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A COMBINATORIAL PROBLEM ARISING
IN FINITE MARKOV CHAINS

STEFAN SCHWARZ

Consider a homogeneous Markov chain with the transition probability matrix P.
By a constant stochastic matrix Q we mean a stochastic matrix all rows of which are

identical. It is well known that lim P* = Q for some constant matrix Q iff there is an

k=00

integer ko such that P* contains at least one positive column. (If P* has a positive
column, then for any integer k >k, the matrix P* has also a positive column.)

The following pertinent question arises. Suppose that some power of a non--
negative n X n matrix P has a positive column. What is the least integer k such that
P* has a positive column.

There are many known results concerning the powers of a non-negative matrix.
(See, e.g., the survey paper [3], and the books [1] and [4].) As far as I can decide
the question mentioned above has been explicitly treated only in the paper [8].
There is also a recent paper [S] in which a problem paralleling ours is treated (with
a different motivation). Both papers contain (in essential) the result k=
n*—3n + 3. Since the results of the present paper cover more than those of [5] and
(8] and also the proofs are quite different it seems to be worth to publish them.

If P is a non-negative matrix, the pattern of zeros and non-zeros of P completely
determines the pattern of zeros and non-zeros in every power of P. Hence the
supposition that P is stochastic is irrelevant for our purposes except that P does not
contain a zero row. Replacing the positive entries in P by 1 we may work with
Boolean matrices, i.e. n X n matrices over the Boolean algebra {0, 1}.

Even more convenient is to work with binary relations in the following sense.
(See [7]).)

Let V={a,, a,, ..., a,}, n=2, be a finite set of different elements. A binary
relation ¢ on V is a subset of VX V. Denote by B,(V) the set of all binary
relations on V.

To any o € B,(V) we asign the Boolean matrix M, =(m;), where m; =1 iff
(ai, a;) € o and m; =0 otherwise. Conversely, if M is an n X n Boolean matrix, we
define oum as follows: The couple (a;, g;) € om iff the element in the i-th row and
j-th column in the matrix M is the element 1 (of the Boolean algebra {0, 1}).
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The correspondence o <> M has the following properties. If o, o € B,(V), then

ovooM,+M,=M,,,,
0 0oM, M,=M,.

If peB,(V) and a; € V, we define
apo={xeV:(a,x)eo},
oa;={yeV:(y,aq)eo}.

Clearly

a;,eaqp<=>aq; € Qaj¢>(a,', a,') €Q0.

If U is a non-empty subset of V, we put U-po= |J a0 and o - U is defined

aeU
analogously.

In an intuitive manner: If A is an n X n Boolean matrix and ga the correspond-
ing binary relation, then a;0 describes precisely the places of non-zeros in the i-th
row of A. Analogously pa; describes the places of non-zeros in the j-th column of
A.

A graph-theoretical interpretation of a Boolean matrix A (and of the corres-
ponding binary relation g,.) is obvious. We may consider A as the incidence matrix
of a directed graph with vertices V= {a,, a,, ..., a,} and (a;, a;) € 0 means that
there is a path of length 1 from a; to a;. We shall denote this graph by G or G,,.
(Note that in these directed graphs loops at the vertices are allowable.)

1. Preliminaries

We now recall some notions which are well known in the theory of non-negative
matrices.
A Boolean matrix A is called reducible if there exists a permutation matrix P
such that

L_(B 0
PAP = p).

where B, D are square matrices of order =1. Otherwise it is called irreducible.
A relation g € B,(V) is called reducible iff M, is reducible. (A 1 X 1 matrix is
irreducible.) An irreducible matrix cannot contain a zero row or a zero column.

A relation g € B,(V) is reducible iff V can be decomposed into two non-empty
subsets V=V,uV,, VinV,=0, such that pe(V,X V,)u(V, X V)u(V, X V,).

If a column of a Boolean matrix contains no zeros, we shall say in the following
that the column is positive.

200



Lemma 1. If o € B,(V) is irreducible and U a non empty proper subset of V,
then Up contains at least one element of V which is not contained in U.

Proof. Let U={a,, ag, ..., a,}. Suppose for an indirect proof that {a,, 4, ...,
a,}-o0c{a, ag, ..., a,}. Let (a,, a,)€p. If a,€ U, we have necessarily a, € U.
Hence if a,€ U and a;, € V\U = U, then (a,, a,) ¢ 0. Therefore

0e(Ux U)u(Ux U)u(U x D),

i.e. o is reducible, contrary to the assumption.

