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Math. Slovaca 36,1986, No. 2,199—210 

A COMBINATORIAL PROBLEM ARISING 
IN FINITE MARKOV CHAINS 

STEFAN SCHWARZ 

Consider a homogeneous Markov chain with the transition probability matrix P. 
By a constant stochastic matrix Q we mean a stochastic matrix all rows of which are 

identical. It is well known that lim Pk = Q for some constant matrix Q iff there is an 
k = oo 

integer k0 such that P*° contains at least one positive column. (If P*° has a positive 
column, then for any integer k>k0 the matrix Pk has also a positive column.) 

The following pertinent question arises. Suppose that some power of a n o n -
negative n x n matrix P has a positive column. What is the least integer k such that 
Pk has a positive column. 

There are many known results concerning the powers of a non-negative matrix. 
(See, e.g., the survey paper [3], and the books [1] and [4].) As far as I can decide 
the question mentioned above has been explicitly treated only in the paper [8]. 
There is also a recent paper [5] in which a problem paralleling ours is treated (with 
a different motivation). Both papers contain (in essential) the result k^ 
n2 — 3n + 3. Since the results of the present paper cover more than those of [5] and 
[8] and also the proofs are quite different it seems to be worth to publish them. 

If P is a non-negative matrix, the pattern of zeros and non-zeros of P completely 
determines the pattern of zeros and non-zeros in every power of P. Hence the 
supposition that P is stochastic is irrelevant for our purposes except that P does not 
contain a zero row. Replacing the positive entries in P by 1 we may work with 
Boolean matrices, i.e. n x n matrices over the Boolean algebra {0, 1}. 

Even more convenient is to work with binary relations in the following sense. 
(See [7]).) 

Let V={fli, a2, ..., an}, n § 2 , be a finite set of different elements. A binary 
relation Q on V is a subset of V x V. Denote by Bn(V) the set of all binary 
relations on V. 

To any Q e Bn(V) we asign the Boolean matrix MQ = (mij), where miy = 1 iff 
(a,, a,)e Q and m,7 = 0 otherwise. Conversely, if M is an n x n Boolean matrix, we 
define QM as follows: The couple (a*, aj)eQM iff the element in the i-th row and 
y'-th column in the matrix M is the element 1 (of the Boolean algebra {0, 1}). 
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The correspondence p<->M has the following properties. If p, o eBn(V), then 

pua<->Me + Ma = M o u a , 
QO<H>MQ • Ma = MQa. 

If p e Bn(V) and at e V, we define 

a,p = {xe V: (a,-, x)ep}, 

pa, = {ye V: (y, 0 , ) e p } . 

Clearly 

a, G aiQoai e pa7<->(a,, ay) e p . 

If 1/ is a non-empty subset of V, we put U • p = | J a,p and p • U is defined 
a .e l j 

analogously. 
In an intuitive manner: If A is an n x n Boolean matrix and pA the correspond­

ing binary relation, then a{Q describes precisely the places of non-zeros in the /-th 
row of A. Analogously Qa} describes the places of non-zeros in the /-th column of 
A. 

A graph-theoretical interpretation of a Boolean matrix A (and of the corres­
ponding binary relation pA) is obvious. We may consider A as the incidence matrix 
of a directed graph with vertices V={au a2, ..., an) and (ai9 a7)ep means that 
there is a path of length 1 from a{ to a,. We shall denote this graph by GA or GQA. 
(Note that in these directed graphs loops at the vertices are allowable.) 

1. Preliminaries 

We now recall some notions which are well known in the theory of non-negative 
matrices. 

A Boolean matrix A is called r educ ib l e if there exists a permutation matrix P 
such that 

B 0^ ' " - - ( ? £)• 
where B, D are square matrices of order i^ l . Otherwise it is called i r r e d u c i b l e . 
A relation peB„(V) is called reducible iff MQ is reducible. (A 1 x 1 matrix is 
irreducible.) An irreducible matrix cannot contain a zero row or a zero column. 

