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Abstract

We investigate some local versions of congruence permutability, reg-
ularity, uniformity and modularity. The results are applied to several
examples including implication algebras, orthomodular lattices and rela-
tive pseudocomplemented lattices.
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Congruence permutability, regularity, uniformity and modularity are well
studied concepts in universal algebra. For the convenience of the reader we
refer to [4]. We introduce and study some local versions of these notions.
In the following let A = (A,F ) be an arbitrary but fixed algebra and a, b

arbitrary but fixed elements of A.
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Definition 1 For every positive integer n and every i ∈ {1, . . . , n} let Cni

denote the set of all n-ary functions on A which are compatible with all con-
gruences on A with respect to the i-th variable, i.e. Cni consists of all functions
f : An → A satisfying the following condition: If a1, . . . , an, āi ∈ A, θ ∈ Con(A)
and aiθāi then

f(a1, . . . , ai, . . . , an)θf(a1, . . . , āi, . . . , an).

Moreover, put Cn := Cn1 ∩ . . . ∩ Cnn the set of all compatible n-ary functions
on A for all positive integers n.

Definition 2 A is called (a, b)-permutable if for all θ, φ ∈ Con(A) the assertions
a(θ ◦ φ)b and a(φ ◦ θ)b are equivalent. A is called (a, b)-regular if for all θ, φ ∈
Con(A), [a]θ = [a]φ implies [b]θ = [b]φ. A is called (a, b)-uniform if |[a]θ| = |[b]θ|
for all θ ∈ Con(A).

Remark 1 The following properties follow directly from Defintion 2:

• A is (a, b)-permutable if and only if A is (b, a)-permutable.

• A is permutable if and only if it is (c, d)-permutable for all c, d ∈ A.

• A is regular if and only if it is (c, d)-regular for all c, d ∈ A.

• A is (a, b)-uniform if and only if A is (b, a)-uniform.

• A is uniform if and only if it is (c, d)-uniform for all c, d ∈ A.

Theorem 1 (i) If there exists an f ∈ C1 with f(b) = a and f(a) = b then A is
(a, b)-permutable.
(ii) If there exist f, g ∈ C1 with f(b) = a and g(f(x)) = x for all x ∈ A then

A is (a, b)-regular.
(iii) If there exist f, g ∈ C1 such that f(b) = a and f(g(x)) = g(f(x)) = x

for all x ∈ A then A is (a, b)-uniform.

Proof Let θ, φ ∈ Con(A).
(i) If a(θ ◦ φ)b then there exists an element c ∈ A with aθcφb and hence

a = f(b)φf(c)θf(a) = b showing a(φ ◦ θ)b, i.e. a(θ ◦ φ)b implies a(φ ◦ θ)b. The
converse implication follows by symmetry.
(ii) Assume [a]θ = [a]φ. If c ∈ [b]θ then f(c) ∈ [f(b)]θ = [a]θ = [a]φ and

hence c = g(f(c)) ∈ [g(a)]φ = [g(f(b))]φ = [b]φ showing [b]θ ⊆ [b]φ. The
converse inclusion follows by symmetry.
(iii) If c ∈ [a]θ then g(c) ∈ [g(a)]θ = [g(f(b))]θ = [b]θ. If d ∈ [b]θ then

f(d) ∈ [f(b)]θ = [a]θ. Moreover, f(g(x)) = g(f(x)) = x for all x ∈ A. Hence
g|[a]θ and f |[b]θ are mutually inverse bijections between [a]θ and [b]θ proving
|[a]θ| = |[b]θ|. �
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Example 1 An implication algebra (cf. [1]) is a groupoid (A, ·) satisfying the
identities

(xy)x = x, (xy)y = (yx)x, x(yz) = y(xz).
This implies xx = yy, i.e. xx is a constant denoted by 1 (if A �= ∅ which we
will assume). Moreover, 1x = (xx)x = x and x1 = (1x)1 = 1. With the partial
order

x ≤ y if and only if xy = 1
(A,≤) is a ∨-semilattice with x ∨ y = (xy)y in which every interval [c, 1] is a
Boolean algebra. The element xy coincides with the complement of x∨ y in the
interval [y, 1].
An implication algebra is (a, b)-permutable if and only if a and b have a com-

mon lower bound, i.e. if and only if there exists an interval [c, 1] with a, b ∈ [c, 1]:
Firstly suppose that such an element c exists. Let +c denote the symmetric dif-
ference in [c, 1]. +c can be represented as a polynomial function and thus x+c y
makes sense for all x, y ∈ A and is in C2. Consequently f(x) = x+c (a+c b) is
in C1 and obviously satisfies condition (i) of Theorem 1.
On the other hand, suppose a and b do not have a common lower bound. Let

