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ASYMPTOTIC BEHAVIOUR
OF SOME MARKOV OPERATORS
APPEARING IN MATHEMATICAL MODELS
OF BIOLOGY

IcorR MELICHERCGIK

(Communicated by Anatolij Dvuredenskij )

ABSTRACT. A class of Markov operators satisfies the Foguel alternative if its
members are either sweeping or have stationary densities. We show that this
alternative holds for some integral Markov operators appearing in mathematical
models of biology.

1. Introduction

Let K: L,(X) — L,(X) be an integral Markov operator of the form:

Kf(z) = / K(z,3){(y) dy, (1.1)
X

where K(z,y) defined on X x X is a kernel. Such operators were intensively
studied. In [1], [4], [6], [7] some sufficient conditions for sweeping (see Defini-
tion 3.1) and asymptotical stability were given. It was proved in [4] that, under
the assumption of having subinvariant locally integrable function, the alterna-
tive of sweeping or having stationary density holds. The condition without the
assumption of the existence of a subinvariant locally integrable function for op-
erators satisfying some property (P) was given in [3]. The main result of this
paper is the proof of the Foguel alternative for operators of the form:

Az)

K@= [ (-&H@OW)) - QW) 1) d, (12)

0
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where @}, A, —H are nonnegative, nondecreasing, absolutely continuous func-
tions on R* satisfying:

H(0)=1, lim H(z)=0,

T—00

Q(0) = A(0) =0, zllfrolo Q(z) = 1li_)n;1° Az) =00.

Operators of this type need not satisfy the property (P). The asymptotic be-
haviour of operators of the form (1.2) has many practical applications in biology.

In Section 2, some necessary results of [2] are presented. In Section 3, the
main result (Theorem 3.2) is proved.

2. Some properties of Markov processes
and integral Markov operators

Theorems 2.1-2.4 are proved in [2].

DEFINITION 2.1. A Markov process is defined to be a quadruple (X, X, m, P),
where (X, X, m) is a o-finite measure space with positive measure and where
P is an operator on L, (X) satisfying

(i) P is a contraction: ||P|| <1,
(ii) P is positive: if 0 <u € L,(X) then Pu > 0.

DEFINITION 2.2. If u is an arbitrary non-negative function, set Pu :=
klim Pu, for 0 <wu, € L,(X), u, / u, where the symbol  denotes monotone
—00

pointwise convergence almost everywhere.

The sequence Pu, is increasing so that lilsn Pu,, exists (it may be infinite).

By [2] the definition of Pu is independent of the particular sequence u, .

DEFINITION 2.3. Take u, € L, (X) with uy, > 0. Define
C= {z: > Pruy(z) =oo}, D=X\C.
k=0

By [2] this definition is independent of the choice of w,.
THEOREM 2.1. If0<u € L,;(X) then

ZPku(:v)<oo forzeD, ZPku(:v)=0 or o forxeC.
k=0 k=0
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DEFINITION 2.4. A function K(z,y) > 0 defined on X x X which is jointly
measurable with respect to its variables is called a kernel. If f K(r,y)dz =1,
then K is called a stochastic kernel.

Stochastic kernel defines an operator on L, (X):

= /K(z, y)f(y) dy
X

with ||K|| =1. So (X, X, m, K) is a Markov process.

DEFINITION 2.5. Let P be an integral Markov operator, then (X, X, m, P)
is said to be a Harris process if X = C.

THEOREM 2.2. Let K be an integral Markov operator and a Harris process.
Then there ezists 0 < u < 0o such that Ku = u (a o -finite invariant measure).

THEOREM 2.3. Let P be a Markov process with X = D. Then there ezists
0< g < oo such that Pg<g.
(o]
Proof. Let 0 <u, € L,;(X). Set g= Y Pruy,. ]
k=0

DEFINITION 2.6. Let P be a Markov process. Define operators P, Pp:
Po: Li(C) = Ly(C), Pcf'—-(Pf)rC
where the symbol [ denotes the restriction to the set C, f is the function f
extended by 0 on D,
PD:Ll(D)_)Ll(D)’ PDf=(Pf)TD
where f is the function f extended by 0 on C.

THEOREM 2.4. Let P be a Markov process. If supp f C C, then supp Pf C C

(supp f = {z: f(z) #0}).

COROLLARY 2.1. Let K be an integral Markov operator. Then
(C,21C,m|[CKg)

is a Harris process. (¥ | C denotes the o -algebra restricted to the space C,
m [ C denotes the measure m restricted to the space £ [ C).

Proof. By Theorem 2.4, supp f C C implies supp Kf C C. By Theo-
rem 2.1, for u >0 on C, u=0 on D:

o= Kfuz)=> Ki(ulC)(z)
k=0

k=0
for every z € C. O
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COROLLARY 2.2. Let P be a Markov process on L,(X). Then
Pp(f1D)=(Pf)1D.
Proof. f = fp+ fo, where fo = f-15, fp = f-1,. By Theorem 2.4.
(Pfo) I D=0, hence
(Pf) I D= (Pfp) I D=Pp(fID).

