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POLYTOPIC LOCALLY LINEAR GRAPHS 

BOHDAN ZELINKA 

Local properties of graphs were studied by many authors. Survey articles on 
this topic were written by J. Sedlacek [2], [3]. 

At the Czechoslovak Conference on Graph Theory in the Racek Valley in 
May 1986, D. Froncek [1] has introduced locally linear graphs and presented his 
results on their fundamental properties. Here we shall study locally linear 
graphs which are polytopic. All considered graphs are finite without loops and 
multiple edges. 

If G is an undirected graph and v is its vertex, then by NG(v) we denote the 
subgraph of G induced by the set of all vertices which are adjacent to v. lfNG(v) 
is regular of degree 1 (i. e. if all connected components of NG(v) are isomorphic 
to K2) for each vertex v of G, then G is called locally linear. 

A polytopic graph is a graph isomorphic to the graph of a convex polyhedron 
(in the 3-dimensional Euclidean space), i. e. a planar 3-connected graph. Its faces 
are determined uniquely. 

If in a polytopic locally linear graph G every triangle forms the boundary of 
a face, then G is said to have the property P. 

Theorem 1. Let G be a polytopic locally linear graph. Then each edge of G 
belongs to at most one triangular face. IfG has the property P, then each edge of 
G belongs to exactly one triangular face. 

Proof. Each edge e of a locally linear graph belongs to exactly one 
triangle [1]. If this triangle is the boundary of a face, then e belongs to exactly 
one triangular face; in the opposite case to no triangular face. If G has the 
property P, then only the first case can occur. • 

Now we describe a certain construction. 

Construction C. Let Gx, G2 be two vertex-disjoint polytopic graphs, let Fx (or 
F2) be a triangular face ofGx (or G2 respectively?) We choose a bijective mapping 
(p of the set of vertices of Fx onto the set of vertices of F2. Then we identify each 
vertex x of Fx with the vertex cp(x) of F2. The resulting graph will be denoted by 
G. 

Theorem 2. Let G be a polytopic graph. Then the following two assertions are 
equivalent: 
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(i) G is locally linear and has not the property P. 
(ii) G is obtained from two poly topic locally linear graphs by Construction C 

Proof. (i)=>(ii). As G has not the property P, it contains a triangle T 
which is not the boundary of any face; let uu u2, w3 be its vertices. Consider the 
representation of G by points and arcs in the plane. By Gx (or G2) denote the 
subgraph of G induced by the union of {u,, u2, u3} and the set of all vertices which 
lie outside (or inside respectively) of the triangle T. Evidently G is obtained from 
Gx and G2 by Construction Cand the graphs G,, G2 are polytopic. It remains to 
prove that both Gx and G2 are locally linear. If v is a vertex of Gx, v $ {ux, w2, u3}, 
then evidently NGi(v) = NG(v) and thus it is regular of degree 1. Analogously if 
v is a vertex of G2 and v<£{w,,u2,u3}. If ve{ux,u2,u3}, then NG(v) is the intersec­
tion of G, and NG(v). Let e be an edge of NG(v) with the end vertices vx,v2. If 
vx is in G1 and vx 4{ux, u2, u3}, then also v2 is in G,; otherwise e should cross an 
edge of T If vx e {ux, w2, w3}, then also v2 e {ux, u2, u3} and thus it is in Gx. Thus if 
one vertex of NG(v) is in G,, then also the other vertex of the same connected 
component ofNG(v) is in G,. An analogous assertion holds for G2. Hence NG (v) 
for each vertex v of G, and NGi(v) for each vertex v of G2 is regular of degree 1 
and both GX,G2 are locally linear graphs. 

(ii) => (i). Let G be obtained from two polytopic locally linear graphs G, and 
G2 by Construction C Let T be the triangle forming the identified boundaries 
of triangular faces of G, and G2. The graph G can be represented in the plane 
in the following way. We represent G, (or G2) so that its face with the boundary 
Fis not outer (or is outer respectively). Then the whole representation of G2 is 
inside the face of Gx with the boundary T. Hence G is planar and evidently also 
polytopic. For a vertex v of Gx (or G2) not belonging to T we have 
NG(v) = NG (v) (or NG(v) = NG (v) respectively). For a vertex v of T the graph 
NG(v) is the union of NG (v) and NG(v). These graphs have a common connected 
component which is contained in Fand no vertex of G, not in Fcan be adjacent 
to a vertex of G2 not in T hence G is locally linear. The triangle T is not the 
boundary of a face in G; hence G has not the property P. • 

As all considered graphs are finite, any polytopic locally linear graph G which 
has not the property Pcan be obtained from a finite number of polytopic locally 
linear graphs with the property Pby the repeated using od Construction C The 
minimum number of such graphs for a given graph G will be denoted by s(G). 

Theorem 3. Let G be a polytopic locally linear graph. Then G is Eulerian. 

Proof. Evidently G is connected. Any regular graph of degree 1 has an 
even number of vertices; therefore NG(v) for each vertex v of G has an even 
number of vertices and thus v has an even degree. • 
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Theorem 4. Let G be a polytopic locally linear graph with n vertices and m 
edges. Then 

2n = m = \2(n - 2)/5. 

