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MAXIMUMS OF DARBOUX 
QUASI-CONTINUOUS FUNCTIONS 

ALEKSANDER MALISZEWSKI 

(Communicated by L'ubica Holá) 

ABSTRACT. In this article the functions which can be expressed as the maxi­
mum of Darboux quasi-continuous functions are studied. In particular, it is shown 
that Natkaniec's conjecture concerning characterization of such functions is false. 

1. Preliminaries 

The letters R and N denote the real line and the set of positive integers, re­
spectively. The word function denotes a mapping from R into R unless otherwise 
explicitly stated. The word interval denotes a nondegenerate compact interval. 
For each i c M w e use the symbol Int A to denote the interior of A. 

Let / be a function and x G R. Set c = lim f(t) and d = lim f(t). We 

say that x G R is a Darboux point of f from the left if c < f(x) < d and 
/ [(x — 5, x)] D (c, d) for each 5 > 0. Similarly we define the notion of a Darboux 
point from the right. We say that x is a Darboux point of f if x is a Darboux 
point of / both from the left and from the right. Recall that / is a Darboux 
function1 if and only if each x G R is a Darboux point of / . (See, e.g., [1; 
Theorem 5.1].) 

We say that a function / is quasi-continuous ([2]) at a point x G R if for 
every open sets U ̂  x and V ^ f(x) we have Int(c7 D f~l(V)) ^ 0 . Similarly 
we define bilateral quasi-continuity of / at x . Recall that / is quasi-continuous 
at x if and only if there exists a sequence (xn) of continuity points of / such 
that lim xn = x and lim f(x ) = f(x). Similarly we can characterize points 

n—>-oo n—too 

of bilateral quasi-continuity. The symbols &* (£},, «SJ) will stand for the set 
of points of continuity of / (the set of points of quasi-continuity of / , the set of 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 26A21, 54C30; Secondary 26A15, 54C08. 
K e y w o r d s : Darboux function, quasi-continuous function, maximum of functions. 

xWe say that / is a Darboux function if it maps connected sets onto connected sets. 
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all x E R such that x is both a Darboux point and a point of quasi-continuity 
of / ) , respectively. If Bf — M, then we say that / is quasi-continuous. Thus / 
is a Darboux quasi-continuous function if and only if J2*f = R. 

Let / be a function. If A C R and # is a limit point of A, then let 

iE(/,Alx) = ^iim i i /(x). 

Similarly we define the symbols tim(f,A,x~) and lim(/, A,x+). 

2. Introduction 

In 1992, T. N a t k a n i e c proved the following result. (Cf. [4; Proposition 3].) 

THEOREM 2 .1 . For every function f the following are equivalent: 

(a) there are quasi-continuous functions gx and g2 with f — max{g1,g2}; 

(b) R \ J2f is nowhere dense, and f(x) < l i m ( / , ^ , x ) for each x e l . 

He remarked also that if a function / can be written as the maximum of 
Darboux quasi-continuous functions, then 

f{x) < m i n { I m ( / , ^ / , x - ) , I E " ( / , ^ / , x + ) } for each x G l , (1) 

and asked whether the following conjecture is true [4; Remark 3]. 

CONJECTURE 2.2. If / is a function such that R \ Bf is nowhere dense and 
condition (1) holds, then there are Darboux quasi-continuous functions gx and 
g2 with / = maxlO-pOJ. 

We will show that Conjecture 2.2 is false (Example 3.2). On the other hand, if 
/ is a function such that R \ £?*f is nowhere dense and condition (1) holds, then 
there are Darboux quasi-continuous functions gl and g2 with / = m a x ^ , g2} 
(Theorem 3.3). Alas, the condition "R\ &*, is nowhere dense" is not necessary 
for a function / to be the maximum of two Darboux quasi-continuous func­
tions (Example 3.5). Thus the problem of characterization of the maximums of 
Darboux quasi-continuous functions is still open. 
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3. Main results 

First we will construct a counter-example for Conjecture 2.2. The easy proof 
of Lemma 3.1 is left to the reader. 

