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A BLOW-UP RESULT FOR NONLINEAR DIFFUSION
EQUATIONS

MAREK FILA and JAN FILO
1. Introduction

This paper deals with the initial-boundary value problems of the form

u=Au™)+u —gu xeD,t>0,
1)) ux, ) =0 xedD, t > 0,
u(x, 0) = uy(x) (=0) xeD,

where D is a smoothly bounded domain in R" and m, p are positive constants
1 < p, 0 < m < p. Precise conditions concerning the data g-and u, will be given
later, but till then, we shall consider as a model term g(u) = au? for u > 0 and
gu)=0foru<O0,wherea=>0,1<g<p.

In connection with the question of the nonexistence of global solutions to
problems related to (I), a number of authors (e.g. Ball [2], Fujita [8], Galak-
tionov [9], Levine and Sacks [11], Nakao [12], Sacks [14], Sattinger and Payne
[15], Tsutsumi [16], Filo [S]) have investigated conditions under which weak
solutions will blow up in a finite time. In the paper presented we extend, in a
certain sense, the blow-up result given by Sattinger and Payne [15] concerning
the semilinear parabolic equations to nonlinear diffusion problems including the
absorptive term g.

In order to describe our results, let us take m < p and define

12 20+ m)
p—m
(J (Vwl* + g(w'"™) w) dX)
. D
d = k 1:lllt;D) I / m/(p + m) ’
WE +p/m
w>=0, 0w #0 (J‘D w ? dx)

1
where k = min (—, m. ) -
2 m + g sign(a) m+p

assumption pm~' < (N + 2)/(N — 2). From the Sobolev embedding theorem
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and in case of N > 3 we add the




one can then see that d is positive and we can introduce the “unstable” set B
given by

B= {weHg(D), w=0:Jw)<d and J (VWP + gw'™yw — w' trmydx < 0},
D

where J is the functional of the potential energy associated with (), i.e.

(1.1) J(w) = LG IVw|* + L g(r''™ dr —

w‘*”/'")dx.
m+p

We prove that if uj'e Bn L*(D), then the mth power of the solution u to
Problem (I) does not leave the set B and tends to infinity in finite time in the L*
norm. For g = 0 the number d s just the depth of the potential well introduced
by Sattinger (see [15] and references there). If m = 1, then the set B concides
with the set of those initial data in H;(D) for which Sattinger and Payne ([15])
proved the blowing up of solutions to a problem with a reaction term like u”.
Though our treatment is based on the study of an analogous “unstable” set B,
the nonlinearity in diffusion as well as the absorptive term g cause that our
method is completely different. Some of our arguments are of a similar nature
as those used by Nakao [12], [13] in order to prove the global existence of
solutions to Problem (I) with g =0 and m > 1.

The more delicate case m = p > 1 is considered separately and only for a
more special choice of g.

First, however, we shall need some preliminaries.

2. Preliminaries

We start by introducing some notation: Q, = D x (0, T), S; = 0D x (0, T),
|D| — Lebesgue measure of the set D, |ul, = |ul| o), 1 < g < 00,

+
H)={weH)(D): w#0,w=>0 a.e. on D},

1/2
lwl = (I IVWIde> s '[ h(t) = f h(x, t)dx, JI h= ff h(x, t)dxdt,
D D D or Or

(u, v) = J u(x) v(x) dx.

Now, before specifying the meaning of the solution of Problem (I) we note
that except of the case m = 1, Problem (I) does not necessarily have a classical
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solution even if the data are smooth and so it is necessary to consider some
well-defined generalized solution.

Definition 1. By a solution of Problem (1) on [0, T] we mean a nonnegative
Sfunction u such that

ue C([0, T); LX(D)) nL*(Qp), u™eL*(0, T; Hy(D))

and u satisfies
2.1)  (u(@), o)) — L ((u, @) — (Vu™, Vo) + (u” — g(u), 9)) = (up, ¢(0))

for a.e. te[0, T] and all @ such that pe L*0, T; H,)(D)), ¢,€ L*(Q;).

A subsolution (supersolution) is defined as above with equality in (2.1) replaced
by < (=) whenever ¢ = 0.

