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THE DYNAMICS OF F-QUANTUM SPACES 

MONA KHARE 

(Communicated by Anatoli] Dvurecenskij ) 

ABSTRACT. The concepts of strong isomorphisms, weak isomorphism and con­
jugation in the dynamics of F-quantum spaces have been introduced and studied. 

1. Introduction 

An abstract dynamical system is a quadruple F = (X, B,p, / ) , where X is 
a nonempty set, B is a a -algebra of subsets of X, p is a normalized measure 
on B, and / is a measure preserving transformation on X. The study of con­
tinuous transformations, defined on a topological space (usually compact), with 
particular regard to properties of interest in the qualitative theory of differential 
equations constitutes the subject matter of topological dynamics. Many of the 
properties of transformation groups may just as well be isolated and studied for 
a single transformation and its iterates. 

A classical dynamical system is a pair (X, a), where X is a nonempty com­
pact Hausdorff space, and a is a continuous map of X into itself. Given a 
classical dynamical system, there exists a normalized (total measure one), posi­
tive measure fi on the class B of Borel sets of X such that a preserves the 
measure /I, i.e. (X,#,//, a) is an abstract dynamical system (cf. [1]). 

A theory of F-quantum spaces and their dynamics based on F-quantum 
spaces ([12], [13]) was developed and studied in [7]. 

An F-quantum space is a couple (X, M), where X is a nonempty set and 
M is a a -algebra of fuzzy events [11]. 

An F-state on an F-quantum space is a mapping m: M -» [0,1] satisfying 
the conditions: 

(i) m(f V / ' ) = 1 for every / G M; 
(ii) if {/J is a sequence of pairwise orthogonal elements from M, then 

m ( V / i ) = E m ( / i ) ; 
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here / ' = 1 — / and V fi = sup f{. The axioms of a a -algebra here are different 
from that of K l e m e n t [4], and the conditions on ra are also different. An 
F-quantum dynamical system is described as a quadruple (X, M, ra, U), where 
U: M -> M is a a-homomorphism (i.e. U(f) = 1 - U(f) and U(\J fn) = 
\JU(fn) for every f ~ M and any sequence {fn} G M, satisfying m(U(f)) = 
m(f) for every / in M). 

In a series of papers [5], [6], [7], efforts were made by M a r k e c h o v a to gen­
eralize to F-quantum dynamical systems the notions of isomorphism and conju­
gation of dynamical systems in classical probability theory. Various approaches 
to the problem of fuzzy generalization of Kolmogorov-Sinai entropy have been 
also offered by M a r k e c h o v a [6], [7] among others [2], [3], [11]—[13]. In a recent 
paper [16] we have been able to develop a more satisfactory theory of entropy 
of F-dynamical systems on the basis of yet another approach (see also [8]-[10], 
[14]-[16]). 

The present paper is devoted to the study of the concepts of strong isomor­
phism, weak isomorphism and conjugation in the theory of F-quantum spaces. 
The approach is based on the theory developed in [15], [16], We prove that 

strong isomorphism = > weak isomorphism = > conjugacy 

in the dynamics of F-quantum spaces. 

2. Basic definitions and results 

2 .1 . Let X be a nonempty set and J = [0,1] be the closed unit interval of the 
real line. 

A fuzzy set X in X is an element of the family Ix of all functions from X 
to J . For t G [0,1], the element A G Ix, defined by X(x) = t for all x in X, is 
denoted by t. If / : X -> Y is a function and ji G IY, then / - 1 ( / i ) is a fuzzy 
set in X denned by / _ 1 ( / i ) = /x o / . 

We write X{ "\ X and say that the sequence { A J ^ X of fuzzy sets in A" 
increases to A G Ix if {Aj(x)}.= 1 is monotonic increasing and converges to 
X(x) for each x in X. 

The map ' : Ix —j> Ix which assigns to A G Ix the fuzzy set 1 — A G Ix is 
called the complementation map and it satisfies the following: 

(i) (A')' = 1 ~ (1 ~ A) = A for all A in Ix; 
(ii) for any sequence {A^}?^ of elements in M, 

( oo \ ' oo / oo \ ' oo 

\JX{ =AA: and A M = V A ' . -
t = l / t= l \ z = l / i = l 
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2.2. ([4], cf. [16]) A fuzzy a-algebra M on a nonempty set X is a subfamily of 
Ix satisfying: 

Al . K M , 
A2. XeM = > 1 - A e . M , 
A3, for any sequence { A J ? ^ of elements in M, 

oo 

\J X. = sup A. G M . 
i=l 

Arbitrary intersection of fuzzy cr-algebras on a set X is a fuzzy cr-algebra on X . 
A fuzzy probability measure (or F-probability measure) on a fuzzy cr-algebra 

M is a function m: M —> I satisfying the following conditions: 

Ml . m ( l ) = l , 
M2. m ( l - A ) = l - m ( A ) , 
M3. for A, /i G M , m(A V /x) + m(A A /x) = m(A) + m(/x), 
M4. for any sequence {AJ^= 1 in yVf such that X^ X, m(A) = supm(A i ) . 

i£N 

The triple (X, M,m) is called an F-probability measure space. 