Remark. Lemma 1 also holds if Up is replaced by oU.

In particular if g is irreducible, a;,0 contains at least one element of V. Next
apu(a) - 0 =a(ouUo?) contains at least two different elements of V. Further
a;(oup?)ula(oue?)] 0= a(pue?UpE?®) contains at least three different elements
of V. Repeating this argument we immediately obtain:

Lemma 2. If o € B.(V) is irreducible, then

a) apuap’v...uaE"=V, forany a;eV.
b) pupu..UpP"=VX V.
c) To any a; € V there is a least integer h;, 1 =h,=n, such that a; € a,o".

Note that we also have pa;up%a;U...Up"a;= V. Next by the same argument
which resulted in Lemma 2a we may prove (for g irreducible) that

a;uaEu...uaE" "=V (for any a; € V).

This implies:

Lemma 3. ¢ is irreducible iff G, is strongly connected.

An irreducible Boolean matrix A is called primitive if the is an integer t=1
such that A*=1, where I is the Boolean n X n matrix with all entries positive.
Analogously a relation g € B,(V) is called primitive if there is an integer t =1 such
that o=V X V.

Note that if g is primitive, then any power of g is primitive. (In contradistinction
to this a power of an irreducible matrix may be reducible.)

Lemma 4. If A is an irreducible Boolean matrix and some power of A has
a positive column, then A is primitive.

Proof. Denote p = ga. By supposition there is an element a* € V and an integer
s =1 such that p*a* = V. Let a; be any element of V, a;# a*. Since G, is strongly
connected there is a path of length s;, 1 =s;=n — 1 leading from the vertex a* to
the vertex a;, i. e. a* € o%a;. But then

s;+s

o aI.=Q‘ . Q-‘iaigg’a*: V,
whence o*i**a;= V. Putting so=max s;, we have 0**s0q, =V for any a;e 'V, i.e.
1
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o***=Vx V. Hence g is primitive. [We have used that p*a; = V implies p**“q, =
V for any integer u=0.]

Let now A be any Boolean square matrix. It is known and easy to see that there
is a permutation matrix P such that

A, 0 ... 0
papio|An A 0 )
Ag A ... A
where A; (i=1, 2, ..., k) are irreducible Boolean square matrices.

If some power of A has a positive column, the same is true for P A P~'. By
Lemma 4 in this case A, is necessarily primitive. Hence in the sequel it is sufficient
to consider the case of an n X n matrix M of the form
A 0)

Mz(c B

where A is primitive. We first treat the case M= A.

2. The case of a primitive matrix

Any n X n primitive Boolean matrix A contains at least one row and at least one
column containing at least two positive elements. Hence there is an a* e V such
that paa* contains at least two elements of V. Therefore (writing o =04) the
equality

pa*upla*u...upta*=V
can be replaced by

pa*upla*u...up " g*=V.

This implies that there is an integer h, 1=h=n -1, such that a*e g¢"a*. Now
consider the chain

pa*cp"tlg*cp™a*c .. .c ot VhIg*,
Since the first term contains at least two different elements of V we have
oM g* =V Now (n—2)h+1=(n—-2)(n—1)+1=n*-3n+3.

We have proved the first part of the following theorem.

Theorem 1. Let P be any non-negative n X n primitive matrix. Denote L =
n?—3n+ 3. Then P* contains at least one positive column. For any n =2 there are

matrices for which the number L cannot be replaced by a smaller one.
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To prove the second part consider the following n X n Boolean matrix W,.

010 .. 0

001 .. 0
W, =

0 00 ... 1

1 10

The corresponding graph is

a — a, — a3

r/

A, «— A _y < Ap-3 ...

Note that the matrix W, (Wielandt matrix) has been many times used in literature
to prove various extremal properties of non-negative matrices.

The case n=2 (i.e. L =1) is trivial. So we may suppose n =3.

It is sufficient to prove that WE~' does not contain a positive column. We prove
more precisely (writing o = ow,) that o"~' does not contain the couples (a,, a,)
(a3 as) ... (an-1, a,) (a., a;). Any path leading from the vertex a;_, to the vertex a;
(i=2, 3, ...,n) or from the vertex a, to the vertex a, has a length of the form
I(n—=1)+1+k-n, where /=0, k=0 are integers.

