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ON FACE-VECTORS AND VERTEX-VECTORS 

OF POLYHEDRAL MAPS 

ON ORIENTABLE 2-MANIFOLDS 

STANISLAV JENDROL 

(Communicated by Martin Skoviera) 

ABSTRACT. Let Pk(M) and Vk(M) denote the number of fc-gonal faces and 
fc-valent vertices, respectively, of a polyhedral map M on closed connected orien-
table 2-manifold Tg of genus g, g > 0 . A pair of sequences (pk (M) \ k > 3) 
and (vk(M) \ k > 3) associated in a natural way with M is called the face-
vector and the vertex-vector of M, respectively. Let p = (pk | 3 < k 7- 6) and 
v = (vk I k > 4) be a pair of sequences of non-negative integers satisfying a 
necessary combinatorial condition £ (6 — k)pk + 2 ^ (3 — k)vk = 12(1 — g). 

fc>3 k>3 

Denote by P6(p, v, g) the set of all non-negative integers p6 such tha t if p6 is 

added to p and V3 = — ( JZ ^Pk ~ X. ^vk ) - s added to v, the face-vector and 

the vertex-vector of a polyhedral map M on Tg for given integer g, g > 0 , is 
obtained. In the present paper we determine, for each triple (p, v, g) up to two 
ones, the set P6(p,v,g) except for a finite number of its members. 

1. Introduct ion and main results 

Let Tg be a closed connected orientable 2-manifold of genus g. A map M is 
said to be a polyhedral map on Tg provided that M is a 2-dimensional topologi­
cal cell-complex decomposing Tg or, equivalently, M is a cellular embedding of 
a graph G on Tg having properties analogous to the ones of convex polyhedra. 
(That is each face of M is a 2-cell and no two faces have a multiply connected 
union. See [2], [8], [21], [22].) 

2-cells, 1-cells and 0-cells of M are called faces, edges and vertices, respec­
tively. A face (vertex) is i-gonal (i-valent) if it is incident with i edges. By 
Pi(M) or Vi(M) we denote the cardinality of the set of i-gonal faces or i-valent 
vertices, respectively. Clearly Pi(M) = p2(M) = v\(M) = v2(M) - 0 . 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 05C10. Secondary 52B70. 
K e y w o r d s : Polyhedral map, Eberhard 's type result, Face-vector, Vertex-vector . 
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Much effort has been devoted to study of vectors (pi(M) \ i > 3) and 
(vi(M) | i > 3) associated in a natural way with a map A/ on Tg and called 
the face-vector and the vertex-vector of M, respectively. For a survey see e. g. 
[9], [11], [21], [22], [24]. 

The problem of determining which pair of sequences of non-negative integers 
(A) can appear as the face-vector 

(Pi\i> 3) and (v{ \ i > 3) (A) 

and the vertex-vector of a polyhedral map A/ on Tg for a given non-negative 
integer g seems to be difficult. On the one hand the famous Euler formula 
p(M) + e(M) -v(M) = 2(1 -g) (where p(M) or e(M) or v(M) is the number 
of faces or edges or vertices of M on Tg , respectively) as applied to the elements 
of (A) provides the following necessary condition 

^ ( 6 - i ) P i + 2 ^ ( 3 - z K = 1 2 ( l - 5 ) - (1) 
t>3 i>3 

An interesting property of (1) is that it gives no information about the values 
pe and V3. However, the next evident necessary condition 

]Civi = 51ipi = ° ( m o d 2) (2) 
z>3 t>3 

yields a relationship among v% , PQ and other elements of the sequences (A). 

On the other hand there are the pairs of sequences (A) which satisfy the 
conditions (1) and (2) for some g and which are not the face-vectors and the 
vertex-vectors of maps on Tg. See e. g. [1], [8], [9], [12], [15], [18], [19], [20], [22]. 

The equality (2) allows the following reformulation of the problem: 

Consider a pair of sequences of non-negative integers 

P = ( P ; | 3 < z ^ 6 ) , v = (vi\i>4) (B) 

and a non-negative integer g satisfying (1). The triple (p,v,g) determines 
the set PQ(P, v,g) of all non-negative integers such that the sequence p with 
any element of P§(p,v,g) added as pe and the sequence v supplemented by 

V3 = ~ ( ^2 ipi — ^2 ivi) is ^ n e face-vector and the vertex-vector of a polyhe-
6 M>3 i>4 ' 

dral map A/ on Tg , respectively. The problem consists in characterizing the set 
Pe(p,v,g) for all triples (p,v,g). 
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E b e r h a r d [3] was the first to consider questions of the above type. He 
proved that the set Pe(P> v*,0) is non-empty for any p. (Here and in the sequel 
v* = (vi | Vi = 0 for all i > 4).) Eberhard's result served as a starting point for 
many different investigations mainly thanks to G r i i n b a u m who renewed 
the interest in Eberhard's Theorem, gave a clear proof [8] and some ramifications 
and analogues of it, see [9], [10], [11], [13], [14]. Some interesting properties of the 
set P6(p, v*,0) were found by G r i i n b a u m and M o t z k i n [12], F i s h e r 
[6], K r a e f t [23] and J e n d r o F [15]. J e n d r o F and J u c o v i c in 
[18], [19], generalized Eberhard's result by determining all the triples (p,v,g) 
for the set P&(p,v,g) to be non-empty. 

The next result is a generalization of some mentioned above. 

THEOREM 1. ([17]) Let p = (p{ | 3 < i ^ 6) and v = (vi\i>4) be a pair of 
sequences of non-negative integers satisfying (1) and (2) . 

(i) U J^Pk = 0 for k = l (mod 2) and £ vk = 1 for k^O (mod 3 ) , 
k>3 fc>3 

then the set P6(p,v,0) is empty. 
(ii) If the condition of (i) are not satisfied, 

y^(Pfc + vk) < 2 for k =£ 0 (mod 3) and 
k>3 

^2 Pm + ^2vn = 0 (mod 2) , 
3<m?-6 n > 4 

then there exists a constant d = d(p, v) depending on the elements of 
p and v such that P6(p,v,0) contains all even integers > d and no 
odd integers. 

