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(Communicated by Martin Škoviera ) 

ABSTRACT. We examine how the symmetry of a self-dual polyhedron affects 
its rank, answering some questions in [JendroF, S.: On the symmetry groups of 
self-dual convex polyhedra, Ann. Discrete Math. 51 (1992), 129-135]. 

A polyhedron P is said to be self-dual if there is an isomorphism 8: P —+ P* , 
where P* denotes the dual of P . We may regard 8 as a permutation of the 
elements of P which sends vertices to faces and vice versa, preserving incidence. 
For example, the regular tetrahedron and its dual are isomorphic, and the self-
dual permutation may be taken to correspond to the antipodal map. 

The character of the permutation 8 has only recently been considered. In [3], 
an example of a self-dual polyhedron is given for which no self-dual permutation 
has order 2 . Given a self-dual polyhedron P , the least order of any self-duality 
is called the rank of P , r(P). It is easy to see that r(P) must be a positive 
power of 2, 

The possible symmetries of a self-dual polyhedron were enumerated in [4], 
and the following result is stated which indicates how the symmetry class can 
affect the rank. 

THEOREM 1. If a self-dual polyhedron P has a central symmetry, then r(P) 
is either 2 or 4 . 

The symmetry does not completely determine the rank, as the following ex­
ample illustrates. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 52B10, 05C10 . 
K e y w o r d s : polyhedron, duality, self-duality, rank . 
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FIGURE 1. Self-dual polyhedra with fourfold rotational symmetry 

Figure 1 shows Schlegel diagrams of four self-dual polyhedra, each with sym­
metry group [4]+ . All have rank 2 except Figure lb, which has rank 8. 

In [5], it is shown that every self-dual polyhedron P corresponds to a bi-
colored map M on the sphere obtained by embedding the graph of P (one 
color) together with the graph of P * (second color) such that the automorphism 
group of the map M , Aut(M), is one of the isometry groups of the sphere, 
and [Aut(M), Aut(P)] — 2. In this setting, the self-dualities correspond to 
the elements in Aut(M) - A u t ( P ) . We call Aut(M) > Aut(P) the self-dual 
pairing of P . For example, the pairing corresponding to the regular tetrahedron 
is [3, 4] > [3.3], which reflects the usual embedding of the pair of dual tetrahedra 
in the cube (see [2] for the notation of the isometry groups of the sphere). 

The self-dual pairings were catalogued in [6], and the pairing does determine 
the rank. 
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T H E O R E M 2. 

If Aut(P) = [2]+ or Aut(P) = [2,2+], then r(P) may be either 2 or 4 . 

If Aut(P) = [g]+, q > 2, then r(P) may be either 2 or qjs, where s is the 
largest odd divisor of q. 

If Aut(P) E {[q] (q> 1), [2,2], [2,2]+, [2+2+], [2+4+], [2+4], [3,3], [3,3]+}, 
then r(P) = 2. 

P r o o f . If Aut(P) = [2]+, then its pairing is either [2,2]+ > [2] + , 
[2,2+] > [2]+, in which case r(P) = 2, or [4]+> [2]+ for which r(P) = 4. 

If Aut(P) = [2,2+], then the pairing of P is either [2,2] > [2,2+], so 
r(P) = 2, or [2,4+] > [2,2+], in which case r(P) = 4. 

If Aut(P) = [qr]+, q > 2, then the pairing of P is [2,g]+ > [q]+ (for q = 4, 
see Figure la and d), [2, q+] > [<?]+ (see Figure lc), in which case r(P) = 2, or 
[2, 2g+] > [gj+ (See Figure lb) , in which case the rank is q/s. 

Because for any other pairing the rank is 2, we are done. • 

In particular, if P has any symmetry excepting rotational symmetry, then 
r(P) is 2 or 4. 
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