It is sufficient to show that an identity of the form

l+kn+l(n—1)=(n—-1)(n-2)

cannot hold. This identity can be written in the form
ntk+1)+I(n—=1)=(n-1)2 (1)

which implies (for n=3) (n—1)|(k+1), i.e. k+ 1 =v(n—1), where v =1 is an
integer. But then (1) implies nv +/=n—1, which is impossible. This proves
Theorem 1.

For further purposes we prove:

Lemma 5. The matrix Wy, L =n?>-3n+ 3 contains a unique positive column
(namely the second one).

Proof. Write again ow, = 0. It is sufficient to show that ¢* does not contain the
couples (a, ay) (az, aq) ... (an-2, a,) and (a,.-y, a;). Any path leading from the
vertex a; to the vertex a;,. (i=1,2, ..., n —2) or from the vertex a,_, to the vertex
a, is of the form k(n—1)+1-n+2. An equation

k(n—=1+1-n+2=n*-3n+3
would imply
k(n=1D+n(l+1)=(n-1)>~ )
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Hence (n —1)/n(l1+1),i.e. (for n=23) [+ 1 =v(n — 1) with an integer v = 1. But
then (2) would imply k + vn = n — 1, which is impossible. This proves Lemma 5.

We may use Theorem 1 to prove the following well-known Corollary which will
be needed in the following.

Corollary 1. If A is an n X n primitive Boolean matrix and S =n’—2n + 2, then
AS has all entries positive and for any n =2 there are matrices for which the integer
S cannot be replaced by a smaller one.

Proof. Write again g, =p9. By Theorem 1 there is an a*eV such that
ota*=V, when L=n*-3n+3. Since G, is strongly connected there is a path
from a* to a; of length s;, 1=s;,=n—1, i.e. a*€p*a,. Then

V=o'a*co ",

whence pot*a;= V. If so=max s;, we have o"**a; =V for any a;€ V, i.e. p* o=
t

VxV. But L+s5=n?>-3n+3+n—1=n>-2n+2. This proves the first
statement.

To prove the second statement consider again the matrix W,(n =3) and denote
0 = ow,. It is sufficient to prove that a, ¢ a;0°"'. Any path from vertex a, to the
vertex a; has a length of the form either k- n(k=1) or (n—1)+Il(n—1)+1+
kin=1I(n-1)+(k,+1)n (k;20, | =0). Hence it is sufficient to show that the
equation

I(n=1)+ (ki + Dn=(n—1) (3)

with [ Z0, k; 20 cannot hold. The equality (3) implies (for n Z3) (n —1)/(k,+ 1),
i.e. ky+1=v(n—1) with an integer v =1. But then (6) implies [+vn=n-1,
which is impossible. This completes the proof of our Corollary.

Remark. Itshould be emphasized once more that Corollary 1 has been proved
more or less independently by several authors. There are also deep considerations
concerning the conditions under which S can be replaced by a smaller integer. This
is done by considering the lengths of various circuits in the graph G,. (See [3].) The
last method has been used in [8] to prove Theorem 1. Our method is much simpler.

A numerical example. It may be of some interest to follow on a numerical
example the powers of W,, to see how the columns are successively filled up. Take,
e.g,n=5 Then L=13, S=17.

12
55 =

W5 =

-0 O o0
_—o o o
S OO = O
SO = OO
S = OO O
S === O
[ =)
—_— e O =
—_— O = e
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1101 1 11101
11101 1111 o0
s$={1 1110} wi={o 111 1
01111 11111])
11111 1111 1
11110 01111
01111 11111
s={1 111 1]} =11 111 1}
11111 11111
11111 1111 1

while W} has all entries positive.

3. The general case

Let us consider now the matrix

4)

M=(A O)’

C B
where A is an n, X n, primitive Boolean matrix and B an n, X n, Boolean matrix,
ny+n,=n, 1=n,<n. For convenience write V=V,uV,, where V,={a,, a,, ...,
an}. Vo ={by, by, ..., b,}.

Suppose that some power of M has a positive column. Then C cannot be
a (rectangular) zero matrix. Denote oc = ouN (Vs X Vo), 0a = omN(Va X V,), and
let there be

QC= {(bi, a;)y (bév aé)’ [ERT] (b:l9 al’l)}, (b’,e Vb’ a}E Va)-

By Theorem 1 there is a vertex a*e V, such that V,=0% a*, where L=
n% - 3"1 +3.