A relation p e Bn(V) is reducible iff V can be decomposed into two non-empty 
subsets V = V , u V 2 , V,nV2 = 0, such that p e (V, x V,)u(V2 x V,)u(V2 x V2). 

If a column of a Boolean matrix contains no zeros, we shall say in the following 
that the column is positive. 
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Lemma 1. If p e Bn(V) is irreducible and U a non empty proper subset of V, 
then UQ contains at least one element of V which is not contained in U. 

Proof. Let U = {aa, a^, ..., av}. Suppose for an indirect proof that {aa, a^, ..., 
av}-pc={a a , ap, ..., av}. Let (ax, a A )ep . If a* e 17, we have necessarily akeU. 
Hence if ax e U and ak e V\ U= U, then (ax, ak) £Q. Therefore 

Qe(UxU)u(Ux U)u(Ux U), 

i.e. p is reducible, contrary to the assumption. 
R e m a r k . Lemma 1 also holds if UQ is replaced by QU. 
In particular if p is irreducible, a,p contains at least one element of V. Next 

a,pu(a,p) • p = a,(pup2) contains at least two different elements of V. Further 
a , ( p u p 2 ) u [ a , ( p u p 2 ) ] p = a ; (pup 2 up 3 ) contains at least three different elements 
of V. Repeating this argument we immediately obtain: 

Lemma 2. If Q e Bn(V) is irreducible, then 

a) a ,pua Ip
2u. . .ua (p

n = V, for any a, e V. 
b) p u p 2 u . . . u p M = V x V. 
c) To any a, e V there is a least integer /z,, 1 ^ h{ ̂  n, such that a, e a , p \ 

Note that we also have pa I up 2 a i u. . .up n a , = V. Next by the same argument 
which resulted in Lemma 2a we may prove (for p irreducible) that 

a I ua i pu . . .ua I p
, l " 1 = V(for any a, e V). 

This implies: 
Lemma 3. p is irreducible iff GQ is strongly connected. 
An irreducible Boolean matrix A is called p r i m i t i v e if the is an integer / = . ! 

such that A' = l, where I is the Boolean nxn matrix with all entries positive. 
Analogously a relation p eBn(V) is called primitive if there is an integer t^l such 
that p ' = V x V. 

Note that if p is primitive, then any power of p is primitive. (In contradistinction 
to this a power of an irreducible matrix may be reducible.) 

Lemma 4. If A is an irreducible Boolean matrix and some power of A has 
a positive column, then A is primitive. 

Proof. Denote p = pA- By supposition there is an element a* e Vand an integer 
sSl such that psa* = V. Let a, be any element of V, a^a*. Since GQ is strongly 
connected there is a path of length s(, 1 -SsI=./i - 1 leading from the vertex a* to 
the vertex a,, i. e. a* eQ5ia{. But then 

ps,+5a, = QS - QSiat => p'a* = V, 

whence p5 '+sa,= V. Putting so = maxs,, we have p*+*o<|. =s V for any a, e V, i.e. 
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gs+so= vx V. Hence p is primitive. [We have used that pktf, = V implies Qk+Ua, = 
V for any integer w=_0.] 

Let now A be any Boolean square matrix. It is known and easy to see that there 
is a permutation matrix P such that 

PЛ P 

0 
0 

where A, ( / = 1 , 2, ..., k) are irreducible Boolean square matrices. 
If some power of A has a positive column, the same is true for PA P~l. By 

Lemma 4 in this case Al is necessarily primitive. Hence in the sequel it is sufficient 
to consider the case of an n x n matrix M of the form 

- G D-
where A is primitive. We first treat the case M = A. 

2. The case of a primitive matrix 

Any n x n primitive Boolean matrix A contains at least one row and at least one 
column containing at least two positive elements. Hence there is an a* e V such 
that QAa* contains at least two elements of V. Therefore (writing Q = QA) the 
equality 

can be replaced by 

Qa*UQ2a*u ...UQna* = V 

Qa*UQ2a*u...UQn l

a*=V. 

This implies that there is an integer h, l_.1z_.rz-V such that a*eQha*. Now 
consider the chain 

Qa* cz Qh + l

a* cz Q2h+1 a* cz ...cz Q(n~2)h + la* . 

