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OF SOME MARKOV OPERATORS 

APPEARING IN MATHEMATICAL MODELS 
OF BIOLOGY 

I G O R MELICHERČÍK 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. A class of Markov operators satisfies the Foguel alternative if its 
members are either sweeping or have stationary densities. We show t h a t this 
alternative holds for some integral Markov operators appearing in mathemat ica l 
models of biology 

1. Introduction 

Let K: LX(X) -> LX(X) be an integral Markov operator of the form: 

Kf(x) = fK(x,y)f(V)dy, (1.1) 
x 

where K(x, y) defined on X x X is a kernel. Such operators were intensively 
studied. In [1], [4], [6], [7] some sufficient conditions for sweeping (see Defini­
tion 3.1) and asymptotical stability were given. It was proved in [4] that, under 
the assumption of having subinvariant locally integrable function, the alterna­
tive of sweeping or having stationary density holds. The condition without the 
assumption of the existence of a subinvariant locally integrable function for op­
erators satisfying some property (P) was given in [3]. The main result of this 
paper is the proof of the Foguel alternative for operators of the form: 

\(x) 

Kf(x) = f (--^H(Q(\(x)))-Q(yj)f(y) dy, (1.2) 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 47B38, 47B65, 47G10, 60J05. 
K e y w o r d s : Markov process, integral Markov operator, stat ionary density, sweeping. 
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where Q, A, — H are nonnegative, nondecreasing, absolutely continuous func­
tions on IK+ satisfying: 

H(0) = 1, l imH (x)-=0, 
x—J>oo 

Q(0) = A(0) = 0, lim Q(x) = lim X(x) = oo. 
£ - > 0 0 X—>-00 

Operators of this type need not satisfy the property (P). The asymptotic be­
haviour of operators of the form (1.2) has many practical applications in biology. 

In Section 2, some necessary results of [2] are presented. In Section 3, the 
main result (Theorem 3.2) is proved. 

2. Some properties of Markov processes 
and integral Markov operators 

Theorems 2.1-2.4 are proved in [2]. 

DEFINITION 2.1. A Markov process is defined to be a quadruple (X, E, ra, P ) , 
where (X, E,ra) is a a-finite measure space with positive measure and where 
P is an operator on Lx (X) satisfying 

(i) P is a contraction: ||P|| < 1, 
(ii) P is positive: if 0 < u G LX(X) then Pu > 0. 

DEFINITION 2.2. If u is an arbitrary non-negative function, set Pu := 
lim Puk for 0 < uk £ L1(X), uk /* u, where the symbol /* denotes monotone 

k—>oo 

pointwise convergence almost everywhere. 

The sequence Puk is increasing so that limPuk exists (it may be infinite). 

By [2] the definition of Pu is independent of the particular sequence uk. 

D E F I N I T I O N 2.3. Take u0 e LX(X) with u0 > 0. Define 

C=ix: ] T p \ ) ( x ) = o o j , D = X\C. 
^ k=o J 

By [2] this definition is independent of the choice of u0. 

T H E O R E M 2.1. If0<ue LX(X) then 

oo oo 

y ^ Pku(x) < oo for x e D , ^2 Pku(x) = 0 or oo forxeC. 
k=0 k=0 
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DEFINITION 2.4. A function K(x,y) > 0 defined on X x X which is jointly 
measurable with respect to its variables is called a kernel. If f K(x,y) dx = 1, 
then K is called a stochastic kernel. x 

Stochastic kernel defines an operator on LX(X): 

Kf(x) = j ' K(x,y)f(y) dy 
x 

with \\K\\ = 1. So (X, E,ra,if) is a Markov process. 

DEFINITION 2.5. Let P be an integral Markov operator, then (X, E,ra,P) 
is said to be a Harris process if X = C. 

THEOREM 2.2. Let K be an integral Markov operator and a Harris process. 
Then there exists 0 < u < co such that Ku = u (a a-finite invariant measure). 

THEOREM 2.3. Let P be a Markov process with X = D. Then there exists 
0 < g < oo such that Pg < g. 

oo 
P r o o f . Let 0 < u0 G LX(X). Set g = £ Pku0. D 

k=o 

DEFINITION 2.6. Let P be a Markov process. Define operators Pc, PD: 

PC:L1(O)^L1(O), Pcf = (Pf)\C, 
where the symbol \ denotes the restriction to the set C, / is the function / 
extended by 0 on D, 

J V £.(2?)->/.,(£>), PDf = (Pf)\D, 

where / is the function / extended by 0 on C. 