LEMMA 3 .1 . Let x1 < x2, y1 < y2, and P = [[#-_,z2] x [2/1?2/2]] • There is a 
set Q c l 2 such that the following conditions hold: 

• there are intervals J1,J2,-— C (yxiy2) \ {(y1 + 2/2)/2} an^ pairwise 
disjoint intervals /.p J2 ,--- C (x1}x2) such that Q = \J [In x Jn] and 
the length of each In is less than (x2 — x 1 ) / 2 ; n E N 

• the set K = [x1,x2] \ \J I n t / n is nowhere dense and perfect; 
n6N 

• for each x G K and each 5 > 0. if the set N~6 = {n G N : In C 

(x-5,x)} is infinite, then \J Jn = (y1,y2) \ {(y1 + y2)/2} ; 

• for each x G K and each S > 0, if the set N^s = {n G N : In C 

(x,x + 6)} is infinite, then \J Jn = (y19y2) \ {(yx + 2/2)/2} . 

E X A M P L E 3.2. There is a bilaterally quasi-continuous function h: [0,1] -> R 
which is the maximum of Darboux quasi-continuous functions on no interval. 

Construction. Define Ix 1 = Jx -_ = [0,1]. Use Lemma 3.1 with P = 
[J"i i x -Ji J to construct a set L2 with the properties listed there. Next we 
proceed by induction. Fix a k > 1 and suppose we have already defined the 
set Lk such that there are intervals J H , J f c 2 , . . . and pairwise disjoint intervals 
7 u , / f c 2 , . . . such that Lk = \J [lk n x Jk n] . For each n G N apply Lemma 3.1 

nGN 

with P = [Ikn x Jk n] to construct a set Qk with the properties listed there. 
Define Lfc+1 = \J Qk 

nGN 

Fix an x G [0,1]. We consider two cases. 

• If x G H [J Ikn, then notice that there is only one y G [0,1] such that 
/ O l n G N 

(x->y) £ fl /̂c> a n d define /i(«x) = T/. 
fc>i 

• In the other case notice that there is only one pair (k, n) G N2 such that 
X G 4,n \ U 4+l,m » a n d d e f i n e ^ ( X ) = m i n J/c,n • 

rn6N 

One can easily show that f] (J Ik n C c€h. Moreover, the graph of h \ *jfh 
/e>ln<EN ' 

is bilaterally dense in the graph of /i, whence h is bilaterally quasi-continuous. 
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Suppose that there is an interval I c [0,1] and Darboux quasi-continuous 
functions g1?..., gm such that h = max{g l 5 . . . , gm} on I. Without loss we may 
assume that J = IkQ UQ for some k0,nQ G N, and that 

(2) whenever I' is a subinterval of I and IV is a proper subset of { 1 , . . . , m}, 
then h(x) ^ max{g{(x) : i G IV} for some x G / ' . 

Put Vl = mmJkonQ) y2 = m a x J ^ ^ , and y = (Vl + y2)/2. There is a j G 
{ 1 , . . . , m } such that supg-[I] = sup/i[7] = y2 > y. Since inf ^[7] < inf h[I] = 
y1 < y and g- is Darboux, so g^-(x) = y for some x e I. Then /i(x) > ?/> 
whence there is an n G N such that x G J* + 1 n and max J ^ + i ^ > V- P u t 

y0 = minJj. + 1 and recall that y0 > y and h(t) > y0 for t G - ^ 0 + i > n . But 
g- is bilaterally quasi-continuous [3; Lemma 2(a)], so there is an interval I' C 

^ 0 +i ,n ^ ^ s u c ' 1 ^ a t ^j < Vo o n ^'* ^ follows that h = max{g^ : i ^ j} on 
/ ' , which contradicts (2). 

Our next goal is the following theorem. 

THEOREM 3.3. / / / is a function such that the set R \ £*f is nowhere dense 
and condition (1) holds, then there are Darboux quasi-continuous functions gx 

and g2 with f = max{^ 1 , ^ 2 } . Moreover we can conclude that gx and g2 are 
Lebesgue measurable or belong to Baire class a provided that f is so. 

In the proof we will need a technical lemma. 

LEMMA 3.4. Let f be a function. For any intervals I C <£} ^n^ J C 
(—oo,sup/[i]) there are Darboux quasi-continuous functions gl

 and g2 such 
that f = max{ j 1 } j 2 } on I and for i G {1 ,2} ; g{[I] D J and f(x) = g.(x) 
whenever x is an endpoint of I. Moreover we can conclude that g\ and g2 are 
Lebesgue measurable or belong to Baire class a provided that f is so. 