2.3. Let (X, M,m) and (Y,JV, n) be F-probability measure spaces. A transfor­
mation <f>: (X, M,m) -» (Y,AT, n) is called F-measure preserving if 4f~1(Af) C 
yVl and m(^ _ 1 ( / i ) ) = n(/i) for all /i G A/\ 

2.4. An F-quantum dynamical system is a quadruple (X, JVf,m, 0 ) , where 
(X, yVf,m) is an F-probability measure space and 0 is an F-measure preserv­
ing transformation from (X, M,m) to itself. 

2.5. Let (X, M,m) be an F-probability measure space. Define a relation 
= (mod m) on M as follows: 

A = \i (mod m) 4-=> m(A) = m(/i) = m(A A \i), 

where A, /i G jVf. 
If A = \i (mod m ) , then we say that A and /x are m -equivalent 
Alternatively A = /JL (mod m) if and only if m(A A fi) = m(A V /x). Also, 

A = /i (mod m) implies A = A V \i (mod m) and A = A A /i (mod m ) . 

T/ie relation of m-equivalence on M is an equivalence relation. ([15]) 

2.6. Let ( X , M , m ) be an F-probability measure space. We denote by M the 
collection of all equivalence classes induced by the relation of m-equivalence on 
M; /i denotes the equivalence class determined by /x G M. We may define 

A V Jx = (A V /x)~ and A A /x = (A A fi)~ . 
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For any sequence {//J in M, we define 

oo / OO \ ~ 

Vft-(V*) • 
i=\ \i=\ I 

Since A = /i (mod m) implies 1 - A = 1 - // (mod m ) , we may define 

( A ) ' = ( i - A r . 

Under these operations induced from M, .M forms a fuzzy cr-algebra. Define 
m : M —•> I by ra(/i) = ra(/x). Then ra is an F-probability measure on M. The 
pair (M,m) is called an F-measure algebra ([15]). 

3. Isomorphism and conjugation 

DEFINITION 3.1. Two F-quantum dynamical systems (X,M,m,(f)) and 
(Y, A/", n, -0) are called strongly isomorphic if there exists a bijective mapping 
n: X -> F satisfying 

(i) Xe M if and only if A o n _ 1 G TV; 
(ii) ra(A) = n(A o n " 1 ) for all A G M; 

(iii) the diagram 

ГҪ 7̂ 

Y > Y 

commutes, i.e. ip o n = n o 0. 

DEFINITION 3.2. Two F-quantum dynamical systems (X, .M,ra,0) and 
(F,JV, n , ^ ) are called weakly isomorphic if there exists a bijective map 5: 
yVf —> JV satisfying 

(i) £ preserves lattice operations, i.e. 

( oo \ oo 

VAn = V W ; «(i-A)-.i-<y(A), 
n = l / n = l 

for all AGjV(, and for any sequence {An}^L1 in M; 
(ii) m(S~1(fi)) = n(/i) for all /i G A/*; 
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(iii) the diagram 

M —^ M 

N - - - - - > AT 
commutes, i.e. 

5(C/1(A))=L72(5(A)), A G M ; 

here [^(A) = Ao0 and U2(fi) = /xo<0, \€ M, /xGJV. 

THEOREM 3.3. If two F-quantum dynamical systems $x = (X,M,m, 4>) and 
$ 2 = (y,JV, n,^) are strongly isomorphic, then they are weakly isomorphic. 

P r o o f . Let 77: X —• Y be a bijective mapping satisfying 3.1.(i)-(iii). Define 
6: yVi-rJVby 

5(A) = A o 77-1, A G yVf. 