θ and φ be the principal congruences generated by (a, 1) and (b, 1), respectively.
It can be verified easily that (x, y) ∈ θ if and only if x ∧ y exists in A and
1 +x∧y (x+x∧y y) ≥ a ∨ (x ∧ y). Similarly φ can be characterized.
Obviously (a, b) ∈ θ ◦ φ. Assume (a, b) ∈ φ ◦ θ, i.e. there is d ∈ A such

that (a, d) ∈ φ and (d, b) ∈ θ. (a, d) ∈ φ implies (a, a ∨ d) ∈ φ which means
1 +a (a +a (a ∨ d)) ≥ b ∨ a by the above characterization of φ. This implies
a∨d ≤ 1+a (a∨b) and hence (a∨b)∧(a∨d) = a. (d, b) ∈ θ implies the existence
of b ∧ d and we infer a ∨ (b ∧ d) ≤ (a ∨ b) ∧ (a ∨ d) = a, hence b ∧ d ≤ a. This
is a contradiction to the assumption that a and b do not have a common lower
bound.
One might suspect that (a, b)-regularity and (a, b)-uniformity can be charac-

terized by the same condition as (a, b)-permutability. This is not the case: We
consider the implication algebra A with A = {1, a, b, c, d} consisting of the two
Boolean subalgebras {1, a, b, c} with c ≤ a, b ≤ 1 and {1, d}.
One can check easily that θ = {a, c}2 ∪ {1, b, d}2 and φ = {a, c}2 ∪ {1, b}2 ∪

{d}2 are congruences of A. We have c = a ∧ b, [a]θ = [a]φ but [b]θ �= [b]φ,
thus A is not (a, b)-regular. Moreover, |[a]θ| = 2 and |[b]θ| = 3, hence A is not
(a, b)-uniform.

Example 2 Let A denote the algebra (A, s1, s2) with A = {a, b, c, d} and unary
operations s1, s2 defined as follows:

a b c d
s1 d c c d
s2 b a d c

A has exactly 3 non-trivial congruences, namely
θ = {a}2 ∪ {b}2 ∪ {c, d}2,
φ = {a, d}2 ∪ {b, c}2 and
ψ = {a, b}2 ∪ {c, d}2.
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It follows
θ ◦ φ = θ ∪ φ ∪ {(c, a), (d, b)},
φ ◦ θ = θ ∪ φ ∪ {(a, c), (b, d)},
θ ◦ ψ = ψ ◦ θ = ψ,
φ ◦ ψ = ψ ◦ φ = A2.

A is (c, d)-permutable: For f := s1 ◦ s2 it holds f(c) = d and f(d) = c. Since
(b, d) ∈ (φ ◦ θ) \ (θ ◦ φ), A is not (b, d)-permutable.

A is (a, b)-regular: For f = g := s2 it holds f(b) = a and g(f(x)) = x for
all x ∈ A. Since [a]θ = [a]ω (where ω denotes the least congruence on A) and
[d]θ �= [d]ω, A is not (a, d)-regular.

A is (a, b)-uniform: In fact, for f = g := s2 it holds f(b) = a and f(g(x)) =
g(f(x)) = x for all x ∈ A. Since |[a]θ| �= |[d]θ|, A is not (a, d)-uniform.

Corollary 1 (i) If there exists f ∈ C32 with f(x, x, y) = f(y, x, x) = y for all
x, y ∈ A then A is permutable.
(ii) If there exist f, g ∈ C32 with f(x, x, y) = y and g(x, f(x, y, z), z) = y for

all x, y, z ∈ A then A is regular.
(iii) If there exist f, g ∈ C32 with f(x, x, y) = y and f(x, g(x, y, z), z) =

g(x, f(x, y, z), z) = y for all x, y, z ∈ A then A is uniform.

Proof (i) Put fcd(x) := f(c, x, d) for all c, d, x ∈ A. Then fcd ∈ C1, fcd(c) = d
and fcd(d) = c for all c, d ∈ A. According to Theorem 1, A is (c, d)-permutable
for all c, d ∈ A and hence permutable.
(ii) Put fcd(x) := f(d, x, c) and gcd(x) := g(d, x, c) for all c, d, x ∈ A. Then

fcd, gcd ∈ C1, fcd(d) = c and gcd(fcd(x)) = g(d, f(d, x, c), c) = x for all c, d, x ∈
A. Hence A is (c, d)-regular for all c, d ∈ A according to Theorem 1 and therefore
regular.
(iii) With the same notation as in the proof of (ii) we now have fcd(d) = c,

fcd(gcd(x)) = f(d, g(d, x, c), c) = x and gcd(fcd(x)) = g(d, s(d, x, c), c) = x for
all c, d, x ∈ A. By Theorem 1 A is (c, d)-uniform for all c, d ∈ A and hence
uniform. �

Example 3 Let L = (L,∨,∧,′ , 0, 1) be an orthomodular lattice. For x, y ∈ L
we define

x+ y := (x ∨ (y ∧ x′)) ∧ (x′ ∨ y′).
Then it can be proved with standard methods:

x+ 0 = 0 + x = x, x+ x = 0, (x+ y) + y = x.