THEOREM 2.4. Let P be a Markov process, / / s u p p / C C, then suppP/ C C 
( s u p p / = { x : f(x)^0}). 

COROLLARY 2.1. Let K be an integral Markov operator. Then 

(C,V\C,m\C,Kc) 

is a Harris process. (S f C denotes the a -algebra restricted to the space C, 
ra \ C denotes the measure m restricted to the space E f C). 

P r o o f . By Theorem 2.4, supp/ C C implies suppKf C C By Theo­
rem 2.1, for u > 0 on C, u = 0 on D: 

oo 

oo = Yl Rk<x>> = E Kc(u r <?)(*) 
k=o k=o 

for every x G C. 
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COROLLARY 2.2. Let P be a Markov process on LX(X). Then 

PD(f\D) = (Pf)\D. 

P r o o f , f = fD + fc, where fc = f • lc, fD = f • 1D. By Theorem 2.4. 
(Pfc) \ D = 0, hence 

(Pf)\D = (PfD)\D = PD(f\D). 

a 

COROLLARY 2.3. We have 

Pn(f\D) = (Pnf)\D. 

COROLLARY 2.4. Let P be a Markov process on X, let u> 0 on D. Then 
oo 

£P><00. 
n=0 

P r o o f . Let u be a function on X such that u f C = 0, u \ D = u. By 
Corollary 2.3, 

OO • OO \ 

n=0 \ r . - n / 

By Theorem 2.1, f g Pnu) \ D 
^n=0 ^ 

n=0 x n=0 
oo 

* " ~ < 00. 

3. The Foguel alternative for integral 
Markov operators of the form (1.2) 

DEFINITION 3.1. Let a family A C S be given. A Markov process is called 
sweeping with respect to A, if 

lim [ Pnf 
>-v°°j 
lim / Pnf dm = 0 

n—)-oo t 

k 
for AeA and feD (D = {f e LX(X), \\f\\ = 1, / > 0 } ) 

In the sequel we shall assume that A satisfies the following properties: 

(i) 0 < m(A) < oo for A e A, 
(ii) AX,A2 e A implies A1 U A2 e A, 

(iii) there exists a sequence {An} C A such that \JAn = X. 

A family satisfying (i) - (iii) will be called admissible. 
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DEFINITION 3.2. Let (X, E,m) and an admissible family ^ C E b e given. A 
measurable function / : X —> R is called locally integrable, if 

/ 
l/l dm < oo for A Є Л. 

The following theorem is proved in [4]. 

THEOREM 3.1. Let a measure space (X, £ ,m) , an admissible family A and 
an integral Markov operator K be given. If K has no invariant density but there 
exists a positive locally integrable function /„. subinvariant with respect to K, 
then K is sweeping. 

REMARK 3.1. Theorem 3.1 was proved in [4] for stochastic kernel operators 
( / K(x,y) dx = 1). But the proof is exactly the same for integral Markov 
x 

operators. 

Let K be an integral Markov operator. Recall the definition of Kc and KD 

(see Definition 2.6). By Corollary 2.1, Kc is a Harris process and by Corol­
lary 2.4, KD is dissipative (X = D). By Theorem 2.2 and Theorem 2.3, there 
exist gc, gD such that Kcgc = gc and KDgD < gD. The following two lem­
mas (3.1 and 3.2) claim that gc, resp. gD are locally integrable in all points 
y e C (resp. y G D) such that 

/ Kc(x,y) dm(x) > 0 (resp. / KD(x,y) dm(a;) > 0 ) . 

c D 

Denote by R+ the set [0, oo) and by T the Euclidean metric topology on R+ . 