(iii) If the conditions of (i) are not satisfied, 

^2(Pk + vk) < 2 for k^O (mod 3) and 
k>3 

^2 pm + 11, Vn -l ( m o d 2) * 
3 < m ^ 6 n > 4 

then there exists a constant d = d(p, v) depending on the elements of 
p and v such that P6(p,v,0) contains all odd integers > d and no 
even integers. 

(iv) If the conditions of (i) are not satisfied and 

]T(Pk + ^ k ) > 3 for fc=2.0 (mod 3) , 
k>3 

then there exists a constant d = d(p, v) depending on the elements of 
p and v such that the set P6(Piv,0) contains all integers > d. 
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The main results of the paper generalize and extend previous results of [3], 
[6], [12], [15], [16], [17], [18], [19], [23]. We show that the phenomena like those 
of (i), (ii) and (iii) of Theorem 1 for g = 0 does not occur for g > 2 . We have 

THEOREM 2. For any triple (p,v,g) satisfying (1) and (2) with g > 2 there 
is a constant d depending on the triple (p,v,g) such that the set Pe(p,v,g) 
contains all integers > d. 

For g = \ i.e. for toroidal polyhedral maps the situation is as follows: 

THEOREM 3. Suppose the triple (p,v,\) satisfies the conditions (1) and (2) . 

0) If zC Pk 7̂  2 or ^2 vk 7̂  0 ; then there exists a constant d 
3<fc?-6 k>4 

depending on the triple (p,v,\) such that PQ(P,V,\) contains 
all integers > d. 

(ii) If ps = p7 = \ , pk = 0 for k 7-- 5, 7 and vk = 0 for all k > 4 . then 
the set P(P, v, 1) is empty. 

(iii) If p 4 = p8 = 1, Pi = 0 for i ^ 4,8 or p 3 = p9 = 1. ^ = 0 
for i ^ 3 ,9 , and V{ = 0 / o r a// i > 4 . then there is a constant d 
depending on the triple (p,v,\) that P$(p, v, 1) contains every even 
number > d. 

The rest of the paper is organized as follows: 

In Section 2 we give the necessary definition and the elementary construc­
tions. In Section 3 there are formulated some existence lemmas. In Sections 4 
and 5 we bring the proofs of our results. Section 6 contains some discussion on 
some relatives of our results and of a few open problems. 

2. Basic construction e lements 

Basic face construction elements (see [15], [16]): 

The face-aggregate of a map M as in Fig. l a or 2a or 3a (or their mirror 
images) called an Am configuration, or a Bm configuration or a Cm configu­
ration consists of an z-valent vertex, x > 3 (denoted by small black circles in 
the said Figures) trivalent vertices and an ra-gon, m > 6, two hexagons and 
one quadrangle, or of an m-gon, m > 6, two hexagons and two quadrangles, 
or of an ra-gon, m > 6, two hexagons and three quadrangles, respectively; the 
ra-gon mentioned will be called a basic face of the configuration. (We note that 
in the sequel g,h,i,j,k,l,m,n,t,x, mean non-negative integers. We shall de­
note in the figures the size of every non-hexagonal face excluding faces of the Â  
configurations, X G {Am, Bm, Cm, D,E,F, G, Um, Vm, Wm} , bounded by heavy 
lines, hexagons are to be denoted only in more important cases. Non-trivalent 
vertices will be denoted by small black circles.) 
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Basic face construction steps: A basic construction step transforms a start­
ing map M into a map M'; it uses the presence of the Xm configuration, 
X e {A,B,C} in M (see Figs. 1, 2, 3). For the map M' we have p±(M') = 
p4(Af) + l , pm+2(M') = p m + 2 ( M ) + l , pj(M') =Pj(M), i ^ 4 , 6 , m , m + 2 
and PQ(M') = PQ(M) + Z (Z = 2,3 or 7 for X = A,B or C , respectively), 
pm(M') = pm(M) - 1 (if m ^ 6) or p6(M') = p6(M) + z - l (if m = 6) , 

vm(M') = vm(M) for m ^ 3 , v3(M') = T ( £ kpk - £ fojfc) . For continuing 
6 V k > 3 k>4 7 

the construction it is important that transforming an Am configuration (a Bm 

or a C m configuration) we get a Bm+2 configuration (a Cm+2 or an Am+2 con­
figuration) and a BQ configuration (a CQ or an AQ configuration, respectively) 
(differing only in their basic faces). If an (m + 2)-gon is needed, we use the basic 
construction step to the XQ configuration; if not, use the Xm+2 configuration 
producing an (m + 4)-gon. Note that the transformation of a C m configuration 
yields a new CQ configuration face-disjoint from Am+2 and AQ configurations 
(see Fig. 3b); this CQ configuration is not used in basic construction steps. 

Basic vertex construction elements ([17]) are the face-aggregates in Fig. 4a or 
5a or 6a (or their mirror images) called a Um configuration or Vm configuration 
or Wm configuration, respectively. The Um configuration, Vm configuration or 
Wm configuration consist of an m-valent vertex, m > 3 (denoted in Figures by 
small black circles), at most one other non-trivalent vertex and a quadrangle and 
a hexagon or two adjacent quadrangles or a triple of quadrangles and a hexagon, 
respectively. 