Let f(x, y, z) := (x+y)+z, then we have f(x, x, y) = (x+x)+y = 0+y = y and
f(y, x, x) = (y+x)+x = y. Therefore L is permutable according to Corollary 1.
Now let f(x, y, z) := (y+ x) + z and g(x, y, z) := (y+ z) + x. Then we have

for all x, y, z ∈ L:

f(x, x, y) = (x+ x) + y = 0 + y = y,
f(x, g(x, y, z), z) = (((y + z) + x) + x) + z = (y + z) + z = y,
g(x, f(x, y, z), z) = (((y + x) + z) + z) + x = (y + x) + x = y.
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By Corollary 1 L is both regular and uniform.
In the following let 0 be a fixed element of A. Recall that A is called
• permutable at 0 (cf. [2], [4], [6]) if [0](θ◦φ) = [0](φ◦θ) for all θ, φ ∈ Con(A),

• weakly regular, (cf. [4], [5], [7]) if θ, φ ∈ Con(A) and [0]θ = [0]φ imply
θ = φ,

• locally regular (cf. [3], [4]) if a ∈ A, θ, φ ∈ Con(A) and [a]θ = [a]φ imply
[0]θ = [0]φ.

Corollary 2 (i) If there exists f ∈ C22 with f(x, 0) = x and f(x, x) = 0 for all
x ∈ A then A is permutable at 0.
(ii) If there exist f, g ∈ C22 with f(x, x) = 0 and g(x, f(x, y)) = y for all

x, y ∈ A then A is weakly regular.
(iii) If there exist f, g ∈ C22 with f(x, 0) = x and g(x, f(x, y)) = y for all

x, y ∈ A then A is locally regular.

Proof It is easy to see that A is permutable at 0 if and only if A is (c, 0)-
permutable for all c ∈ A, that A is weakly regular if and only ifA is (0, c)-regular
for all c ∈ A and that A is locally regular if and only if A is (c, 0)-regular for
all c ∈ A. Applying Theorem 1 to fc(x) := f(c, x) and gc(x) := g(c, x) the
assertions follow immediately. �

Definition 3 A is called (a, b)-semiuniform if |[a]θ| ≤ |[b]θ| for all θ ∈ Con(A).
A is called 0-semiuniform if A is (c, 0)-semiuniform for all c ∈ A.

Theorem 2 (i) If there exist f, g ∈ C1 with f(a) = b and g(f(x)) = x for all
x ∈ A then A is (a, b)-semiuniform.
(ii) If there exist f, g ∈ C22 with f(x, x) = 0 and g(x, f(x, y)) = y for all

x, y ∈ A then A is 0-semiuniform.

Proof (i) Let θ ∈ Con(A). If c ∈ [a]θ then f(c) ∈ [f(a)]θ = [b]θ. If d, e ∈ [a]θ
and f(d) = f(e) then d = g(f(d)) = g(f(e)) = e. Hence f |[a]θ is an injective
mapping from [a]θ to [b]θ proving |[a]θ| ≤ |[b]θ|.
(ii) Put fc(x) := f(c, x) and gc(x) := g(c, x) for all c, x ∈ A. Then fc, gc ∈

C1, fc(c) = 0 and gc(fc(x)) = x for all c, x ∈ A. According to (i) A is (c, 0)-
uniform for all c ∈ A, i.e. A is 0-semiuniform. �

Example 4 Every finite relatively pseudocomplemented lattice L = (L,∨,∧,
∗, 0, 1) is 1-semiuniform: Let θ ∈ Con(L). Since L is finite the class [c]θ contains
the greatest element c̄. Consider the function ϕc(x) := c̄ ∗ x. For x ∈ [c]θ we
have c̄ ∗ xθc̄ ∗ c̄ = 1, i.e. ϕc(x) ∈ [1]θ. Suppose x, y ∈ [c]θ and ϕc(x) = ϕc(y).
Then

x = c̄ ∧ (c̄ ∗ x) = c̄ ∧ ϕc(x) = c̄ ∧ ϕc(y) = c̄ ∧ (c̄ ∗ y) = y.