Let b; € V,. We first join the vertex b; with a suitably chosen vertex b by a path
of length =n,— 1. Such a path necessarily exists since V, € pga** for some s and
some a**e V,. [If b;e{bi, by, ..., by}, the path is simply of length 0.] Next we
apply the path b;— aj of length 1. We have aj € bio, where 1 =s; = n,. Multiplying
by o % we have ajorm ‘ic bioi. Since ajor ¥ @, we may state: To any b;e V,
there is at least one element a; € V, such that a; € bio}, i.e. b; € o3 - a:.

Now (and this is essential) since a; € V, = pka* c pfa*, we have b, € o+ a* for
any b;eV,. Hence V,coh*a*. Since also V,=p%*"a*c o' a*, we have
V=V,uV, =p"*ta*. (This says that the column in M":*" corresponding to a* is
positive.)
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Remark. If n,=1, we have V,={a,}, na=n—1, b;e 9% 'a, for any b, € V,, so
that the first column in M"™! is positive. (This will be used in the proof of
Theorem 3.)

Now

na+L=n—n+n}—-3n,+3=ni—-4n,+(n+3).
For a fixed n the function f(n,)=n?—4n,+(n+3), defined for all integers
n,€ (1, n—1), achieves its minimum for n,=2. We have f(2)=n -1, f(1)=n,
f(n=1)=n*-5n+8. For n=4 we have f(1)=f(n—1) so that n,+L=
n*—>5n+ 8. For n =2 we have trivially n,+ L =2. For n =3 a simple consideration
of all possible cases (i.e. n, =1 and n, = 2) shows that M? has a positive column.

We have proved the first part of the following Theorem.

Theorem 2. Let P be an n X n non-negative matrix having the property that
some power of P has a positive column. Denote K=n?>—5n+8. If P is not
primitive, then PX has a positive column. For any n =3 there are matrices for which
the number K cannot be replaced by a smaller one.

To prove the second part consider the n X n Boolean matrix

Wn—lv O)

M=( C, 0

where C is the 1 X (n—1) matrix (1, 0, ..., 0). Clearly M* has a positive column.
We prove that M*~! does not contain a positive column. Denote V, ={ay, a,, ...,
a,-1}, Vo ={b}. The corresponding graph is

b—-oa —>a — ..

r 7

Ap—1 €= Qp_y «— ...

We have proved (in Lemma 5) that WL_, with L=(n—-1)>-3(n—-1)+3=
n*—5n+7= K -1 contains a unique positive column, namely the second column.
To prove that the bound K given in Theorem 2 is sharp it is sufficient to show that
o' does not contain the couple (b, a,).

Any path from the vertex b to the vertex a, has a length of the form
2+k(n—1)+1(n—=2), k=0, IZ0. To show that the equation

2+k(n—-1)+1l(n—2)=n*>-5n+7 )]
has no solutions with non-negative integers k, [, we rewrite (5) in the form
(k+1)(n=-1)=(n-2)(n-2-1).

Since (for n=23)(n—1,n—2)=1, we have (n — 1) |(n — 2 — 1), which is impossible
since n —2 —[#0. This completes the proof of Theorem 2.

For n=3 we have n?—3n+3=n?—5n+8. For n=2 the problem is trivial.
Hence Theorem 1 and Theorem 2 imply:
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Corollary 2. Let P be any n X n non-negative matrix having the property that
some power of P has a positive column. Then the least exponent k for which P* has
a positive column satisfies the inequality k =n*—3n + 3.

4. A concluding question

Suppose that M is of the form (4) and suppose again that some power of M
contains a positive column. Then there is an integer / such that M' has all the first
n; columns positive. We ask: What is the least such integer /.

Questions of this type have been considered under some supplementary condi-
tions in the paper [6].

In the proof of Theorem 2 we have shown: If some power of M is positive, then
to any b; € V, there is an @ € V, such that @, e b,o3 ™. Denote S=n?—2n,+2. By
Corollary 1 we have a03 =V, for any a, € V,. This implies

V.=adoicagmcboi"™

’

i.e. V,XV,cofp, where Ro=ni—3n,+(n+2). Since also V,xX V,cogp we
conclude that all the first n, columns of M*® are positive. This result holds for any
n;Z1.1If n, =1, we get (by the Remark in the proof of Theorem 2) a sligthly better
result: V=V, UV, =0"""q,e.i. M""! has the first (and unique) column positive.