COROLLARY 2.3. We have
Pr(fID)=(P"f) I D.

COROLLARY 2.4. Let P be a Markov process on X, let w >0 on D. Then
oo
ZPBu < 00.
n=0
Proof. Let @ be a function on X such that @ [ C =0, @ | D = u. By

Corollary 2.3,
[o o] o0
ZPBu:( P”ﬁ)[D.
= n=0

n=0

o0
By Theorem 2.1, ( > P"'&) | D < oo. a
n=0

3. The Foguel alternative for integral
Markov operators of the form (1.2)

DEFINITION 3.1. Let a family A C ¥ be given. A Markov process is called
sweeping with respect to A, if

lim [ PPfdm=0
n—oo
A

for A€ Aand feD (D= {feL/(X), |Ifl=1, f>0})
In the sequel we shall assume that 4 satisfies the following properties:

(i) 0<m(A) <oo for A€ A,

(i) A, A, € A implies A, UA, € A,
(iii) there exists a sequence {4, } C A such that J4, = X.
A family satisfying (i) - (iii) will be called admissible.
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DEFINITION 3.2. Let (X, X, m) and an admissible family A C ¥ be given. A
measurable function f: X — R is called locally integrable, if

/|f|dm<oo for AcA.
A

The following theorem is proved in [4].

THEOREM 3.1. Let a measure space (X,X,m), an admissible family A and
an integral Markov operator K be given. If K has no invariant density but there

exists a positive locally integrable function f, subinvariant with respect to K,
then K is sweeping.

REMARK 3.1. Theorem 3.1 was proved in [4] for stochastic kernel operators

([ K(z,y) dz = 1). But the proof is exactly the same for integral Markov
X

operators.

Let K be an integral Markov operator. Recall the definition of K, and K,
(see Definition 2.6). By Corollary 2.1, K is a Harris process and by Corol-
lary 2.4, K, is dissipative (X = D). By Theorem 2.2 and Theorem 2.3, there
exist g, gp such that K,g, = go and Kpgp < gp- The following two lem-

mas (3.1 and 3.2) claim that g, resp. g, are locally integrable in all points
y € C (resp. y € D) such that

/Kc(x,y) dm(z) >0 (resp. /KD(a:,y) dm(z) >0).
c D

Denote by Rt the set [0,00) and by 7 the Euclidean metric topology on R* .

LEMMA 3.1. Let K be an integral Markov operator of the form (1.2), let
yeERT. Let 0< g<oo and K9 <g. Let

/Kc(m,y) dm(z) > 0.
c

Then there exists an open neighbourhood U, of y such that

/g(z) dz < 00.

UgNC

Proof. Let

VU,€T, yeU, /g(z) dz = 0.
U,nC
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Let B={z€C: K(z,y)>0}. Let EC B and m(E) > 0. Then

/ 9(z) dz > / / 9(2)K(z, 2) dzdz

E E U,nC

= /g(z)/K(a:,z) drdz. (3.1)
u,nC E
Since

K(z,y) = ¢(M(2)) - N (@)h(Q (M=) - Q®))

and Q(y) is absolutely continuous,

/K(m,z) dz = / h(t - Q(2)) dt
E QIN(E))
is continuous with respect to z. By the assumption there exists € > 0 such that

/K(x,y) dz >¢e>0.
E

Since [ K(z,z) dz is continuous with respect to z, there exists U, € T such
E
that y € U, and
VzeU, /K(:z;,z) dr >¢.
E

Now (3.1) and [ g(2) dz = oo imply that

U,nC
/g(a:) dzr = 0.
E
E C B was arbitrary, so g(z) = oo on the set B. But by the assumption
0<g<oo. O

LEMMA 3.2. Let K be an integral Markov operator of the form (1.2), let y €
Rt.Let 0< g<oo and K,g<g. Let

/KD(z,y) dm(z) > 0.
D
Then there ezxists an open neighbourhood U, of y such that

/g(z) dz < 0.

UogND
The proof of Lemma 3.2 is the same as the proof of Lemma 3.1.
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THEOREM 3.2. Let K be an integral Markov operator of the form (1.2). Let
A be the family of compact subsets of Rt (with respect to the Euclidean metric
topology). If K has no stationary density, then K is sweeping with respect to A.

Proof. Denote

Kof =(Kf) 1o, Kpf=(Kf)-1p,
fc=f'lc, fD=f'lD.
Now
IEL fpll = IKEL foll = 1B Kb foll + IIES £l
hence
IKoKb foll = IKD foll — IKE foll,

D KK fpll = IR foll = IEEH fpll- (3-2)
=k

LEMMA 1. Let y € Rt . Then there ezists Uy € T such that y € Uy and
. n _
nlggo Kpfdm=0
U,ND
for every f € L, (D).
Proof. By Corollary 2.4,

(o <]
0< Z Klu(z) < o0
n=0
for u > 0, hence the process K, is dissipative. By Theorem 2.3, there exists a

o -finite subinvariant measure A equivalent to m [ D.
Let A, be the family of all sets of finite measure (with respect to m) such

that O\
A

Since é% < o0, the family A, is admissible. K, is dissipative, hence by The-
orem 3.1, K, is sweeping with respect to .4,. Let y be such that for every
neighbourhood U € T of y the set DNU has positive measure. Denote g = %.