LEMMA 3.1. Let K be an integral Markov operator of the form (1.2), let 
y e R+ . Let 0 < g < oo and Kcg < g. Let 

I Kc(x,y) dm(x) > 0. 

c 

Then there exists an open neighbourhood UQ of y such that 

/ g(z) dz < oo. 

u0nc 

P r o o f . Let 

VUyeT, yЄUy Jg{z)dz = oo. 

uync 
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Let B = {x e C : K(x,y) > 0}. Let E C B and m(E) > 0. Then 

/ g(x) dx> / g(z)K(x,z) dzdx 
E E uync 

= J g(z) I K(x,z) dxdz. (3.1) 
uync E 

Since 
K(x,y) = q(X(x)) • X'(x)h{Q(X(x)) - Q(y)) 

and Q(y) is absolutely continuous, 

í K(x, z)ăx= í h(t- Q(z)) dí 

E QWE)) 

is continuous with respect to z. By the assumption there exists e > 0 such that 

fк(x,y) _ dx > £ > 0. 

E 

Since / K(x, z) dx is continuous with respect to z, there exists Uv £ T such 
E y 

that y eUy and 
jк(x,z) Vz€Uy ІK(x,z)dx>є. 

E 

Now (3.1) and J g(z) dz = oo imply that 
c/vnC 

0 O . / g(x) dx = 

E 

E C B was arbitrary, so g(x) = oo on the set B. But by the assumption 
0 < g < oo. • 

LEMMA 3.2. Let K be an integral Markov operator of the form (1.2), let y G 
M+ . Le£ 0 < g < oo and -ftTp# < g. Le£ 

J KD(x,y) dm(x)>0. 
D 

Then there exists an open neighbourhood U0 of y such that 

/ g(z) dz < oo. 

u0nD 

The proof of Lemma 3.2 is the same as the proof of Lemma 3.1. 
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THEOREM 3.2. Let K be an integral Markov operator of the form (1.2). Let 
A be the family of compact subsets of R+ (with respect to the Euclidean metric 
topology). If K has no stationary density, then K is sweeping with respect to A. 

P r o o f . Denote 

Kcf = (Kf)-lc, KDf = (Kf)-lD, 

fc = / ' 1G > /D = / * ID • 

\\Kl

DfD\\ = \\KKDfD\\ = \\KcKDfD\\ + HRj+%11, 

\\KcKDfD\\ = \\Kl

DfD\\-\\Kl^fDW, 

J2 \\KckyD\\ = \\KDfD\\ - \\KD

+1fD\\. (3.2) 
l=k 

LEMMA 1. Let y e R+ . Then there exists Uy eT such that y eU and 

lim /Ff£/dm = 0 
n—>oo J 

Now 

hence 

for every f e L1 (D). 

P r o o f . By Corollary 2.4, 

0< Ş2к%u(x) <oo 
n=0 

for u > 0, hence the process KD is dissipative. By Theorem 2.3, there exists a 
a -finite subinvariant measure A equivalent to m \ D. 

Let Ax be the family of all sets of finite measure (with respect to m) such 
that 

Г dA 

J dm 
VA Є Ax I -— dm < co. 

A 

Since ^ < oo, the family Ax is admissible. ATD is dissipative, hence by The­
orem 3.1, KD is sweeping with respect to Ax. Let y be such that for every 
neighbourhood UGToi y the set ZPflff has positive measure. Denote g = ^ . 
Let 

J K(x,y) dx > 0 . 

D 
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By Lemma 3.2, there exists U G T such that 

/ g(x) dx < oo, 

uynD 

hence 

UnDeAXl lim lK1Xfdm = 0. 
y A n->»oo J u 

UynD 
Let / K(x,y) dx = 0. Let 

D 

lim [Kn(f\D)^0 
n—>oo y 

£/ynD 

for all UyeT such that t/Gf/^ and some f € Lx (R+). Now / K(x, y) dx = 1. 
C 

Since / K(x, y) dx is continuous with respect to y (see the proof of Lemma 3.1), 
C 

there exists U E T such that y EU and 

fк(x,z) Vz€Uy I K(x,z)dx>є>0. 

C 

By the assumption there exists 6 > 0 such that 

f Kn

D(f\D)>8 

uynD 

for infinitely many n. By Corollary 2.3, 

Kn

D(f\D) = (Kn

DfD)\D. 

Then 

jkck
nfD(x)dx>J JK(x,z)KDfD(z)dzdx 

c c uvnD 

= í k$fD(z) ÍK(x,z)dxdz 
UyClD C 

>e í KofD(z) dz > e • 6 

uvnD 
for infinitely many n. Hence 

OO OO p 

J2 \\Kck
n

DfD\\ >J2 ŽcKn
DfD(x) dx = oo 

n=0 n=0 J 

C 

which contradicts (3.2). 
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LEMMA 2. Let i / 6 R + , let Kc has no stationary density. Then there exists 
Uy eT such that y eUy and 

lim / K%f dтn = 0 
n-юo J CJ 

for every f G LX(C). 