Since the first term contains at least two different elements of V we have 
Q(n~2)h+1a* = V. Now ( n - 2 ) H l _ (n - 2)(n - 1) + 1 = n2 - 3rz + 3. 

We have proved the first part of the following theorem. 
Theorem 1. Let P be any non-negative nxn primitive matrix. Denote L = 

n2 — 3n + 3. Then PL contains at least one positive column. For any rz =_ 2 there are 
matrices for which the number L cannot be replaced by a smaller one. 
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To prove the second part consider the following n x n Boolean matrix Wn. 

Ѓ l 0 ... 0 
/ 0 0 1 ... 0 

wn=\ 
\ 0 0 0 ... 1 
\ l 1 

ç 

0 ... 0. 

Яi —> a2 - > Яз 

î / 

The corresponding graph is 

an <— an.x « - ^n-2 . . . 

Note that the matrix Wn (Wielandt matrix) has been many times used in literature 
to prove various extremal properties of non-negative matrices. 

The case n = 2 (i.e. L == 1) is trivial. So we may suppose n ^ 3 . 
It is sufficient to prove that Wn~

x does not contain a positive column. We prove 
more precisely (writing Q-Qwn) that QL~1 does not contain the couples (au a2) 
(a2, a3) ... (fl„-i, an) (an<> #i). Any path leading from the vertex fl,_, to the vertex A, 
(I = 2 , 3, ..., n) or from the vertex an to the vertex ax has a length of the form 
l(n - 1)4-1 4- k - n, where /i^O, fc^O are integers. 

It is sufficient to show that an identity of the form 

1 + kn + l(n - l) = (n - l)(n -2) 

cannot hold. This identity can be written in the form 

n(k + l) + l(n-l) = (n-l)\ (1) 

which implies (for n IS3) (n — l)\(k + 1), i.e. k + 1 = v(n - 1), where p ^ l is an 
integer. But then (1) implies nv + l = n — 1, which is impossible. This proves 
Theorem 1. 

For further purposes we prove: 
Lemma 5. The matrix WL, L = /? 2 -3/ /4-3 contains a unique positive column 

(namely the second one). 
Proof. Write again QWn = Q- It is sufficient to show that QL does not contain the 

couples (a, a}) (a2, a4) ... (an-2,an) and (an-uax). Any path leading from the 
vertex a, to the vertex ai+2 (' = 1*2 n - 2 ) or from the vertex a„_, to the vertex 
0, is of the form k(n - 1) + / • n + 2. An equation 

k(n- 1)4-/- H H . . 2 - = H 2 - 3 H + 3 

would imply 

* ( w - l ) + w ( / + l ) = ( w - l ) 2 . (2) 
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Hence (n - \)ln(l + 1), i.e. (for n=\3) l + \ = v(n-\) with an integer v=\l. But 
then (2) would imply k + vn = n — 1, which is impossible. This proves Lemma 5. 

We may use Theorem 1 to prove the following well-known Corollary which will 
be needed in the following. 

Corollary 1. If A is an n x n primitive Boolean matrix and S = n2 — 2n + 2, then 
As has all entries positive and for any n=\2 there are matrices for which the integer 
S cannot be replaced by a smaller one. 

Proof. Write again QA = Q> By Theorem 1 there is an a*eV such that 
QLa*= V, when L = n2-3n + 3. Since GQ is strongly connected there is a path 
from a* to a{ of length s,, l ^ s . ^ n - l , i.e. a*eQSiat. Then 

whence p 1 

V=QLa*czQL+s>at, 

a{= V. If So = maxs,, we have QL+S°al•,= V for any axe V, i.e. QL+SO = 

L + s0=
:n2-3n+3 + n-l = n2-2n + 2. This proves the first V x V. But 

statement. 
To prove the second statement consider again the matrix Wn(n =\3) and denote 

Q = Qwn- It is sufficient to prove that ax£axQ
s~l. Any path from vertex ax to the 

vertex ax has a length of the form either k • n(k=\\) or (n - 1) + l(n - 1)+ 1 + 
kxn = l(n-\) + (kx + \)n (k .SO, /SO) . Hence it is sufficient to show that the 
equation 

/ ( n - l ) + (fc, + l ) л = ( и - l ) 2 
(3) 

with / ^ 0 , /c, ^ 0 cannot hold. The equality (3) implies (for n S 3 ) (n - l)/(k, + 1), 
i.e. kx + l = v(n-\) with an integer v=\\. But then (6) implies I + vn=n-l, 
which is impossible. This completes the proof of our Corollary. 