The basic vertex construction step transforms a map M into a map M'; it 
uses the presence of the Ym configuration Y E {U, V, W} in M and changes it as 
in Figures 4b, 5b and 6b. In the map M' we have p±(M') = p 4 ( M ) + 3 , PQ(M') = 
p6(M) + z (z = 10,9 or 11 for Y = U, V or TV, respectively). pi(M') = pi(M) 
for all i > 3 , i ^ 4,6; v{(M') = v{(M) for i > 3 , i ^ 3,m, m + 3 ; vm(M') = 
vm(M) - 1, vm+3(M') = vm+3(M) + 1, vs(M') = v3(M) + t (t = 21 , 21 
or 25 for Y = U,V or W respectively). For continuing the construction it is 
important that transforming a Ym configuration we get a Fm+3 configuration 
and a CQ configuration. If a (m + 3)-valent vertex is needed, for continuing the 
construction the XQ configuration is used, where X = A,B or C if Y = U, V 
or W respectively. (Note that the Ym+3 configuration is a part of the XQ 
configuration (see Figs. 4b, 5b, 6b).) If not, we continue in the construction by 
using the Ym+3 configuration. 

Let M = M(q, Hj, g, a, b, c) be a polyhedral map on an orientable surface Tg 

of genus g with the following properties: 
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(i) The sequences q = (qi | i > 3) and w = (wi | z > 3) are the face-vector 
and the vertex-vector of M respectively. 

(ii) M contains as submaps at least a AQ configurations, a > 0, b BQ 
configurations, b > 0, and c C 6 configurations, c > 0, such that all 
configurations mentioned are pairwise face-disjoint. 

Auxiliary construction elements: The configurations shown in Fig. 7 will play 
an important role together with the basic construction elements. The configu­
ration shown in Fig. 7a will be designated as a D configuration (and its mirror 
image as a D' configuration). Figs. 7b, 7c and 7e show configurations which 
will henceforth be designated as E, F and G configurations, respectively. All 
the vertices of the configuration E and F are trivalent. All vertices of the 
configurations G and D but one are trivalent. 

3. Existence lemmas 

In this chapter some lemmas are stated which will be useful to the proofs of 
an existence of polyhedral maps on the orientable surface of genus g for any 
<7>0. 

Agreements: 

1. An assumption in some lemmas in the sequel that an X configuration, 
X G {D, E, F, G} , is in the map M = M(q, w, </, a, b, c) will also mean that 
the X configuration is face-disjoint with any of a AQ configurations, b BQ 
configurations and c C 6 configurations of the map. 

2. As a simplification we will not write down the value w% in the records 
of vertex-vectors of maps in lemmas below. As shown by (2) the value W3 is 
uniquely determined by the other members of the vertex-vector and all the 
members of the face-vectors of the map. 

LEMMA l . a ( a e {1 ,2, . . . , 9 } ) . (cf. [17]) Let u = (ux \ i > 4) be a 
sequence of non-negative integers with a finite number of non-zero elements with 
X > f c EE 0 (mod 2) for 4 < k ^ 0 (mod 3) and let 

3 = 3 + 5^(i - S)UІ 
i>4 

If there is a map M = M(q, w, #, a, b, c) with a + H c / 0 , then there is a map 
Mf = M(qf,w',g,a',bf,cf) with qf = (q[ \ q[ = qt for all i > 3, i ^ 4, 6, 
q4 — q4 + 7*4 , qf

6 = q6 + r 6 ) and wf = {w[ \ w[ = Wi -f U{ for all i > 4 . ^ 3 ) . 
For the values a, r 4 , a'\ bf, d see Table l.a a G {1, 2, 3} if a ^ 0 . a G {4, 5, 6} 
if b ^ 0 and a G {7, 8, 9} ifc^O. The value rg is a constant depending on 
the sequence u . 
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Table 1. 

a 3 г4 
a' b' c' 

1 Зk ЗJfc a b c + к 
2 ЗA; + 1 ЗJfc + 1 a-1 6 + 1 c + к 
3 Зк + 2 Зк + 2 a-1 6 c + к + 1 
4 Зfc Зfc a 6 c + к 
5 Зк + 1 Зк + 1 a 6 - 1 c + к + 1 
6 Зк + 2 Зк + 2 a+1 6 - 1 c + к + 1 
7 Зк ЗJfc a 6 c + к 
8 Зк + 1 Зк + 1 a+1 6 c + к 
9 ЗJfc + 2 Зfc + 2 a 6 + 1 c + к 

LEMMA 2. a ( a G {1 , 2, . . . , 2 7 } ). (cf. [15, p. 172, Lemma 3.a]) 
Let f = (fi | i > 7) be a sequence of non-negative integers with a finite number 
of non-zero elements and let 

< = 6 + £( t -6) /« . 
i>7 

If there is a map M = M(q,w,g,a,b,c) with a + 6 + c 7-= 0 , then there is a 
map M' = M'(q',w',g,a',b',c') with q' = (q[ \ q'r = qr + sr for 3 < r < 6, 
Qi = Qi + fi for all i > 7) and w' = (w[ \ w[ = Wi for all i > 4 , w'3); 
for the values S3, s4, s 5 , a ' ,b ' , c ' see Table 2.a a G {1,2, . . . , 9 } if a ^ 0 ; 
a G {10 , . . . , 18} if b ^ 0, a G {19 , . . . ,27} if c ^ 0 . The value s6 is a 
constant depending on the sequence f. 

LEMMA 3 . (cf. [16]) If there is a map M = M(q,v,g,a,b,c) with c > 2 . then 
there is a map M' = M(q', v', g + 1, a, b, c — 2) such that q' = (q[ \ q[ = q{ for 
all i 7-- 4 , g4 = g4 — 6) and v' = (v[ \ v[ = Vi for all i>A, v'3 = V3 — 8). 

LEMMA 4. ([15, p. 174]) Let M = M(q, w, g, a, b, c) be a map and let f3, / 4 , / 5 

be non-negative integers satisfying following conditions 

(i) 3/3 + 2 / 4 + U = 3g3 + 2g4 + g5 ; 
(ii) h > g s , qs < h < q s + l ; 

(iii) /3 < 2c + g3 or / 3 = 2c + g3 + 1 and b ^ 0 . 

Then there is a map M' = M(q',w',g,a',b',c') with 

°' = Wi I q'r = fr, 3 < r < 5 ; q'6 = g6 - (/5 - g 5 ) , q[ = qi for all i>7), 

w' = (w[ I w[ = Wi for all i>4, w3) and a' > 0 , b' > 0 , c' > 0 . 
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Table 2. 