Let
/K(a:,y) dz > 0.
D
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By Lemma 3.2, there exists U, € 7 such that

9(z) dz < 0,

U,ND
hence
U,NnDEA,, lm /K;;f dm = 0.
U,nD
Let [ K(z,y) dz =0. Let
b
Jim [ K3(£1D)#0
U,ND

for all U, € T such that y € U, and some f € L, (R*). Now fK(:c y) dz =1.

Since [ K(z,y) dz is continuous with respect to y (see the proof of Lemma 3.1),

c
there exists U, € T such that y € U, and
Vz€eU, /K(z,z)d$>e>0.

By the assumption there exists § > 0 such that

[E371D)>3
U,ND
for infinitely many n. By Corollary 2.3,
Kp(f 1 D)= (Kpfp) I D.
Then
/KCKDfD(x) dz > / /K(x 2)KPfp(2) dzda

C Uy,nD
/KDfD z)/K(:v z) dzdz
U,ND

>e€ /KBfD(z) dz>¢-6
U,ND

for infinitely many n. Hence
o 0o
S IREBIpl 2 Y [Kokpfo(a) da = oo
n=0 n=0 5

which contradicts (3.2). O
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LEMMA 2. Let y € RY, let K, has no stationary density. Then there ezists
U, €T such that y € U, and

. n _
nl—l—)ngo Kifdm=0
U,NC
for every f € L,(C).
Proof. By Corollary 2.1 and Theorem 2.2, K is Harris and there exists
a function g, 0 < g < co such that K,g=g.

Let y be such that for every neighbourhood U € T of y the set C NU has

a positive measure. Since [ K(z,y) dz = 1 and by Corollary 2.2 K(z,y) = 0
R+
forreD,yeC,

/K(m,y) dz=1.
c
By Lemma 3.1, there exists U, € T such that y € U, and

/ 9(x) dz < oo. (3.3)
U,NnC

Let .Ag be the family of all sets of finite measure such that

VAEA, /gdm<oo.
A

Since g < oo, the family A, is admissible. By (3.3) U,nC € A, and by
Theorem 3.1

VfeL/(C) /Kgfdm—+0.

U,NC
O
LEMMA 3. Let K has no stationary density, let A € A. Then
3 n — H n —_
nll)ngo K¢ f, dm =0, ,}H%o / K3 fo dm =0 (3.4)
ANC AND

for every f, € L,(C), f, € L,(D).

Proof. Let y € R*. By Lemma 1, there exists U, € 7 such that y € U,
and

Vi,eL,(D) lim /Kgf2dm=0.

n—o00
UinD
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By Lemma 2, there exists U, € T such that y € U, and

Vf, € L,(C) nleroxo/KCfldm=0.

UanC
Set U, =U; NU,. Then
3 n — 2 n —_
nlgrc}o KGLf, dm =0, nanéo / Kpf, dm=0. (3.5)
u,nC U,ND

Thus we have proved that for every y € Rt there exists Uy € T such that
yeU, and (3.5) holds. Finally (3.4) follows from compactness of A. O

By Lemma 3, K, is sweeping, K is sweeping or has a stationary density.
Let Ko have a stationary density f. Let f. be a function on R* such that
f,1C=f, f, I D=0.Then
(Kf,)1C=(K(f, 1) IC+ (K(f,-1p)) IC=K,f=f.

By Corollary 2.2, (Kf,) | D = K,(f, | D) =0, hence Kf, = f,. Let K. be
sweeping. We shall prove that K is sweeping.

Let f € Ly(R*), then f = fo + fp, where fo = f-15, fp = f-1,. By
Corollary 2.3,

(K"fc) I D=0, (K"f)ID=Kpy(fID).
By Lemma 3,

VAe A /K"fdm-—)O.

AND
Now it is enough to prove that

/K”fdm-—)O for AeA.
ANC
Clearly

Kof=Ko(fo+fp), Kf=Kof+Kpf,
K (Kf)=K%fo+Kéfp+KoKpfp,
KC(I{2f) = R'gfc +Rg'fp + KéRDfD +RCK2DfD )

K"f -15=Ko(K"'f)
o+ KBFRY fp 4+ KK fp
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Take 1 < k < n and define:
M, .f= Kifo+Kofp + KR 'Kpfp+ -+ KR MR f
Ry fp=K&*KSfp+ -+ KK fp.

K is contraction, hence

”Rk,nfD“ S ”}r{o—kkng” + .- + “R’Ci'{g—lfD”
<WKEEfoll+-- + IKcKE fill.-

By (3.2) _, ;
1B nfoll < IEDfpll = IKD Fpll-

The sequence {||I~{I’; flI} is nonincreasing for K p being contraction. Thus

IEpfoll = IKBfpll <5 for m,k>mng(e), n>k.
Now fix k > ny(e), A € A. f{c be sweeping implies

My f dm < &

ANC

for n sufficiently large, hence

K'fdn—-0 for A€ A.
AnC
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