R e m a r k . It should be emphasized once more that Corollary 1 has been proved 
more or less independently by several authors. There are also deep considerations 
concerning the conditions under which S can be replaced by a smaller integer. This 
is done by considering the lengths of various circuits in the graph GQ. (See [3].) The 
last method has been used in [8] to prove Theorem 1. Our method is much simpler. 

A n u m e r i c a l e x a m p l e . It may be of some interest to follow on a numerical 
example the powers of Wn, to see how the columns are successively filled up. Take, 
e.g., n = 5 . Then L = 13, S = 17. 

'0 1 0 0 0> 
0 0 1 0 0 

W5 = | 0 0 0 1 0 
0 0 0 0 1 

• 1 1 0 0 0/ 
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Z 1 ] l 0 1 г 
f l 1 0 1 

wp= 1 1 1 0 
1 

l o 1 1 1 
\ l 1 1 1 

Ѓ ] 1 0 

j 0 1 1 1 
wţ 5 = 

1 
1 1 1 1 

l1 ] 
1 1 

\ l 1 1 L 

0 1> 
0 

while W]7 has all entries positive. 

3. The general case 

Let us consider now the matrix 

M (4) 

where A is an nx x nx primitive Boolean matrix and B an n2 x n2 Boolean matrix, 
nx + n2 = n, l^nx<n. For convenience write V = Vf lu Vb, where Vfl = {ax, a2, ..., 
««,}. Vb = {bi, b 2, ..., b„2}. 

Suppose that some power of M has a positive column. Then C cannot be 
a (rectangular) zero matrix. Denote Qc = QMn(Vb x Vfl), QA = QMn(VA x Vb), and 
let there be 

Qc = {(b[, al), (b 2 , «i), ..., (b u, a'u)}, (b\eVb, a\eVa). 

By Theorem 1 there is a vertex a* e Va such that Va = QA a*, where L ^ 
n? — 3rii + 3. 

Let b, 6 Vb. We first join the vertex b, with a suitably chosen vertex b • by a path 
of length ^n2- 1. Such a path necessarily exists since Vb e QMa** for some s and 
some a**e Va. [If bie{b'u b 2 , ..., b„}, the path is simply of length 0.] Next we 
apply the path b \> —• a • of length 1. We have a) e biQ5

M, where 1 ^ s, .S AZ2. Multiplying 
by eXr5' we have fl^^'cb.glf. Since fljp!!f~,,^0, we may state: To any b, e Vb 

there is at least one element a, e Vfl such that d, e b.ipXf, i.e. b, 6 Qli • a,. 
Now (and this is essential) since a, e Va = QAa* c p^a*, we have b* 6 QM

t+La* for 
any M V b . Hence Vb a Q^La*. Since also Vfl = QA

2+La*^QnJi+La*y we have 
V = V f lu Vb = p" 2 + La*. (This says that the column in M" 2 + L corresponding to a* is 
positive.) 
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R e m a r k . If nx= 1, we have Va = {a-}, n2 = n - 1, bt£QnMla\ for any b{ e Vb, so 
that the first column in Mn _ 1 is positive. (This will be used in the proof of 
Theorem 3.) 

Now 
n2 + L = n - /ti + M2-3rii + 3 = / i 2 -4 t t i + (n + 3). 

