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ON A TENSOR PRODUCT OF WEAKLY 
COMPACT MAPPINGS 

MILOSLAV DUCHON 

Let S and Tbe Hausdorff locally compact spaces, Q(S) and Co(T) the spaces of 
all continuous complex-valued functions on S and T, respectively, vanishing at 
infinity, with the sup norm; further let X and y be Hausdorff locally convex 
spaces. If u: G(S)—>X and v: Q(T)-> y are continuous linear mappings, then 
their tensor product, i. e. the linear mapping u(g)v: Q(S)(x)C(T)—>X(x) Y such 
that u®v(f®g) = u(f)(x)v(g), fe Q(S), g e Co(T), is continuous, if both tensor 
products Co(S)®Co(T) and X ® y are endowed with the e-topology; thus the 
mapping u®v: Co(S)®eCo(T)-+ X®eYis continuous, moreover u®v has the 
extension onto Co(Sx T) [11, p. 275 and p. 288]. If u and v are compact, then 
their tensor product is also compact as it follows from [11, p. 285]. It is the main 
purpose of this paper to prove that if u and v are weakly compact mappings, then 
their tensor product is a weakly compact mapping from Co(Sx T) into X(x)cY 
Moreover the approach used makes it possible to show that the e-topology on 
X(x) y may be replaced by the s-topology or summing topology [15, p. 313], [10, 
p. 22] generally finer than the e-topology and weaker than the projective topology 
or jr-topology. That the mapping u®v is weakly compact under the e-topology if 
u and v are weakly compact can be also deduced from our results in [4] or from the 
results of the [14] obtained by different methods in the case when X and Y are 
Banach spaces; compare also the paper [12]. In the present paper we obtain this 
result as a corollary of a more general result. 

1. The tensor product of regular Borel vector measures 

Denote by Ba(S), B(S) and BW(S) the sigma ring of Baire, Borel and weakly 
Borel sets in S, i. e. the sigma ring generated by compact G6, compact and closed 
sets, respectively; Ba(S)xBa(T), B(S)xB(T) and Bw(S)xBw(T) denote the 
sigma rings in S x T generated by Baire, Borel and weakly Borel rectangles, 
respectively. The following relations hold 

(1) Ba(S)xBa(T) = Ba(SxT), 
(2) B(S)xB(T)cB(SxT), 
(3) Bw(S)xB„(T)cBw(SxT), 
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in other words, Baire sets "multiply"; in general, Borel sets and weakly Borel sets 
do not, for there exist compact topological groups G for which the inclusion 

B(G)xB(G)aB(GxG) 

is proper [1], [8], [9]. 
Let X and y be Hausdorff locally convex spaces with the corresponding systems 

P = (p) and Q = (q) of continuous seminorms determining their locally convex 
topologies X denoting the quasicompletion of X . 

A sigma additive set function ma: Ba(S)—>X, m: B(S)^>X and mw: BW(S)^> 
X is called a Baire, Borel and weakly Borel vector measure, respectively, on S with 
values in X. 

Let m: B(S)^>X and n: B(T)—> Y be Borel vector measures. From [7] it 
follows that there exists their tensor product 1 = mX n as a vector measure on 
B(S) xB(T) with values in the tensor product X(x) y , such that mXn(AxB) = 
m(A)®n(B), A e B(S), BeB(T) HI is allowed to take its values in X®eY, the 
completion of the algebraic tensor product X (x)y in the e-topology or the 
topology of bi-equicontinuous convergence [11]. Similarly for Baire and weakly 
Borel measures. In [10] this result was improved allowing a topology on the 
algebraic tensor product X ® Y in which / is sigma additive and such that all values 
of / belong to the completion of X(x) y under the topology called the T-topology or 
the s-topology or the summing topology [15, p. 313] finer than the e-topology and 
coarser than the projective tensor topology or the jr-topology. It follows from [13] 
that when X = y = I2 the e, r or s and JT-topologies are all distinct. Recall that the 
s -topology (or summing topology) on X ® y is defined by the system of seminorms 

P® siq(z) = ini sup p (^ Ciq(yi)xA, peP, qeQ, 

[the s/-topology] 

P ® srq(z) = ini sup q (^ Cip(xi)yi), peP, qeQ, 
\ . = i 

[the sr-topology] 
where the supremum is taken over all choices of complex numbers c,, | C J | ^ 1 , 

i = l, ..., k, and the infimum is taken over all expressions of z in the form 

k 

i = l 

with Xi e X, yt e Y, i = 1, ..., k. We have 

P®eq^P®siq^p®*q 
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p®eq^p®srq^P®nq, 

P®siq(x®y) = p®srq(x®y) = p(x)q(y) for all xeX, yeY. 