Proof. As G is polytopic, the degree of each vertex of G must be at least 
3. As it is moreover Eulerian (Theorem 3), this degree must be even and thus at 
least 4. Hence the number of edges of G is at least 2n. The other inequality will 
be proved by induction according to s(G). If s(G) = 1, i. e. if G has the property 
P, then each edge of G belongs to exactly one triangular face and to exactly one 
non-triangular face. Letf' (orf") be the number of triangular (or non-triangular 
respectively) faces of G. Then m = 3f' and m = 4f". For the total number f of 
faces of G we havef = f' +f" = m/3 + m/4 = lm/12. From Euler's Formula 
we have n = m — f + 2 = m — lm/\2 + 2 = 5m/\2 + 2 and this yields 
m = \2(n — 2)/5. If s(G) > 1, then G is obtained from two graphs GX,G2 by 
Construction C and s(Gx) < 8(G), s(G2) < s(G); we may suppose according to 
the induction hypothesis that the assertion is true for G, and G2. Let Gx have nx 

vertices and mx edges, let G2 have n2 vertices and m2 edges. The graphs Gx and 
G2 have a common triangle in G, thus n = nx + n2 — 3, m = mx + m2 — 3. Acc­
ording to the induction hypothesis m, = \2(nx — 2)/5, m2 = \2(n2 — 2)/5, hence 
m = mx + m2 - 3 = \2(nx +n2- 4)/5 - 3 = \2(n - l)/5 - 3 < \2(n - 2)/5. D 

Now we shall study the graphs at which one of the bounds is attained. 

Theorem 5. Let G be a polytopic locally linear graph with n vertices and m 
edges, let m = 2n. Then G is the line graph of a polytopic graph without triangles 
which is regular of degree 3. 

Proof. Take the graph G' whose vertices are triangular faces of G and in 
which two vertices are adjacent if and only if they have a common vertex (as 
faces of G). The graph G is regular of degree 4, therefore any triangular face of 
G has common vertices with exactly three others; hence G' is regular of degree 
3. If we have drawn G in the plane, then we may draw G' in such a way that each 
vertex is drawn inside the corresponding triangular face of G and each edge is 
led over the vertex common to the faces of G corresponding to its end vertices; 
hence G' is polytopic. Evidently in G there are no three triangular faces with the 
property that any two of them have a vertex in common; otherwise there would 
be a fourth triangular face having an edge in common with all of them, which 
would contradict Theorem 3. This implies that G' is without triangles. Evidently 
G is the line graph of G'. D 

The inverse assertion is evident. 

Theorem 6. Let G' be a polytopic graph without triangles which is regular of 
degree 3. Then the line graph of G' is a polytopic locally linear graph with n 
vertices and m edges, where m = 2n. D 
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Theorem 7. Let G be a polytopic locally linear graph with n vertices and m 
edges, let m = \2(n — 2)/5. Then there exists a positive integer k such that 
n = 5k + 2, m = 12k and the number of faces of G is Ik. 

Proof. Evidently, as m is maximal possible, all non-triangular faces of G 
are quadrangular. Let / ' (or /" ) be the number of triangular (or quadrangular 
respectively) faces of G. Then m = 3f = 4 / " and/" = 3/74. The total number 
of faces of G i s / = f +f" = 7/74. A s / must be an integer and the numbers 
4 and 7 are comparatively prime, / must be divisible by 7 and thus f=lk for 
a positive integer k. Then f = 4k and m = 12k. From Euler's Formula we 
obtain n: = 5k + 2. D 

For each positive integer k by ££ (k) we denote the class of all polytopic 
locally linear graphs with 5k + 2 vertices and 12k edges. 

Theorem 8. The class ££ (1) is empty and all classes <£ (k) for k = 2 are 
non-empty. 

Proof. Suppose that j£?(1) is non-empty and let Ge<£(\). Then G has 7 
vertices and 12 edges, which contradicts the inequality 2n ^ m. Now we shall 
construct a graph G e i£ (k) for k = 2. Consider a circuit C of the length 3k. We 
denote its vertices by ux,..., uk, u\,..., u'k, u",..., uk in such a way that the edges 
of G are utu't, u'(u", u"ui+x for / = 1, ...,k, the sum / + 1 being taken modulo k. 
To C we add new vertices vx, ...,vk, v\,...,v'k and the edges utvt, u\v\, vtv\, v[u", 
vtu"_ j for i = 1, ...,k, the difference / — 1 being again taken modulo k. Finally 
we add two vertices x, y; the vertex x will be adjacent to the vertices ux,...,uk, 
u\,...,uk and the vertex y to the vertices vx,...,vk, v\,...,v'k. Evidently the 
number of vertices of the graph G thus obtained is 5k + 2. The reader may verify 
it himself that G is polytopic and locally linear and has 12k edges. D 
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ПОЛИТОПИЧЕСКИЕ ЛОКАЛЬНО ЛИНЕЙНЫЕ ГРАФЫ 

ВоМап ХеНпка 

Резюме 

Локально линейным называетя граф, в котором окрестность любой вершины порождает 
подграф, который является регулярным степени 1. В статье исследованы локально линейные 
графы, которые являются политопическими. Найдены оценки для числа ребер и исследованы 
графы с экстремальными числами ребер. 
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