This shows that ϕc is an injection from [c]θ into [1]θ, i.e. L is (c, 1)-semiuniform
for all c ∈ L.
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Example 5 Every finite implication algebra A = (A, ·) is 1-semiuniform: Let
θ ∈ Con(A) and c ∈ A. Since A is finite, the class [c]θ has a greatest element c̄.
We consider ϕc(x) := c̄x. Then for x ∈ [c]θ we have

(c̄x)θc̄c̄ = 1,

hence ϕc(x) ∈ [1]θ. Suppose ϕc(x) = ϕc(y) for x, y ∈ [c]θ. We prove c̄x∧ c̄ = x:
Since x ∈ [c]θ we have x ≤ c̄ and x(c̄x) = c̄(xx) = 1 implies x ≤ c̄x. Now
suppose z ≤ c̄x and z ≤ c̄, i.e. z(c̄x) = 1 and zc̄ = 1. We have to show that
z ≤ x:

zx = (z(c̄x))(zx) = (c̄(zx))(zx) = ((zx)c̄)c̄ = ((zx)((zc̄)c̄))c̄
= ((zx)((c̄z)z))c̄ = ((c̄z)((zx)z))c̄ = ((c̄z)z)c̄ = ((zc̄)c̄)c̄ = c̄c̄ = 1.

This proves c̄x ∧ c̄ = x and analogously we obtain c̄y ∧ c̄ = y, thus we infer

x = (c̄x) ∧ c̄ = (c̄y) ∧ c̄ = y.

Consequently ϕc is an injection of [c]θ into [1]θ, whence |[c]θ| ≤ |[1]θ|. Thus A
is 1-semiuniform.

Definition 4 Let n > 1. A is called n-(a, b)-permutable if (a, b) ∈ θ ◦ φ ◦ θ ◦ . . .
(n factors) is equivalent to (a, b) ∈ φ◦θ◦φ◦ . . . (n factors) for all θ, φ ∈ Con(A).

Theorem 3 (i) If there exist functions f1 ∈ C31 ∩ C33 and f2 ∈ C32 ∩ C33

satisfying

f1(a, x, x) = a, f1(x, x, b) = f2(x, b, b), f2(x, x, b) = b,

for all x ∈ A then A is 3-(a, b)-permutable.
(ii) If there exists f ∈ C4 satisfying

f(x, x, x, a) = a, f(x, x, x, b) = b, f(x, x, b, b) = f(b, x, b, x)

for all x ∈ A then A is 3-(a, b)-permutable.

Proof (i) Let θ, φ ∈ Con(A) and (a, b) ∈ θ ◦ φ ◦ θ. Then there are elements
c, d ∈ A with aθcφdθb. We infer

a = f1(a, c, c)φf1(a, c, d)θf1(c, c, b) = f2(c, b, b)θf2(c, d, b)φf2(c, c, b) = b,

whence (a, b) ∈ φ ◦ θ ◦ φ.
(ii) Put f1(x, y, z) := f(z, y, z, x) and f2(x, y, z) := f(x, x, y, z). Then f1, f2

satisfy the conditions in (i). �

Definition 5 A is called n-modular (for n ≥ 2) if for every θ, φ, ψ ∈ Con(A)
with θ ⊆ ψ we have

(θ ◦ φ ◦ θ ◦ . . .︸ ︷︷ ︸
n factors

) ∩ ψ ⊆ θ ∨ (φ ∩ ψ).
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We remark that congruence modularity is equivalent to the condition θ ⊆ ψ
implies (θ∨φ)∩ψ ⊆ θ∨(φ∩ψ). Thus our concept of n-modularity is weaker than
congruence modularity. Obviously (n+ 1)-modularity implies n-modularity.

Theorem 4 Every algebra A is 3-modular (and hence 2-modular).

Proof Suppose θ, φ, ψ ∈ Con(A) with θ ⊆ ψ and (c, d) ∈ (θ ◦ φ ◦ θ) ∩ ψ.
Then there exist e, f ∈ A with cθeφfθd and we obtain eψcψdψf and hence
cθe(φ ∩ ψ)fθd. �

Example 6 Let A = (A, s1, s2, s3) be an algebra with 3 unary operations and
A = {a, b, . . . , g} with

a b c d e f g
s1 c d e e e e d
s2 e e e f g g f
s3 d c b a a b c

Then Con(A) ∼= N5 since Con(A) consists of the trivial congruences and

θ = {a, b}2 ∪ {c, d}2 ∪ {e, f}2 ∪ {g}2,
φ = {a}2 ∪ {b, c}2 ∪ {d, e}2 ∪ {f, g}2,
ψ = {a, b, g}2 ∪ {c, d}2 ∪ {e, f}2,

with θ ⊆ ψ. Hence Con(A) is not modular.
However, Con(A) is 4-modular: The only non-trivial case to be checked

refers to the triple (θ, φ, ψ) and we have

(θ ◦ φ ◦ θ ◦ φ) ∩ ψ = θ ⊆ θ ∨ (φ ∩ ψ).