It follows that the identity mapping on X ® Y extends uniquely to continuous 
inclusions X®JtY^>X®siY-+X®eY, i = l or r, where X®nY9 X®5Y and 
X®eY denotes the quasicompletion of X® Y equipped with the jr-topology, the 
s-topology and the e-topology, respectively. In [10] there is considered still 
another topology on X® Y, namely for peP and qeQ one defines a seminorm by 
the formula 

P^q = 2^p®siq + p®srC^' 

Clearly we have 
prq(x®y) = p(x)q(y), xeX, yeY, 

p®eq^prq^p®„q. 

X®XY denotes the quasicompletion of X® Y endowed with T-topology. Again 
the corresponding continuous inclusions could be strict. 

According to Theorem proved in [10] we obtain using (1) the following. 
Theorem 1. Let ma: Ba(S)—>X and na: Ba(T)—> Y be Bake vector measures. 

Then there exists a unique Bake vector measure la = maXna: Ba(SxT)-+ X® x Y 
such that 

la(AxB) = ma(A)®na(B), AeBa(S), BeBa(T). 

A similar theorem can be stated if the Borel sets or the weakly Borel sets 
multiply. If the Borel sets do not multiply we must proceed in the same way as that 
used for the e-topology in [4]. However the satisfactory result can be obtained only 
in the case that the vector measures are regular. 

Let R(S) be a ring of subsets of S and m0: R(S)-> X an additive set function. 
We say that m0 is regular if for each E in R(S) and every d>0, for each p in P 
there exist a compact set C in R(S) and an open set V in R(S), CczEczV, such 
that we have p(m0(H))<d for every H in R(S) with H e V- C. Recall that if 
m0:R(S)—>X is additive and regular, then m0 is countably additive [3, p. 510, 
Theorem 3]. Recall that every Baire vector measure ma: Ba(S)—>X is regular [3, 
p. 511] or [6, Th. 2]. Moreover every Baire vector measure ma: Ba(S)^> X can be 
extended uniquely to a regular Borel vector measure m: B(S)-*X and every 
regular Borel vector measure m: B(S)-+ X can be extended uniquely to a regular 
weakly Borel vector measure m*,: BW(S)-+X [6, Theorem 5 and Theorem 6]. 

Now if m: B(S)-> X and n: B(T)-+Y are regular Borel vector measures then 
there exists their r-tensor product as a vector measure l = mx xn: B(S) x B(T)^> 
X®XY such that l(A xB) = m(A)®n(B), A e B(S), B e B(T), but this may fail 
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to be a Borel vector measure since in general its domain of definition is not 
satisfactory if Borel sets do not multiply. The same situation appears in the case of 
weakly Borel vector measures. If we take in such a case ma and na as the Baire 
restrictions of m and n, then the r-tensor product of ma and na, namely ma x xna, is 
according to Theorem 1 a Baire vector measure on S x T with values in X(x)Ty. 
Now we obtain a regular Borel vector measure r on S x T with values in X(x)Ty as 
the unique regular extension of ma x xna which always exists. We must prove that r 
is an extension of mxxn. 

Theorem 2. If m: B(S)-+X and n: B(T)—>Y are regular Borel vector 
measures, then there exists one and only one regular Borel vector measure on 
SxT with values in X(x)Ty which extends mxxn. This measure is simply the 
measure r described above. 

This theorem is a corollary of the following more general result proved in [4, 
p. 326]. 