For a fixed n the function f(nx) = n\ — Anx + (n +3) , defined for all integers 
/ii G ( 1 , n - 1), achieves its minimum for rii = 2. We have /(2) = n - 1, /(1) = M, 
/ ( r c - l ) = n 2 - 5 r z + 8 . For n__4 we have / ( l ) _ _ / ( n - l ) so that n2 + L__ 
n2 -5n + 8. For n = 2 we have trivially ri2 + L__2. For n = 3 a simple consideration 
of all possible cases (i.e. nx = 1 and Mi = 2) shows that M2 has a positive column. 

We have proved the first part of the following Theorem. 
Theorem 2. Let P be an n x n non-negative matrix having the property that 

some power of P has a positive column. Denote K = n2 — 5n + 8. HP is not 
primitive, then PK has a positive column. For any n i_ 3 there are matrices for which 
the number K cannot be replaced by a smaller one. 

To prove the second part consider the nx n Boolean matrix 

м=\ c, o)' c, 
where C is the 1 x (n - 1) matrix (1, 0, ..., 0). Clearly MK has a positive column. 
We prove that MKl does not contain a positive column. Denote Va = {au a2, ..., 
fln-i}, Vb = {b}. The corresponding graph is 

b —-> « ! —•• a2 —> . . . 

r / i 
an-\ <—- a„_2 «— ... 

We have proved (in Lemma 5) that W^_, with L = (n - l ) 2 - 3(n - 1) + 3 = 
n 2 - 5 n + 7 = K - l contains a unique positive column, namely the second column. 
To prove that the bound K given in Theorem 2 is sharp it is sufficient to show that 
QM'1 does not contain the couple (b, a2). 

Any path from the vertex b to the vertex a2 has a length of the form 
2 + k(n - 1) + l(n - 2), k __0, / i_0. To show that the equation 

2 + k(ti-l) + / ( n - 2 ) = n 2 - 5 n + 7 (5) 

has no solutions with non-negative integers fc, /, we rewrite (5) in the form 

(k + \)(n - 1) = (n -2)(n -2-1). 

Since (for n i_3)(n — 1, n - 2) = 1, we have (n - l)\(n — 2 — I), which is impossible 
since n — 2 — /=£0. This completes the proof of Theorem 2. 

For n i_3 we have n2 — 3n + 3__n2 — 5n + 8. For n=2 the problem is trivial. 
Hence Theorem 1 and Theorem 2 imply: 
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Corollary 2. Let P be any nx n non-negative matrix having the property that 
some power of P has a positive column. Then the least exponent k for which Pk has 
a positive column satisfies the inequality k^n2 — 3n + 3. 

4. A concluding question 

Suppose that M is of the form (4) and suppose again that some power of M 
contains a positive column. Then there is an integer / such that Ml has all the first 
Mi columns positive. We ask: What is the least such integer /. 

Questions of this type have been considered under some supplementary condi­
tions in the paper [6]. 

In the proof of Theorem 2 we have shown: If some power of M is positive, then 
to any b{ e Vb there is an a, ~ Va such that a, e biQ'M~ni. Denote S = n\ — 2nx + 2. By 
Corollary 1 we have dtQX = Va for any a, e V«. This implies 

Va=aiQ%czaiQMczbiQs
M

+n-n\ 

i.e. VbXVaCZQM0, where R 0 = n2
x - 3MI + (M + 2). Since also VaxVa-:Q

Rf we 
conclude that all the first Mi columns of M*0 are positive. This result holds for any 
Mi i= 1. If Mi = 1, we get (by the Remark in the proof of Theorem 2) a sligthly better 
result: V = Vau Vb = Qn~lau~-i- Mn~l has the first (and unique) column positive. 

We have proved the first part of the following Theorem : 
Theorem 3. Lef Pbe a non-negative nXn matrix such that some power of P has 

Mi positive column and no power of P has more than nx positive columns. Hereby 
1 ^ M I < M . Denote 

(n — 1 if Mi = 1, 
1 M 2 - 3 M I + ( M + 2 ) if Mi>l . 
.n - 1 11 ' 1 1 - 1, , , , 

Then PR contains nx positive columns. This result is sharp in the following sense. 
For any couple (nXy M), 1 ^ M I < M , there is an nXn matrix Q for which Q R _ 1 

contains less than nx positive columns. 
To prove the second part we first settle the case Mi = l. Consider the MXM 

