'o(p,m

Q — PL.

i l . idj
P(A,;reR)—— PL.,
e ; |
' L.P—— PL.

diagram 2

which says that there exists a homomorphism §: L_P— PL_,. It remains to be
proved that A.g =id and §oh =id. In order to show that goh =id is enough to
establish goh(i(Q))=id. It is known that for every a € Q there exists a € Q, for
some jeJ such that ¢,.(a)=a. Now, gohoio@.(a) = g;-ij(a) (see diagram 1).
Since io ;. = g; oi; (see diagram 2), we get §oh(i(Q)) =id and whence §o.h =id.

Take aeL_P. There exists ae Q; for some jeJ such that h,olo(p,m((l) =

ho@i.(a)= a. However @j.ol; = holo(p,m Since io @ = g;oi;, we have hoio@;.. =
Qoq,ol, = (p,,,oz Therefore, @;.=hog; by definition 1.1. On the other hand
hogjol; = hogo o@j~oi;. Hence hod(@=(i(a))) = (@woij(a)) = a. Thus
(hog) (a)=a and h.g =id. The proof is complete.

Corollary. The operators of the free product of lattices and of the direct limit are
interchangeable (in the sense of theorem 3.1).

Poproduct and inverse limit

Suppose as above (J, =) to be a directed poset, (R, =) a poset and -
{A,;reR,jeJ} a family of pairwise disjoint lattices. We can form the poset
Q;=uU(A,; reR) for every jeJ. The family {Q,, jeJ} will become inverse if
there exist isotone mappings @j: Q;— Q; for any i=j such that ¢|/A, are
homomorphisms, ¢, =id for every i € J and @] @i = @i if i=j=k. We can define
A,=L_(A,;jel) for every re R. Since A, may be empty, we adapt slightly the
definition 1.1. Forming the poproduct P(A, ; r € R) we permit also the void lattices
A,. If A, =0 for all re R, then we put P(A,; re R)=0. Otherwise, the A, are
pairwise disjoint lattices and the set Q =U(A,; re R) can be ordered in the
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standard way. Now we define PL._ = P(A,;reR) = P(L_(A,;jeJ);reR)as
well as in definition 1.1 admitting that f, is a void homomorphism iff A, =0.

Having an inverse family (A, ; @, j € J) we can prolong uniquely the mappings
@i: Q—>Q; to @i: P(A,;reR) — P(A,; reR) such that (P(A,;reR); @,
i € J) becomes an inverse family. Hence we can form L. P = L_(P(A,; re R);
jel). '

Theorem 5.2. There exists a monomorphism h: P(L_(A,;; jeJ); reR) —
L_(P(A,; reR); jel), which need not be an epimorphism.

Proof. We have the canonical embedding i;: Q; — P(A,;;re R)foreveryje/J.
Let xeQ. Clearly, x = (x(i))ics, x())€Q.. Put g(x) = (;(x(j))),s €
II(P(A,;; re R); jeJ). Since the diagram

i
Q.-——]——>P(A,,-; reR)

| P
Q.——— > P(A.;reR)

commutes, there is g(x) € L._P. By easy computation we see that g: Q— L_P is an
injective mapping such that g/ A, is a homomorphism. Therefore, by definition 1.1,
there exists a unique homomorphism h: PL._— L._P such that h/Q=g.

Now we prove that h is injective. Let x, y € PL._. Suppose we have h(x)=h(y),
i.e. h(x)=h(y) and h(x)=h(y). There are a,, ..., a,, by, ..., b,, € Q and lattice
polynomials p, g € W(Q) such that p(a, ..., a.)=x, q(b, ..., b,,) =y. First con-
sider h(x)=h(y). Two cases can arise:

(i) There exists jeJ such that (h(x)) (j)=(h(y)) (j) follows from theorem 1.1,
condition (5).
(i) The property (i) is true for no jeJ.
In the first case there exist r, s € R with r =5, polynomials p’, q' and elements c,,
v G € {ay,...,a.}, dy, ..., d, € {by, ..., b.} (Proposition 1.2) such that
(h(x) N = pG(aG), .., 5@ = p'G(c())s ... i(c()) =
(h(») Dy = a((bs())s -y G5By = q'(5(di()), ..., i(di(j))). It is not
difficult to check that p(a, ..., a,)* is proper and p(a,, ..., a,)” = p'(ci, ..., ).
Analogously,  g(by, ..., bm)e) = q'(dy, ...,d)). Since p'(cy, .., ),
q'(d,, ...,d)e Q and h/Q = g is injective, we have p'(cy, ..., &) = q'(d,, ..., d)).
Therefore, by theorem 1.1, x=y.
In the second case (h(x)) (j) = (h(y)) (j) follows from theorem 1.1, conditions
(1)—(4), for every j e J. By easy computations we obtain x =y. In a dual manner
one can establish x =y, and the proof is complete.