Theorem 3. Suppose that m0: B(S) x B(T)-+Xis a vector measure such that 
(i) for each compact set C in S, the correspondence 

B-» m0(Cx B), B e B(T), 

is a regular Borel vector measure on T with values in X, and 
(ii) for each compact set D in T, the correspondence 

A-> m0(A XD), Ae B(S), 

is a regular Borel vector measure on S with values in X. Then m0 may be extended 
to one and only one regular Borel vector measure r on SxT with values in X, 
r: B(SxT)-+X. 

Proof of Theorem 2. We apply Theorem 3 to the r-tensor product m0 = 
m x xn; conditions (i) and (ii) are verified using the fact that 

m0(A XB) = m(A)(g)n(B), prq(m0(A X B)) = p(m(A)) q(n(B)) 

for all rectangles with Borel sides. 
The next theorem shows that if mxxn is non-zero, then no regular Borel 

extension of mXxn is possible, unless m and n are both regular. 
Theorem 4. If there exists a non-zero regular Borel vector measure 

I: B(S x T)—> X(x)Ty which extends m X xn, then both m and n are regular. 
Proof. If / is a regular Borel extension of m x xn, it is a regular extension of 

the Baire measure ma Xxna, ma and na being the restrictions of m and n to the 
Baire sets, respectively. It follows from Theorem 2 that / extends m' xxn', where 
m' and n' are regular Borel extensions of ma and na, respectively. Hence 
m' xxn' = mX xn, and thus 

m'(A)(g)n'(B) = m(A)®n(B) 
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for all Borel sets A in S and B in T. Since /, and hence m' xTn', are non-zero, it 
follows that m = m' and n = n'. For if we choose a Baire set B in Ba(T) such that 
n'(B) = n(B) = na(B)±0, we have m'(A)(x)n(B) = m(A)(x)ri(B) for all Borel 
sets A in B(S); there is g in Q such that <7(n(B))-£0; for all p in P we have 
p(m'(A))q(n(B)) = p(m(A))q(n(B)), which implies p(m'(A)) = p(m(A)) for 
all p in P and thus m'(A) = m(A); since this holds for all A in B(S) we have 
m' = m and similarly n' = n. 

A bilinear mapping b: Xx Y-*Z, where Z is also a Hausdorff locally convex 
space, is said to be T-hypercontinuous or s-hypercontinuous if the linear mapping 
induced by it on the tensor product X ® y is continuous under the T-topology or 
the s-topology. We have the following 

Theorem 5. Let b: Xx Y-+Z be a r-hypercontinuous bilinear mapping and 
Z a sequentially complete space. If m: B(S)-+X and n: B(T)—• Y are regular 
Borel vector measures, then there exists one and only one regular Borel vector 
measure r: B(S xT)^>Z for which 

r(AxB) = b(m(A),n(B)), AeB(S), BeB(T). 

Proof. If r0 is the unique regular Borel vector measure o n S x T with values in 
X(x)Ty which extends mxxn as in Theorem 2 and b' is a linear mapping induced 
by b, we define a set function r: B(Sx T)^>Z as follows: 

r(G) = b'(r0(G)), GeB(SxT); 

since r0 is regular and b' is continuous, r is a regular Borel vector measure on S X T 
with values in Z. 

A generalization of Theorem 2 for weakly Borel sets is the following. 

Theorem 6. Let m*,: BW(S)-*X and nw: BW(T)—>Y be regular weakly 
Borel vector measures. Then there exists one and only one regular weakly Borel 
measure lw: BW(S x T) —.•X(x)Ty, extending the r-tensor product rw = 
^ X A : BW(S)XBW(T)-+X®TY. 

The validity of the last theorem follows from an adaptation of Theorem 3 for 
weakly Borel measures. 

Theorem 7. Let rw be a vector measure on the sigma algebra BW(S) xBw(T) 
with values in X such that 

(i) for each closed set A in S, the correspondence 

F^rw(AxF), FeBw(T), 

is a regular weakly Borel vector measure on T, and 
(ii) for each closed B in T, the correspondence 

E-*rw(ExB), EeBw(S), 
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is a regular weakly Borel vector measure on S. Then rw may be extended to one and 
only one regular weakly Borel vector measure mw: Bw(SxT)^>X. 