Q t «з s 4 «5 a! V ć 

1 бfc 0 З f c - 3 0 a Ь c+k-1 
2 6fc + l 1 З f c - 4 0 a-1 6 c+k-1 

3 6fc + l 0 З f c - 3 1 a-1 6 c + k-1 

4 6fc + 2 0 З f c - 2 0 a-1 6 + 1 c + k-1 

5 6fc + 3 1 З f c - 3 0 a 6 c + k-1 
6 6fc + 3 0 З f c - 2 1 a-1 6 + 1 c + k-1 
7 6fc + 4 0 З f c - 1 0 a-1 6 c + f c 
8 6fc + 5 1 З f c - 2 0 a-1 6 + 1 c + fc- 1 
9 6fc + 5 0 З f c - 1 1 a-1 6 c + f c - 1 

10 бfc 0 З f c - 3 0 a 6 c + fc- 1 

11 6fc + l 1 З f c - 4 0 a + 1 6 - 1 c + fc-1 

12 6fc + l 0 З f c - 3 1 a 6 - 1 c + f c - 1 

13 6fc + 2 0 З f c - 2 0 a 6 - 1 c + f c 
14 6fc + 3 1 З f c - 2 0 a 6 c + fc- 1 
15 6fc + 3 0 З f c - 2 1 a 6 - 1 c + fc- 1 
16 6fc + 4 0 З f c - 1 0 a + 1 6 - 1 c + fc 
17 6fc + 5 1 З f c - 2 0 a 6 - 1 c + fc 

18 6fc + 5 0 З f c - 1 1 a 6 - 1 c + f c 

19 бfc 0 З f c - 3 0 a 6 c + fc- 1 
20 6fc + l 1 З f c - 4 0 a 6 + 1 c + fc-2 
21 6fc + l 0 З f c - 3 1 a 6 c + fc-2 
22 6fc + 2 0 З f c - 2 0 a + 1 6 c + f c - 1 
23 6fc + 3 1 З f c - 3 0 a 6 c + fc- 1 
24 6fc + 3 0 З f c - 2 1 a 6 c + fc- 1 
25 6fc + 4 0 З f c - 1 0 a 6 + 1 c + f c - 1 

26 6fc + 5 1 З f c - 2 0 a + 1 6 c + fc- 1 

27 6fc + 5 0 З f c - 1 1 a 6 c + fc- 1 

LEMMA 5. (cf. [16]) If there is a map M = M(q,w,g,a,b,c) with at least one 
G configuration, then there is a map M1 = M(q', w',g, a, 6, c) with one less G 
configuration such that 

q = (Qi I q'i = qi for all i^ 4,5,6, q4 = a4 - 1, qi = g5 + 2 , q'6 = q6 - 2) , 

wf = (w[ I w[ = Wi for all i > 4, wf

3 = w% — 2). 
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LEMMA 6. a ( a 6 {1 , 2, 3 ,4, 5} ). If there is a map M = M(g, w, g, a, 6, c) 
with e , e > 1 ; mutually face-disjoint E configurations, then there is a map 
M' = M(o / ,tU / ,g,a, 6, c) withe' E configurations, 

q' = (q'i I gj = qj + rj . 3 < j < 6 , qi = qz / o r a// i > 7) ana7 

if/ = (u^ | w\ = Wi for all i > 4 , 103), 

where for: 

a = 1 e' 

a = 2 e' 

a = 3 e' 

a = 4 e ; 

a = 5 e' 

= e , r 3 = r4 = r5 = 0 , r6 = 4í for any t > 1, gf = g \ 

= e - 1, r 3 = 2 , r4 = - 3 , r5 = 0 , r6 = 5 , g' = g \ 

= e - l , r 3 = l , r4 = - 2 , r5 = 1, r6 = 2 , g' = g\ 

= e - l , r 3 = l , r4 = - 3 , r5 = 3 , r6 = 1, g' = g\ 

= e - 2 , e > 2 , r 3 = r5 = 0, r4 = -6, r6 = - 4 , g' = g + 1. 

P r o o f . For a = 1 or 5 see [16]. The necessary changes in the interior of 
the E configuration for the remaining cases are left to the reader. • 

LEMMA 7. (cf. [16]) If there is a map M = M(g, v ,g ,a ,6 , c) with at least one 
F configuration, then there is a map M' = M(q',v',g,a,b,c) with one less F 
configuration and such that 

Qf = Wi I Qi =qi for all i^ 4,5,6, q'A = g4 - 2 , g5 = g5 + 4 , q'6 = q6 

w' = (w[ I w[ = Wi for all i > 4 , w'3), where z = 3,4,5 or 6 . 

*), 

LEMMA 8. Le£ M = M(q, v, g, a, 6, c) 6e a map with C7--O, a + 6 < l ana7 a 
pair o/ adjacent quadrangles face-disjoint with a A6 , b B6 and c C6 config­
urations of M and let f3, / 4 , / 5 , h are non-negative integers such that 

(i) h > 9 3 , h ><15 + 4 , 
(ii) 3g3 + 2g4 + g5 = 3 / 3 + 2 / 4 + / 5 + I2h, 

(iii) 3 ( / 3 - g 3 ) + ( / 5 - q 5 ) < 6 c + 46 + 2 a , 
(iv) 2h<c, 

then there is a map M' = M(q', v', g + h, a7, 6;, c') such that 

I* = Wi I q'j = fj for 3<j <5, q[ = qi, i>7, q'6 = t for all t > r), 

w' = (w[ I w[ = Wi for i>4, w'3) and a' > 0 , b' > 0 , c' > 0. 
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r is constant depending on the sequence (q'i\ i > 3 , i 7-- 6) and (w[ \ i > 4 ) . 