Therefore h is a homomorphism. We shall show that h need not be an

epimorphism. It will follow from the following example.
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Example. Let R be a two-element antichain, R = {s, t}, let J =N (the set of all
natural numbers). Let A,, = {x1, ..., x?} be for each n=1 the n-element chain
with the following ordering: x?<x'<xi_,<...<xj3. Let A,={yi} and let
A, ={y%, ..., yi_1} be for each n>1 the (n — 1)-element chain with the following
ordering: yi<..<yn_,. For n=1,2, ... define the mappings @+1 n, @s1,» aS
follows: ‘ _

C@raa(xpty=xt for i<n+1,
@na, "(xn+l) X1,
@rer(yr*=y7 for i<n,
q)n+l.n()):+l) )’n 1.

Any element x € L_(A,,; n € N) can be written in the form of a sequence, i.e.
x =(x,). For each ne N, P(A,.; re R) is the free product of two chains. Let

w,=x1€P(A,;reR),

Wz—(xlv)’l)/\szP(Arz, reR),
wy=(((xivy2)Ax3)vy)AaxieP(A,;; reR),
wo=(((xIvy)Ax)vy)Axs) vy axie P(A.; reR),

W= ((XTVYRo)AXR) VYR )AXE )V ...VYT)AX; € P(An; r€R).

Let k be a function N—»uU(P(A,.; reR); neN) such that for each neN,
k(n)=w,. (In fact, k is a sequence {Wn}ren.) NOW @ns1, (Was1)=w, holds.
Therefore ke L_P.

We shall show that there is no w € PL_ such that h(w) = k. To prove this we shall
show that for each word w, such that w, =w, there is [(w,) = 2n—1. We shall
prove that in each such word w, there must occur all the 2n — 1 elements x7, ..., x7,
yT, ...y ya-1 Of the set A,,UA..

Suppose that there exists a word w, such that w, =w, and let z € A,,UA,, not
occur in w,. Let S ={a, b, ¢} be a three-element chain, a <b <c. We shall define
a mapping ¢: A,,UA,.— S as follows:

1. g(z)=b,
2. if x e A,,, then
g(x)=a if x occurs to the left of z in the word w,,
g(x)=c if x occurs to the right of z in the word w,;
3. if ye A., then
g(y)=c if y occurs to the left of Z in the word w,,
g(y)=a if y occurs to the right of z in the word w,.

From the definition of P(A.. ; r € R) it follows that the isotone mapping g can be
extended to the lattice homomorphism e: P(A.;reR)—S. Then e(w,)=
e(w,)=b=g(z), but in the expression of e(w,) ¢(z) does not occur
— a contradiction. Therefore for each word w, such that w,=w, there holds
[(w.)Zz2n—1.
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Suppose that there exists w € PL_ such that h(w)=k, w=w(x,, ..., x,,), where
for 1=i=m there holds x,, e L. (Asn; n€N) U L_(A,n; n€N), [((w)=m; then w,
= k(n) = (h(w)) (n) = (h(w(x,, ...x.,)) (n) = w(x,(n), ..., x,,(n)), but

[(w(x.(n), ..., x,,(n))) = m, m>1 and I(w,) = 2n-1. Now if we take

n= [m—;—l] +1, then 2n — 1>m, a contradiction.

Therefore k€ L_P has no preimage in PL_. This proves that h is not an
epimorphism.
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MNOMNPOOYKT CTPYKTYP
3y3ana Jlap3naHcka
Pesiome

B paGoTe w3yyaiorcs cBocrsBa nomnpoaykrta. ITonmpoaykT siBnsercs o6o6uieHHEM CBOGORHOIO
NPOM3BEACHAS U OPAMHAILHOM CyMMBbI CTPYKTYP.
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