We remark that θ ◦ φ ◦ θ ◦ φ is not a congruence since (a, e) ∈ θ ◦ φ ◦ θ ◦ φ while
(e, a) /∈ θ ◦ φ ◦ θ ◦ φ.

Definition 6 A is called (a, b)-modular if for all θ, φ, ψ ∈ Con(A) with θ ⊆ ψ
we have (a, b) ∈ (θ ∨ φ) ∩ ψ implies (a, b) ∈ θ ∨ (φ ∩ ψ).

Remark 2 Of course, if for all θ, φ ∈ Con(A) it is true that

(a, b) ∈ θ ∨ φ implies (a, b) ∈ θ ◦ φ ◦ θ (1)

or

(a, b) ∈ θ ∨ φ implies (a, b) ∈ θ ◦ φ (2)

then, by Theorem 4, A is (a, b)-modular. Hence it is a natural to search for
algebras satisfying the implications (1) or (2). Obviously (2) implies (a, b)-
permutability and (1) implies 3-(a, b)-permutability. We are going to find suffi-
cient conditions for (1) or (2).
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Proposition 1 Let R be a reflexive and compatible relation on A.
(i) If there exists an R-compatible unary function f : A → A such that

f(a) = b and f(b) = a then (a, b) ∈ R implies (a, b) ∈ R−1.
(ii) If there exist a function f : A3 → A compatible with R with respect to

the first and third component such that f(a, x, x) = a and f(x, x, b) = b for all
x ∈ A then (a, b) ∈ R ◦R implies (a, b) ∈ R.

Proof (i) If (a, b) ∈ R then (b, a) = (f(a), f(b)) ∈ R due to the compatibility
of f with R.
(ii) Let (a, b) ∈ R ◦ R. Then aRcRb for some c ∈ A and thus a = f(a, c, c)

R f(c, c, b) = b. �

For a binary relation R on A put [a]R = {x ∈ A | xRa}.
Definition 7 A is n-permutable at a (n > 1) if for all θ, φ ∈ Con(A)

[a](θ ◦ φ ◦ . . .) = [a](φ ◦ θ ◦ . . .)

(with n factors on both sides).

Theorem 5 Let A be n-permutable at a. Then for all θ, φ ∈ Con(A) we have
(a, c) ∈ θ ∨ φ if and only if (a, c) ∈ θ ◦ φ ◦ . . . (n factors).

Proof Evidently, (a, c) ∈ θ◦φ◦ . . . implies (a, c) ∈ θ∨φ. Now, let (a, c) ∈ θ∨φ.
Then there exists an integer m such that (a, b) ∈ θ◦φ◦ . . . (m factors). If m ≤ n
we are done. We proof the assertion for m = n+1 and n even, the general proof
works with the same idea. There exists an element d ∈ A such that

a(θ ◦ φ ◦ . . . ◦ φ︸ ︷︷ ︸
n factors

)dθc.

Hence d ∈ [a](φ ◦ θ ◦ . . . ◦ θ) (n factors). Due to n-permutability at a we have
d ∈ [a](θ ◦ φ ◦ . . . ◦ φ) (n factors), i.e.

a(φ ◦ θ ◦ . . . ◦ θ︸ ︷︷ ︸
n factors

)dθc,

hence
a(φ ◦ θ ◦ . . . ◦ θ︸ ︷︷ ︸

n factors

)c,

and again by n-permutability at a we arrive at (a, c) ∈ θ ◦φ ◦ . . .◦φ (n factors).
�

Corollary 3 If A is 3-permutable at a then A is (a, c)-modular for all c ∈ A.
Proof Let θ, φ, ψ ∈ Con(A) with θ ⊆ ψ and (a, c) ∈ (θ ∨ φ) ∩ ψ. Then due
to 3-permutability at a by Theorem 5 we have (a, c) ∈ θ ◦ φ ◦ θ, i.e. there are
d, e ∈ A with aθdφeθc. Consequently we obtain dψaψcψe and aθd(φ ∩ ψ)eθc.
Thus (a, c) ∈ θ ∨ (φ ∩ ψ) and we are done. �
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