We have proved the first part of the following Theorem:

Theorem 3. Let P be a non-negative n X n matrix such that some power of P has
n, positive column and no power of P has more than n, positive columns. Hereby
1=n,<n. Denote
n—1if n,=1,

R={nf—3n1+(n+2) if n,>1. (6)

Then PR contains n, positive columns. This result is sharp in the following sense.
For any couple (n,, n), 1=n,<n, there is an n X n matrix Q for which Q®~'
contains less than n, positive columns.

To prove the second part we first settle the case n,=1. Consider the n X n
Boolean matrix

1 00 00
1 0 0 00
Q= 0 1 O 00
0 0 0 1 0

with the corresponding graph
b,.-] - ... b] - aD .
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Forie{l, 2, ..., n—1} we have boy ' =a,, while b,_;04? does not contain ay,
hence (b,,_l, al)é Q"Q_z.
In the following suppose n,>1 and consider the Boolean matrix
W, 0\
o=('¢" )

where C is the (n —n;) X n; matrix

10 ... 0
C=90'Ov
0 0 ... 0

and B is the (n —n,) X (n — n;) matrix

00 0 0
1 00
B=§ 0 1 00
0 0 1 0
The corresponding graph
bpewy > ... > by > by > a > a, — ..
r 7
Ap, €= Qp—1 < ...
shows that a,= b0 (for i=1, 2, ..., n—n,), which implies a,0%™ ™ = b0 ™.

Hence (with S=ni—2n,+2)
Vi=a10d =05 " '=bod" " =bi0§,

i.,e. V, X V,c 0§ and finally VX V,c 08, i.e. all the first n, columns of QF are
positive (and no power of Q has more then n, positive columns).

To prove our statement it is sufficient to show that 0§~ does not contain the
couple (b,-n,, ai1).

The vertex a, is reached from the vertex b,_, by paths of length either
n—n,+un, or by paths of length (n—n,)+1+v(n,—1)+(n,—Dw-n=n+
+v(n,— 1)+ w-n,, where u, v, w are non-negative integers.

An equality of the form n—n,+u-n=n}—-3n,+(n+1) implies u=

n,—2+ni, which is impossible for n,=2.
1
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The equality n + v(n;— 1)+ w - n, = n?—3n;+ n + 1 can be written in the form
U("1-1)+n1(W+1)=(n1—1)2- (7)

For n,=2 we would have v +2w+2=1, which is impossible. For n,>2 (7)
implies (n,—1)|ny(w + 1), hence (n,—1)|(w+1), i.e. w+1=1t(n,—1) with an
integer t=1. But then v(n;— 1)+ n,t(n,—1)=(n;—1)* implies v + nit=n,—1,
which cannot hold. This proves Theorem 3.

We finally state a result in which n, does not appear explicitly. For a fixed chosen
n consider the function R = R(n,) defined by (6) for all n,e {1, 2, ...,n—1}. The
function R(n,) is an increasing function of n, and we have R(n—1)=
(n=1)?*=-3(n—=1)+n+2=n*>—4n+6.

This implies:

Corollary 3. Let P be an n X n non-negative matrix such that some power of
P has a positive column and P is not primitive. Denote R, =n?—4n + 6. Then P®
contains the maximal possible number of positive columns. This result is sharp in
the following sense. For any n =3 the exists a non-negative non-primitive matrix
Q such that Q®~' does not contain the maximal possible number of positive
columns.
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OIHA KOMBHMHATOPHASA 3A0AYA,
BO3HUKAIOIIAA B KOHEYHBIX LIENIAX MAPKOBA

Stefan Schwarz
Pesiome
[MycTb P HEOTpHULATENBHAS 1 X N MATPHLLA CO CBOMCTBOM, UTO P* MMeeT nonoxHTenbHbI# cTonbel

1S HEKOTOPOTO HaTypanbHoro k >0. IToka3biBaeTcs, YTO HAUMEHbLEe Kk ¢ ITUM CBOMCTBOM yl0OBJET-
BopsieT HepaBeHCTBY k =n?—3n + 3. PewatoTcst Take HEKOTOPbIE CMEXHble BOMPOCHI.
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