P r o o f . A very useful transformation of a map M into a map Mi called 
the replacing of edges by hexagons (or ^-transformation) will be used first (cf. 
[8], [18], [19], [22]). In this transformation every edge of M is replaced by a 
hexagon in such a way that a pair of neighbouring faces in M consisting of a 
fc-gon K and an ^-gon L is replaced by a fc-gon K* and an ^-gon L* in M\ 
which are separated by a hexagon. The vertices of K* and L* are trivalent and 
at the same time to every r-valent vertex of M there corresponds in M\ an 
r-valent vertex in the same position which is incident with r hexagons. If two 
edges have a common vertex, then the hexagons corresponding to these edges 
are adjacent in M\. The 5-transformation changes configurations Am, Bm, 
Cm, m > 6 into configurations which will be designated as £(Am), £(Bm) 
and £(Cm) respectively. The map Mi obtained contains c £(C6), one F (as 
the result of £ -transformation to the pair of quadrangles), at most one £(B6) or 
£(A6) configurations, Wi(Mi) = Wi i-valent vertices for all i > 4 , qi(M\) = qi 
i-gons, i > 3 , i 7-- 6, and q6(Mi) = e(M)+q6 hexagons. All the configurations 
of Mi mentioned are pairwise disjoint. Note that every £(C6) configuration 
contains an E configuration or three G configurations as submaps. By using 
Lemma 7 and Lemma 6.1 to the map Mi a map M2 with qi(M2) = qi for all 
* > 3 , i ^ 4 , 5 , 6 ; q4(M2) =q4-2, qs(M2) = qb+l, q6(M2) = q6(Mx) + t, 
t > 0, Wi(M2) = Wi for all i > 4 and c £(C6) configurations is obtained. 
Then, starting with the map M2, Lemma 6.5 is step by step applied h times. 
The result is a map M3 = M(q,w,g+h,a,b,c) with c—2h £(C6) configurations 
(and therefore with c — 2hE configurations), with the same number of other 
configurations as in the map M2 , and with qt = qi(M2) for all i > 3 , i 7-= 4 ,6 , 
q4 = q4(M2) - 6/1, q6 = q6(M2) - Ah, Wi(M$) = wt(M2) for all i > 4 . To 
obtain the additional number of fa — g3 triangles and fa — q*> — 4 pentagons 
of the map M' required, starting with the map M3. Lemma 6.2 is applied 

cy — -times, then Lemma 5 — — ~ -times and, if fa-q* and fa—q$ 

are odd, Lemma 6.3 or 6.4 or £(B6) configuration is changed into one triangle, 
one pentagon and two more hexagons. (The last in the case fa — q3 = 2c + 1 
and b = 1). For the resulting map 

M' = M(ql,w',g + h,a',b',c'), a'>0, b'>0, c'>0, 

q' = (<li I q'i = fi, 3 < i < 5, q'j = qj for all j > 7, 

q'6=qe(M1) + 5 l ^ \ - 2 l f s - * > - * \ - 4 h + t, t>o), 

w' = (wl I w'i = Wi for all i > 4 , w'3). • 
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LEMMA 9 . a ( a e { 1 , 2 } ) . (see [16]) 
If there is a polyhedral map M = M(q, w, g, a, b, c) containing e pairwise face-
disjoint D configurations, e > 2, face-disjoint from a AQ , b BQ and c C& 
configurations, then there is a map M' = M(q',w',g',a,b,c) containing e' D-
configurations such that: 

1- Q1 = Wi I Qi = Qi for all i>3, i ^ 6, q'6 = q6 + t, for all t > 0) , 

w' = (w'i | w'i = Wi for all i > 4 , v'3 = v3 + 2t), g' = g and e' = e. 

2- q' = (q'i | q'i = qi for all i > 6, q'3 = q3 - 2 , q'4 = q4 - 2 , q'5 = q5 - 2) , 

w' = (w'i | v'i = Vi for all i > 4 , v'3 = v3 — 8 ) , g' = g + 1 and e' = e — 2 . 

4. Basic polyhedral maps 

LEMMA 10. a ( a e { 1 , 2 , . . . , 10} ) . Let k > 1 , m > 1 , n > 1 . There exist 
polyhedral maps: 

1. Ni = M(q,w,1,1,0, k) with 

Q = (°i I Qi = 0 /o r all i>3, i ^ 4 ,6 ; 

</4 = 3A: + 1, q& = t for all t > do) and 

w = (wi | Wi = 0, for all i > 4 , i 7-= 3k + 1, 1^3^+1 = 1, 1^3). 

2. JV2 = M(q, w,l,0,l,k) with 

q = (qi I qi = 0 / o r a// i > 3, i ^ 4 , 6 ; 

q4 = 3k + 2, q$ = t for all t > d0) and 

w = (wi \ Wi = 0 for all i > 4 , i ^ 3k + 2, 1̂ 3̂ +2 = 1, ^3) • 

3. N3 = M(q,w,l,0,0,0) with 

Q = (Qi I Qi = 0 / o r all i>3, i ̂  6; qe = t for all t > 9) . 

4. 1V4 = M(g, w, 1,0,0, m + n - 1) w'tt 

9 = (Qi I 9« = 0 / o r all i > 3, i / 4,6; 

</4 = 3(m + ra — 1) , q& = t for all t > do) and 

w = (wi I Wi = 0 for all i > 4 , i 7-- 3m + 1, 3n + 2, 

W3m+1 = ltf3n+2 = 1 , W3) . 
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5. 1V5 = M(q,w, 1,0, l , m + n - 2) with 

q = (qi\ qi = 0 for i > 3, i j£ 4, 6; 

r/4 = 3(m + n) — 4 , qe = t for all t > do) and 

w = (wi | Wi = 0 /Or all i > 4, i ^ 3m + 1, 3n + 1; 

™3m+i = ^3n+i = 1, m,^n; or w3m+i = 2 if m = n). 