For any /x G JV, put A = /x o 77. Then A G JVf, and 

tf(A) = 5(Lx o 77) = (/x o 77) o 77-1 = /i 

show that 5 is surjective. 
Next, let Ap A2 e M such that Ax 7-= A2. Then there exists x £ X such that 

Aj(x) 7-- A2(x). Let y = rj{x). Then 

^ X y ) = (A. or?'
1)(y) = (A. o - " 1 ) ^ ) ) 

= Ax(x) 7- Aa(x) 

= (A2o7? '1)(r7(x))=5(A2(y)) ) 

which yields that 5 is injective. Thus 5 is bijective. 
(i) For any sequence { A , , } ^ in M, 

( oo \ / oo \ oo oo 

V M = V M oT?_1 = V^or,"1) = V *(A»); 
n=l / \ n = l / n= l n= l 

and, for any A G M, 

6(\') = A; o 77-1 *= (A o 77"1)' = 1 - 6(\). 

(ii) For any /x G JV, using 3.1.(ii)> we get 

m^-^ /x) ) = m(/x o 77) = n((/x o 77) o T/"1) = n(/x). 

(iii) We first prove that 
77 o cj) = ip o 77 - ^ 77""1 0-0 = 00 77-1 . 
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For any y € Y, there exists x € X such that r}{x) = y, and therefore 

{v-1°4>){y) = r1-
1{i>{y))=r1-

1(Hv{x))) 

= r)-1{v{<t>{x))) = <t>{x) = Hv-1{v)) = fa <" .•-%)• 

Now, for A G M, we have 

= (A o 77-1) o ^ = A o (rj~l o i/j) = A o (0 o 77-1) 

= Et1(A)orr1=<J(lt.(A)). 

Thus $-_ and $ 2 are weakly isomorphic. D 

DEFINITION 3.4. ([15]) Let (X,M,m) and (Y,J\f,n) be F-probability mea­
sure spaces, and let (M,m) and (Af,n) be their corresponding F-measure 
algebras. Then (M,m) and (Af, n) are called isomorphic if there is a bijective 
map £: Af —r M which preserves countable joins, complements and satisfies in 
addition 

™(£(P)) — ™(P) f°r a^ A ^ A/"; 
£ is called F-measure algebra isomorphism. 

DEFINITION 3.5. Let 0: (X,M,m) -> (X,Af,m) and ^ : (r,JV,n) -> 
(Y,AT, n) be F-measure preserving transformations. We say that </> is conjugate 
to ^ if there exists an F-measure algebra isomorphism £: (JV", n) —r (yVt,m) 
such that (/>(f(/i)) = f(^(£))» M € -Af. here 0(A) = (0(A)) ~, A G yW; and 
^ ( / i ) = ( ^ - 1 ( / i ) ) ^ , / i G y V r . 

PROPOSITION 3.6. Let T denote the family of all F-measure preserving 
transformations from an F-probability measure space (X,M,m) to itself. Then 
the relation of conjugacy on T is an equivalence relation. 

THEOREM 3.7. / / two F-quantum dynamical systems (X,M,m,<p) and 
(Y,Af,n,ip) are weakly isomorphic, then <f> is conjugate to ip. 

P r o o f . Let 5: M -•> Af be a bijective mapping satisfying 3.2.(i)-(iii). De­
fine f: Af -» M by 

m = (^(^y, fieAf. 
(i) Let Ai-/^ € Af, and £0^) = £(/i2). Then, using 3.2.(ii), we get 

^ ( r 1 ^ ) ) =m(r1(/i2)) =m(S~1(Hi) A ^ W ) =m(r1(/i1 A/i2)) , 
or 

™(/^i) = n(/12) = ^(^1 A / i
2 ) ? 
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i.e. /JL1 ~ /i2 , and so jll = /I2. Thus £ is injective. 
(ii) For any v G M, put \i — S(v) G Af. Then // G JV* and £(/i) = £. Hence 

£ is surjective. 
(iii) For /2 G JV\ we have 

m(£(£)) = m ^ O O ) " * ) = m ^ - 1 ^ ) ) = n(M) = n(jl). 

Hence £ is F-measure preserving. 
(iv) Finally, for \x G AT, using 3.2.(iii), we get 

Hm) = H(s-1 (»))") = (0-1(^-1(M))r 
= ((5o^-i(M)r = ((vo5)-i(M)r 
= (*-i(^-io-))r 
=e(^-i(/j)r)=e(^(/i)). 

Hence ^ is conjugate to ij). D 

THEOREM 3.8. If F-quantum dynamical systems (X, Ar,m, 0) and 
(y,JV, n,-0) are strongly isomorphic, then 0 is conjugate to if;. 

P r o o f . The theorem follows from Theorem 3.3 and Theorem 3.7. • 
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