Boolean matrix 

(\ 0 0 . .. 0 0 

I ' 1 0 0 . .. 0 0 

0 = 0 1 0 . .. 0 0 

^0 0 0 ... 1 0 

with the corresponding graph 

bn_x _* ... _+ bl^ a£ 
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For i e { l , 2, ..., n-l} we have biQQ'l = au while b„-ip0~
2 does not contain ax, 

hence (b„_i, fli)^pb~2. 
In the following suppose Mi>l and consider the Boolean matrix 

°-(£ «)• 
where C is the (n - rii) x nx matrix 

and B is the (n — nx)x (n — nx) matrix 

/ 0 0 . . . 0 0 
1 0 . . . 0 0 

= 0 1 . . . 0 0 

>0 0 ... 1 0/ 

The corresponding graph 

bn-ni —> . . . —> b2 —> bx —> «i —> a2 —> . . . 

flni <-- fln]_, «- ... 

shows that ax = biQQ (for / = 1, 2, ..., n-nx), which implies aiPo""1-1 = fe.Po-"1-
Hence (with S = n 2 -2r i i + 2) 

Va = flipg = a,p0
+"-"i-'= bfp0

+"-"i = biQ% , 

i.e. Vb x Va cz p 0 and finally V x Vf lc p 0 , i.e. all the first nx columns of QR are 
positive (and no power of Q has more then nx positive columns). 

To prove our statement it is sufficient to show that pg - 1 does not contain the 
couple (bn-ni, a,). 

The vertex ax is reached from the vertex /?„_.,. by paths of length either 
n-nx + unx or by paths of length (n - nx) + 1 + v(nx - \) + (nx - l)w- nx = n + 
+ v(nx- 1)+ wnx, where w, v, w are non-negative integers. 

An equality of the form n — n, + u • nx = n\ — 3n, + (n + 1) implies u = 

nx — 2-\—, which is impossible for nx^2. 
nx 
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The equality n + v (nx - 1) + w • nx = nj - 3n, + n + 1 can be written in the form 

u ( n i - l ) + rti(w + l) = ( " i - l ) 2 . CO 

For nx = 2 we would have v +2w + 2 = l, which is impossible. For rii>2 (7) 

implies (rii - 1) | Mi(w + 1), hence (nx - 1) | (w + 1), i.e. w + 1 = t(nx - 1) with an 

integer J 1=1. But then v(nx- l) + nlt(n1- l) = (nx- l ) 2 implies v + nxt = nx-\, 

which cannot hold. This proves Theorem 3. 

We finally state a result in which Mi does not appear explicitly. For a fixed chosen 

n consider the function R = R(nx) defined by (6) for all nte {1, 2, ..., n — 1}. The 

function R(nx) is an increasing function of nx and we have R(n — 1) = 

( n - l ) 2 - 3 ( n - l ) + n + 2 = n 2 - 4 n + 6 . 

This implies: 

Corollary 3. Let P be an n x n non-negative matrix such that some power of 

P has a positive column and P is not primitive. Denote Rx = n2 — 4n+ 6. Then PRl 

contains the maximal possible number of positive columns. This result is sharp in 

the following sense. For any n^3 the exists a non-negative non-primitive matrix 

Q such that Q R l - 1 does not contain the maximal possible number of positive 

columns. 
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OДHA KOMБИHATOPHAЯ ЗAДAЧA, 
BOЗHИKAЮЩAЯ B KOHEЧHЫX ЦEПЯX MAPKOBA 

Štefan Schwaгz 

Peзюмe 

Пycть P нeoтpицaтeльнaя n x n мaтpицa co cвoйcтвoм, чтo Pk имeeт пoлoжитeльный cтoлбeц 
для нeкoтopoгo нaтypaльнoгo k>0. Пoкaзывaeтcя, чтo нaимeныиee k c этим cвoйcтвoм yдoвлeт-
вopяeт нepaвeнcтвy k n2-Ъn + Ъ. Peшaютcя тaкжe нeкoтopыe cмeжныe вoпpocы. 
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