P r o o f . Choose an xl G IntI with f(xx) > max J . Put x0 = mini and 
x2 = m a x / , and construct a continuous function (p such that </?(#) = f(x) f° r 

x G {x 0 , x 1 , x 2 } and max{inf ^[(x^x^], inf <p[(x19x2)]} < min J . For i G {1,2} 
define 

r min{f(x),(p(x)} if x G [ x - . ^ x j , 

9i(x) = < / ( * ) if a? € [ ^ - i . ^ a - J > 
constant on (—oo, x0] and [x2 ,oo)-

Then clearly / = max{gvg2} on I. Fix an i G {1,2}. By [3; Theorem 2(3)], g{ 

is both Darboux and quasi-continuous. Moreover 

inf g.[I\ < inf ^ [ ( x . _ 1 5 ^ ) ] < min J < max J < f{xx) = g{(xx) < s u p ^ J ] , 

whence J C gt[I]. n 
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P r o o f of T h e o r e m 3.3. Find a family of nonoverlapping intervals, {Jn : 
n G N}, such that Int £1} = \J In and each x G Int -St belongs to Int (J U J ) 

nGN 

for some n,m G N. For each n G N set bn = min{sup/[J n ] - n _ 1 , n } and an = 
min{6 — 1, — n } , and use Lemma 3.4 to construct Darboux quasi-continuous 
functions gln and g2n such that / = max{# l n , # 2 n } on Jn and for i G {1,2}: 
QinVn] D K»6J a n d / ( x ) = 5m(x) whenever x is an endpoint of In. For 
i G {1,2} define ^ ( x ) = gin(x) if x £ In for some n G N, and ^ ( x ) = / ( x ) 
otherwise. Then evidently / = max{g1 ,g2} on R. To complete the proof we will 
show that gl and g2 are both Darboux and quasi-continuous. Fix an i G {1,2} 
and an x G R. 

One can easily see that Int J2*j C «S*.. So let - ^ Int J2j. By construction, 
for each 5 > 0 we have 

g. [(x - 5, x) fl Int ^ ] D ( - c o , I i m ( / , I n t ^ , x ~ ) ) . (3) 

Hence by (1), x is a Darboux point of g{ from the left. Similarly we can show 
that x is a Darboux point of gi from the right. Now condition (3) easily implies 
that x G «S , which completes the proof. • 

Finally we will show that the condition "R \ «St is nowhere dense" is not 
necessary for a function / to be the maximum of two Darboux quasi-continuous 
functions. 

E X A M P L E 3 .5 . There is a bilaterally quasi-continuous function / : [0,1] -» R 
which is the maximum of two Darboux quasi-continuous functions and which is 
Darboux on no interval. 

Construction. Let h be the function defined in Example 3.2. Put / = —h. 
Evidently / is bilaterally quasi-continuous and / is Darboux on no interval. 

Let the symbols Ik and Jkn (k,n G N) be defined as in Example 3.2. For 
each k and n put Akn = lntlkn\ IJ Jfc+1 and let ^ n . i ' ^ n ^ Ak,n "• Jk,n 

m E N 

be such that m i n { ^ n l , <pktnt2] = min Jfc|fl on Akn and </^njl[J] = ^ , n , 2 W 
= Jkn whenever J is an interval intersecting Ak . For i G {1,2} define 

( x ) = ( -Vk,n,i(
x) i f x € -4fcin , fc, n G N, 

z 1 / ( x ) otherwise. 

Clearly / = max{g15g2} o n [°> ! ] • Fix an i G {1,2} . One can easily show that 
H U Ik n c ^ ' s o Qi 1S q u a s i - c o n t - n u °u s -

/e>l nGN ' n ^ 

To prove that g; is Darboux fix an interval J C [0,1]. Set 

k0 = max{k G N : I C Ikn for some n G N} . 
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Let nn G N be such that J C J, n . Then I n A. „ ^ 0, so O[J1 D J, n . 
(Notice that J (£_ IJ J*. + 1 m . ) But the opposite inclusion is evident, whence 

men 
g{[I] is an interval. 
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