6. jY6 = M(q,w, l , l , 0 , m + n - 1) mtb 

<2 = (<Ii I <Iz = 0 / O r all i > 3 , i ^ 4,6; 

O/4 = 3(m + n) — 2 , qe = t for all t > do) and 

w = (iDi I D̂̂  = 0 for all i>4, i ^ 3m + 2, 3n + 2 ; 

^3m+2 = ^3n+2 = 1 for m ^ n Or ^3m+2 = 2 /Or m = n ) . 

7. jN7 = M(q,w, 1,0,0, m + n) ml/i m > n > 2 , 

9 = fe I qi = 0 for all i>3, i^4,6; 

O/4 = 3m + 3n , qe = t for all t > do) and 

w = (lu^ | Wi = 0 /Or all i > 4, i ^ 3m, 3n; 

^3m = ^3n = 1 form^n or w3m = 2 for m = n). 

8. N8 = Af(c/,iv, 0,0,0, fc + 1) i ^ / i 

<1 = (<Ji I 9i = 0 /o r a// i ^ 4,5, 6 ; 

c/4 = 3fc + 3 , (?5 = 2 , qe = t for all t > llfc + 3) and 

w = ( ^ | Wi = 0 /Or a/l i ^ 3, 3fc + 1; ^3/c+i = 1, w3). 

9. N9 = M(q,w, 0,1,0, fc + 1) with 

Q — ($i I <Ii = 0 for att i 7̂  4, 5, 6 ; 

<?4 = 3fc + 4 , r/5 = 2 , qe = t for all t > llfc + 12) and 

w = (iUi I Wi = 0 for all i y£ 3 , 3fc + 2 , w3k+2 = 1, w3) • 

10. N1Q = M(q, w*, 0,0,0, 2) with 

q= (qi\ qi = 0 for all i>3, i^ 4,6; q4 = 6 , q6 = 12). 

do is a constant depending on k or m and n . respectively. 

P r o o f . For a = 1 we start with the planar polyhedral map Pi in Fig. 8. 
It contains a U4 configuration, eight hexagons and two face disjoint D con­
figurations. The basic vertex construction steps are used fc times to the U4 

configuration of the map P i . A map Pj" with the (3fc + l)-valent vertex, fc 
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CQ configurations, two D configurations (all mutually face-disjoint) and 9fc + 9 
hexagons is obtained. Then Lemma 9.1 is used t times followed by Lemma 9.2. 
A map Ni with d0 = 9k + 9 is obtained. Analogously we proceed in the cases 
a = 2, 5 and 6 . The proof starts with the planar polyhedral map in Fig. 9, in 
Fig. 10 or in Fig. 11 respectively. In the case a = 5, m = \ and n > 1 we start 
with a V4 configuration of the map in Fig. 10a. For the case m > 2 and n > 2 
we insert into the pair of the quadrangles of the map in Fig. 10a the configura­
tion of Fig. 10b. A map P 5 with V7 and W7 configurations is the result. For 
a = 7 we start with the trivalent polyhedral map N3 . Two adjacent hexagons 
of iV3 are divided by new edges as in Fig. 12. A toroidal polyhedral map P3 

with two WQ configurations and £ + 17 hexagons, t > 0 is obtained. Then basic 
vertex construction steps are used gradually (m — l)-times starting with one WQ 
configuration and (n — l)-times starting with the second WQ configuration. The 
result is a map 1V7 required with 11 (ra — l) + (n — l ) + r + 17 = cio+£ hexagons, 
t > 0. For a = 4 we proceed analogously as in the case a = 7. The change of a 
pair of adjacent hexagons of the map N3 for m = 1 (without dashed lines) or 
n = 1 (with them) is in the Fig. 13. If m > 2 and n > 2 we insert new edges 
into "upper" two hexagons of Fig. 13 in the same way as into two hexagons in 
Fig. 12. A U7 configuration and a Vg configuration are obtained and used for 
creating the (3m + l)-valent and (3m + 2) valent vertices required. For a = 3 
see [16] and for a = 8,9 and 10 see [17]. • 

5. Proofs of Theorems 2 and 3 

Consider a pair of sequences of non-negative integers (B) satisfying (1) with 
an integer g, g > 1. We show that there is a map M on Tg with pi(M) = pi 
for all i > 3 , i ^ 6, Vi(M) = Vi for all i > 4 , and with pe(M) = p& for every 

p6 > d, v3(M) = — ( ]T ipi — Y2 ivA where d is a constant depending on the 
** M>3 2>4 ' 

triple (p, Lt, g). Dependence d on the triple (p, v, g) is given by the construction 
presented (implicitly contained in lemmas used). 

We will only consider the case ^ v^ > 1 because of J e n d r o l ' [16], 
i>4 

where the proof for the case ^2 Vi = 0 is made. Let us denote a = J^ ^3^+1 , 
i>4 k>l 

Q = E v3k+2 and r = ]T v3k . 
k>l k>2 

Three basic cases will be considered. 

1. a = g = 0 and r = 1, 
2. 3p3 + 2p4 + Ps 7̂  1 and a + g ^ 0 or r > 2 , 
3. 3p3 + 2p4 + p5 = 1 and cr + p ^ O or r > 2 . 

5.1. Instead of the pair of sequences p = (p{ | i > 3 ? { ^ 6) ^ v — (v. 1 v. _ Q 

405 



STANISLAV JENDROL 

for all i > 4, i 7-- 3fc, k > 2, tt3fc = 1) and g > 1 let us consider the 
pair p' = (p^ I p^ = pi for all i > 3, i ^ 6, 6.fc -f- 1 p ^ = p6k + 1) and 
v' = (v[ I ^ = 0 for all i > 4 ) . By [16] there is a constant d such that the set 
P6(p',v',g) contains all p6 > d. Now it is sufficient to transform a polyhedral 
map M' on Tg realizing the triple (pfjVf,g) to the polyhedral map M on Tg 

realizing the triple (p, v, g). Therefore let us transform a 6fc-gon of M' into a 
3A;-valent vertex required in the following way: 

Let xi, #2, • • • - x6k be vertices of the 6A>gon and let 2/1,2/2, • • •, 2/6fc be neigh­
bours of these vertices (some of them can be identical). Insert a new vertex 
x into the 6fc-gon, delete the vertices x 6i and join the vertices X6i_i, X6»+i 
and y6i with the vertex x for every i = 1, 2 , . . . , k (indices are taken modulo 
6fc). A map M required with Pi(M) = Pi(M') for all i > 3, i 7-- 6, 6A:, 
MM) = Pe(M') + k, p6k(M) = P6k(M0 - 1, Vi(M) = v{(M'), for all i > 4, 
i ^ 3k, v3fc(M) = 1, t>3(A-0 = iI3(M;) - k is the result. 