P r o o f . By Corollary 2.1 and Theorem 2.2, Kc is Harris and there exists 
a function g, 0 < g < co such that Kcg = g. 

Let y be such that for every neighbourhood U eT of y the set C f)U has 
a positive measure. Since / K(x, y) dx = 1 and by Corollary 2.2 K(x, y) = 0 

for x G D, y e C, 

í K(x,y)dx = l 
c 

By Lemma 3.1, there exists UyeT such that y eUy and 

/ • 
#(x)d ; r<oo . (3.3) 

c/vhC 

Let A be the family of all sets of finite measure such that 

MAeAg / g dm < co. 

Since g < oo, the family .A is admissible. By (3.3) Uy n C G -A and by 
Theorem 3.1 

V/ЄL^C) fкţfdm^O. 

D 

LEMMA 3. Le£ i f c /ias no stationary density, let A e A. Then 

Hrr̂  / i fg/ i dm = 0, lirn^ /" i f£ / 2 dm = 0 (3.4) 

Anc AnD 

for every f^L^C), f2eLx(D). 

P r o o f . Let y G R+ . By Lemma 1, there exists UxeT such that y e Ux 

and 
Vf^L^D) lim 

n->o 
ř/ihD 

V/2 G L^Z?) J.im í K £ / 2 dm = 0 . 
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By Lemma 2, there exists c72 G T such that y G U2 and 

V/- G L, (C) lim /" Knfx dm = 0 . 
1 x n-»oo / 

t/2 r\C 

Set Uy = C/j fl U2. Then 

lim 
n—юo 

Í/UПC 

/ Äg/,. dm = 0, lirn^ /" tf£/2 dm = 0. (3.5) 

Thus we have proved that for every y G 1R+ there exists Uy G T such that 
y £U and (3.5) holds. Finally (3.4) follows from compactness of _4. • 

By Lemma 3, KD is sweeping, Kc is sweeping or has a stationary density. 
Let ifc have a stationary density / . Let ft be a function on R+ such that 

/ . \C = f, f, r.D = 0.Then 

(Kf.)\C=(K(ft.lc))\C+(K(ft.lD))\C = Kcf = f. 

By Corollary 2.2, (Kf,) \ D = KD(f, \D) = 0, hence Kf, = f,. Let Kc be 
sweeping. We shall prove that K is sweeping. 

Let / € LX(R+), then f = fc + fD, where fc = f • l c , fD = f • 1D. By 
Corollary 2.3, 

(Knfc) \D = 0, (Knf) \D = Kn(f\D). 

By Lemma 3, 

VAeA f Knf d m - > 0 . 
AnD 

Now it is enough to prove that 

/ 
Knfdm->0 for AeA. 

Ar\C 

Clearly 

kcf = kc(fc + f D ) , Kf = kcf + kDf, 

kc(Kf) = k2
cfc + k2

cfD + kckDfD, 

kc(K
2f) = kcfc + k3

cfD + k2
ckDfD + kck

2
DfD 

Knf.\c = Kc(K
n-1f) 

= knfc + kcfD + kn~1kDfD + ••• 

• •• + kn-kkk
DfD + ••• + kck

n
D-lfD. 
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Take 1 < k < n and define: 

Mk,J = kcfc + kcfD + k^kDfD + ••• + kc-^k^fo, 

Rk,JD = K^~kkk
DfD + ••• + kckD~1fD. 

Kc is contraction, hence 

\\RH,JD\\ < WKc-
kKDfD\\ + ••• + \\kckD-'fD\\ 

<\\kck
k

DfD\\ + ... + \\kckD-lfD\\. 
By (3.2) 

\\Rk,JD\\<\\Kk
DfD\\-\\kDfD\\. 

The sequence {||If£/||} is nonincreasing for KD being contraction. Thus 

l l ^ / D H - | | - ^ S / f l l l < f for n , * > n 0 ( e ) , n>k. 

Now fix k > n0(e), A e A. kc be sweeping implies 

Mh,J dm < f / 
AnC 

for n sufficiently large, hence 

/ 
Knf dm -> 0 for AeA. 

Anc 
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