The proof of this theorem is similar to that of theorem 3 in [4] and is based on 
a theorem in [5, Theorem 5] asserting that Theorem 7 is valid for complex-valued 
measures. 

2. Tensor product of weakly compact mappings 

We shall see that theorems 2 and 6 are in fact the results which imply that 
T-tensor product or s-tensor product of weakly compact linear mappings 
u: Co(S)-">X and v: Q(T)—>Y is a weakly compact linear mapping from 
Co(SxT) into X(x)TY. 

If u: Q(S)—>X is a weakly compact mapping, there exists a unique regular 
Borel vector measure m: B(S)-^>X such that 

" < » - ! ' 
dm 

for all feCo(S) as it follows from [2, Theoreme 12]. Similarly if V: Co(T)-+Y is 
a weakly compact mapping, there exists a unique regular Borel vector measure 
n: B(T)-+ Y such that 

v(ø) = J дdn 

for all g e Co(T). Take now the extended T-tensor product / = m(x)Tn: B(S x T)—> 
X(x)TY existing according to Theorem 2. Since it is a regular Borel vector measure 
the relation 

w ( / i ) = í hdm®xn, / i e C a ( S x T ) , 
JSxT 

defines a weakly compact linear mapping from Q ( S x T) into X(x)TY. This follows 
from [2, Theoreme 13]. 

We must prove that for h = f®g, fe Co(S), g e Q ( T ) we have 
w(h) = w(f®g) = u(f)®v(g), 

i. e. 

h dm®Tn=\ / d m ® g dn. 
JsxT Js JT 

But this holds for all bounded Borel functions / and g with compact support on S 
and T, respectively. In fact, let f=cA and g = cB be the characteristic functions of 
bounded Borel sets A and B, respectively, in S and T. Then we have 
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I cA®cBdm®sn = m®sn(AxB) = m(A)®n(B)=\ cAdm®\ cBdn. 
JsxT Js JT 

If 
k I 

f = ^<tiCAi, g = ^bicBi 
i = l 7 = 1 

are simple Borel functions with compact supports, we have 

J f®gdm®sn=\ / d m ® J g dn. 
JSXT Js JT 

If / and g are bounded Borel functions with compact supports on S and T, 
respectively, then they are uniform limits of a sequence of Borel simple functions 
with compact supports, 

/ = lim/fc, g=\\mgl. 
k—*°o /—»oo 

We have 

I /®0dm® 5 rz = limlim fk®gt dm®sn = 
JsxT *->oo /-•oo JsxT 

= lim lim (j fk d m J ® / J gt dnj = J / d m ® J g dn. 

We may summarize. 
Theorem 8. Let X and Y be quasi-complete Hausdorff locally convex spaces. If 

u: Co(S)—>X and v: Co(T)—> Y are weakly compact linear mappings, then the 
x-tensor or the s-tensor product of u and v is the weakly compact linear mapping on 
Co(S x T) intoX®rYorX®sY, i. e. the linear mapping w = u®v: Q(S x T)-> 
X(x)rY or X®SY such that u®v(f®g) = u(f)®v(g), / e Q ( S ) , geQ>(T), is 
weakly compact. 

For w = u® v is weakly compact as a mapping from Co(S)®eCo(T) into X®TY 
or X®SY and Co(S)®eCo(T) is isomorphic with Co(SxT) [11, p. 288]. 
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О ТЕНЗОРНОМ ПРОИЗВЕДЕНИИ СЛАБО КОМПАКТНЬЬХ ОТОБРАЖЕНИИ 

МПо8^ О и спой 

Резюме 

В работе применяются результаты о тензорном произведении векторных мер к доказатель­
ству следующего утверждения: Пусть и: 0,(5)—> Хи V. Со(Т)^> У слабо компактные линейные 
отображения пространства непрерывнаых функций, нулевых в бесконечности, в локально 
выпуклое пространство X и У, соответственно. Тогда 5-тензорное произведение отображе ш и 
и V слабо компактно из 0,(5 хТ) в Х(х)аУ, квазипополнение тензорного произведения при 
5-топологии, вообще сильнее е-топологии и слабее я-топологии. 
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