5.2. We will distinguish 19 cases listed below. These 19 cases cover all pairs 
of the sequences (B) which have to be considered in the basic case 2. 

For a = 1 (mod 2), g = 0 (mod 2) we consider cases: 

1. P5 < 1 Nx 

2. 2 < p5 < 3 1V8 

3. 4 < p 5 < 5 iV8 

4. P6 > 6 AT8 

For r/ = 0 (mod 2) , g = 1 (mod 2) the cases considered are: 
5. pb < 1 /V2 

6. 2 < p 5 < 3 AT9 

7. 4 < p 5 < 5 N9 

8. 6 < p 5 < 7 7V9 

9. p 5 > 8 1V9 

For a = g=l (mod 2) we consider cases: 

10. p 5 < 1 1V4 

11- 2 < p 5 < 3 7V4 

12. p5 > 4 1V4 

For a = g = 0 (mod 2) we consider cases: 

13. p 5 < 1, o > 2 1V5 

14. p 5 < l , <T = 0 , p > 2 iV6 

15. p 5 < 1, & = ,o = 0 N7 

16. 2 < p 5 < 3, a > 2 1V5 

17. 2 < p 5 < 3 , tr = 0, ^ > 2 1V6 

18. 2 < p 5 < 3 , a = g = 0 N7 

19. p 5 > 4 7V10 

The proof of the existence of a required polyhedral map begins with a suitable 
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planar or toroidal polyhedral map which contains none, one or two of the vertices 
of the valencies > 4 required, respectively. The second column of the list above 
indicates the map Ms which suits to be a starting map in the corresponding 
case. To obtain all other vertices of valencies > 4 required Lemma l .a is applied 
to an X configuration of the map Ms . The choice of the suitable a depends on 
the X configuration of Ms and on the value j defined in Lemma l . a , where 
we consider Ui = Vi — Wi(M8) for all i > 4 . The third column of the list denotes 
the X configuration of Ms. A record X C Y in the list means that the X 
configuration is used in the sequel while the rest of Y configuration of Ms is 
considered to be a special one (a G configuration in the cases 3, 8, 11, 16, 17, 
18 or a pair of adjacent quadrangles in the cases 4, 9, 12 and 19 respectively). 
A polyhedral map My is the result of an application of Lemma l . a . 

The map My contains at most one of .^6 or BQ configuration. Let Z denote 
this configuration. If none of AQ and BQ configuration appears in the map My , 
a CQ configuration is considered to be a Z configuration. 

To obtain all faces of the sizes > 7 Lemma 2./3 is applied to the Z con­
figuration of the map My. The choice of (3 depends on the Z configuration, 
the value £ defined in Lemma 2./3, where fi = pi for all i > 7, and, if £ odd, 
on p3 ( = 1 if ps 7-= 0 and = 0 if not). 

A map MVF obtained contains all, up to several pentagons and may be a 
triangle, its "small" faces in c CQ configurations a AQ configurations and b 
BQ configurations with a + 6 < 1, one (cases 3, 7, 11, 16, 17, 18) or two (a 
case 8) G-configurations or a pair of adjacent quadrangles (cases 4, 9, 12, 19), 
respectively, face disjoint with the quadrangles of the above mentioned a AQ, b 
BQ and c CQ configurations. In the cases 4, 9, 12 and 19 applying Lemma 8 to 
the map Myp h times (h = g for the cases 2, 3, 4, 6, 7, 8, 9, 12 or h = g — 1 in 
the rest of cases) we obtain a map M with Vi(M) = Vi for all i > 4 , Pi(M) = pi 
for all i > 3 , i ^ 6 and with any PQ> d for a constant d. 

In the rest of cases we proceed as follows. First the quadrangles of the D 
configurations of Myp are changed into pentagons required (Lemma 5 is used 
in the cases 3, 7, 8, 11, 16, 17 and 18). The Lemma 3 is employed g times in 
the cases 2, 3, 4, 6, 7, 8, 9, 19 and g — 1 times in the rest of cases. A polyhedral 
map Mg on Tg is obtained. The proof ends by applying Lemma 4 to the map 
Mg. 

5.3. The conditions of this case imply p\ = p3 = 0 , p5 = 1. 

If a > 1, then there is k > 1 such that v3k+i ¥" 0 . Instead of the triple 
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(p,v,g) consider t he triple (p',v',l) with 

P' =\Pi\ Pi=Pi, for all i > 7 , p'3 = p 3 = 0 , p'5 = p 5 = 1 , 

^ = ^ ( £ ( * - 6 K + 2 5 > - 3 K ) - I Y 
^ z>7 i>4 ' ' 

v = (v[ | v't = Vi for all i > 4 , z ^ 3k + 1, U3fc+i = ^3fc+i - 1) • 

We proceed as in the case 2 (subcases 1, 5, 10 or 13 in dependence on the 
properties of v', respectively). After using Lemmas l.a and 2./3 for a suitable 
a and /3 a map M\ realizing the triple (p' ,^ ' ,1) with any pe(M\) > d0 (d0 

is a constant) is obtained. All quadrangles of M\ are only in C& configurations 
and in the configuration as in Fig. 14a (see J e n d r o F [15], [19]). Changing 
this configuration in the way as in Fig. 14b a map M2 with a W4 configuration 
and a pentagon required is obtained. The W4 configuration is used to create, 
using basic vertex construction steps, the last required (3k + l)-valent vertex. 
The toroidal map M3 having all faces of the valencies > 7 and all vertices of 
the valencies > 4 required is obtained. A (g — l)-multiple using of Lemma 3 
provides the map M on Tg required. 

If a = 0 and g > 1, i>3fc+2 ^ 0 for some k > 1. 

Instead of the triple (p, v, g) we first consider the triple (//, L>', 1) with 

P' = [p'i I Pi = Pi f o r all i > 7 , p'3 = 1, p'5 = 0 , 

P4 = 5 ( $ > " 6)Pi + 2 X > " 3K " 3) ) and 

M>7 i>4 ^ / 
t ; / = ( ^ I v'i =Vi for a11 * > 4

 ? «V 3k + 2 , t/^+2 = U3fc+2 - 1) • 

Analogously as above we obtain toroidal polyhedral map M\ realizing the triple 
(p', 1/, 1) with P'Q(M\) = PQ for any pe > d0 (d0 is a constant). All quadrangles 
of M\ are contained in CQ configurations. A triangle of Mi is adjacent to a 
hexagon with all vertices trivalent. By inserting new edges into the hexagon 
as in Fig. 15 we obtain a map M2 with a W5 configuration and a pentagon 
required but without a triangle. The VV5 configuration is used for creating the 
last (3k + 2)-valent vertex required. The proof ends by using Lemma 3 # — 1 
times. 

If a = g = 0 then there is k > 2 such that v$k 7̂  0- The conditions of 
the case require a (6m + r)-gon, m > l , r -= 1,3 or 5 respectively. There is a 
toroidal polyhedral map Mi containing a 6k-gon, a (6m + r)-gon, a pentagon, 
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Pe hexagons for any p& > d0, d0 is a constant, 3(fc + m) C§ configurations 
and for r 7-= 1 an A& configuration (if r = 3) or a BQ configuration (if r = 5) , 
respectively. The existence of such a map is guaranteed by J e n d r o F [16]. 
Then Lemma l.a with Ui = Vi for all i > 4 , i ^ 3k, u3k = v3k

 — 1 and 
suitable a is employed to the map M i . After that Lemma 2.(3 with /^ = pi 
for all i > 7, i 7-- 6m + r , /6m+r = P6m+r — 1 follows. /3 = 1,4 or 7 if r == 1,3 
or 5 respectively. (3 depends on a and the value I defined in Lemma 2./3. A 
toroidal polyhedral map M 2 is obtained. To the map M2 Lemma 3 is applied 
(g—l) times. The proof of the existence finishes by a transformation of a 6fc-gon 
of the latter map to a new 3fc-valent vertex of the map on Tg in the same way 
as in the case 5.1 above. 

6. R e m a r k s 

6.1. Euler's formula provides also the following condition for the pair of se­
quences (A) to be a face-vector and a vertex-vector of a polyhedral map on Tg 

for a given non-negative integer g 

X > - 0 ( w + **) = 8(l-s). (3) 

i>4 

Considering the pair of sequences of non-negative integers 

P = ( P i | 3 < i ^ 4 ) , v = (Vi\3<i?4) ( O 

and a non-negative integer g satisfying the conditions (2) and (3), the problem 
of a characterization of the set P4(p, v, g) of suitable values of p± (and therefore 
V4) can be posed. Many papers are devoted to the study of the set P4(p,v,g) 
especially for the case of 4-valent planar polyhedral maps, see e.g. E n n s [4], 
G r i i n b a u m [10], J u c o v i c [22], T r e n k 1 e r [25]. The most general 
result concerning the set P±(p, v, g) is the following one due to J u c o v i c [21], 
[22]. 

THEOREM 4. To every pair of sequences (C) and a non-negative integer g, 
not excluded below, satisfying (2) and (3) there exists a non-negative integer 
d such that the set P4(p,v,g) contains all integers > d. The set P^p^v,!) is 
empty for the following two pairs (p, v) 

(i) P=(Pi\ Pi = 0 for all i>6, p3 = p5 = 1) and 
v = (vi\ Vi = 0 for all 2 > 3 7 2 ^ 4 ) . 

(ii) p=(pi\ Pi = 0 for all i>3, 27- 4) and 
v = (vi\ v3 = v5 = l, Vi^O for all i > 6 ) . 
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6.2. B a r n e t t e [1] and J u c o v i c [20] have found two different lower 
bounds for min{p6 | P6 E P$(p, v*id)} • What is the minimum of the set 
Pe(p,v,g)? 

6.3. Theorem 3 can also be interpreted as an theorem of Eberhard's type for 
periodic tilings. Compare with G r u n b a u m and S h e p h a r d [13]. 

6.4. The problems can be investigated not requiring the maps to be polyhedral 
and assuming E(p^ + V{) ^ 0 for i < 3 . However, greater complications are 
expected in this case (cf. G r u n b a u m and Z a k s [14], E n n s [5]). 

6.5. An interesting and probably very difficult problem is the next one (see 
B a r n e t t e [2] or G r i t z m a n n [8]): Which pairs of sequences (A) are 
realizable as face-vectors and vertex-vectors of polyhedra of genus g ? 

6.6. We do not know if there exists a polyhedral toroidal map M = M(p, u*, 1) 
with p = (pi | pi = 0 for i > 3, i ^ 4 ,6 ,8 , p 4 = ps = 1, P6 odd) or with 
P= (Pi\ Pi = ° for * > 3 , i 7- 3 ,6 ,9 , p 3 = p9 = 1 and p6 odd) . 

Figure 1. 

a ) 

I m • 2 / 

# 
b ) 

Figure 2. 
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a ) Figure 3. b ) 

a ) 
Figure 4. 

b) 

a) Figure 5. 
Ь) 
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Figure 7. 
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Figure 13. 
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