Further, in this paper we shall always use the following assumptions about
the domain D and the initial function ,:

(H1) D is a bounded domain in R" whose boundary, dD, is of class C>.
(H2) uy(x) is a nonnegative function defined on D such that

ue H\(D) n L*(D).
We shall also refer to these assumptions collectively as (H).

Next we shall need the following comparison and local existence results

Proposition 1. Suppose that D satisfies (H1) and that u, and v, both satisfy
(H2), g(0) = 0 and g is locally Lipschitz continuous. Let u be a subsolution and v
be a supersolution of Problem (I) on [0, T] with initial functions u, and v,,
respectively.

Then uy < v,y a.e. in D implies u < v a.e. in Q.

Proposition 2. If (H) holds and g is locally Lipschitz continuous, g(0) = 0, then
there exists a time T, 0 < T,,. < oo (which depends only on the data m, N, p,
g, Uy and D) such that Problem (1) possesses a unique solution u on [0, T) for any
0<T<T,.If T, < oo, then v

(2.2) lim |u(f)|, = + o0.

t>T

max

Moreover, for 0 < s <t < T, u satisfies

2.3 f (2™ *2) 2 4 J(u™(2)) < J(u™(s)),
2.3) (m+l)2 W& + J(u™ (1)) < Tu™(s))
where J is given by (1.1).

For the proof of Proposition 1 in the case of m > 1 we refer to [1], in case of
0 < m < 1, for example, to [5] (where the method of [1] is adapted). Propo-
sition 2 for m > 1 is proved in [11] and for 0 < m < 1, see e.g. [5].
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3. Main results

We begin by formulating the precise conditions concerning the function g,
which will be called hypotheses (A):
ge C'([0, =0)), g(0) = 0, g(u) = 0 for u > 0 and if we define G(u) = g(u'™),
3.1 G'Wu<9Gw) forsome 0< 3<p/m andall u>=0.

If G’ has a singularity at 0, which might occur in the case of slow diffusion, i.e.
for m > 1, we shall need the additional assumption, namely, that (3.1) holds for
some 0 < § < 1 in a neighbourhood of the origin.

Since we restrict ourselves to u, = 0, the solution u(x, t) is nonnegative too,
thus the behaviour of g for u < 0 is irrelevant and we can put g = 0 for u < 0.

Now let us first consider the case m < p. Put
(3.2) d =k inf ((" wl? + (G(w), w))'/2)2@+m)/(p—m)

u'ei;:] Iw'l+p/m

where k = i($) —m(@m + p)~', i($) =min(2™', (1 + J) ") and §,=0if g=0
and 9, = 9 otherwise. By the Sobolev embedding theorem it is not difficult to

see that d is positive if

{ p is arbitrary (m < p) for N =1, 2 and
pm~' < (N + 2)/(N —2) for N =3,

b

(3.3)

and using the notation

Kw) = [w]?* 4+ (G(w), w) — [wli 5m
we put
G g ) (weH: J(w) < d and K(w) < 0} if (3.3) holds and
{weI:FloI N L*(D): J(w) < 0} otherwise.

We note that the assumption (3.1) yields
(3.5) f Grydr=(0+ 9 'Guu foru >0,
0

+
and that, using (3.5), it is not difficult to find that J(w) < 0 for we H,y implies
K(w) < 0. The main results read then as follows. '

Theorem 1. Assume that D and u, satisfy (H), 0 < m < p, 1 < p, g satisfies (A)
and let u(t, u,) denote the solution of Problem (1) with initial value tp-
If uj'e B then u™(t, u))e Bfor 0 <t < T, and

1 (1 =p)/(1 +m)
(3.6) 7:,,‘,X<<|,T|fu(;"+'> /(p—l)(l—-x)<oo,
D
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where the constant ke (0, 1) depends only on uy,, m, p, 9 (c.f. (4.5)), i.e. the
solution u(t, uy) blows up in a finite time in L norm for uj'e B.

Remark 1. Assume that D satisfies (H1) and let (3.3) hold with pm~' <
< (N + 2)/(N —2) if N = 3. Moreover, suppose either (i) g =0 or (ii)) m = 1
and g(u) = au for some a > 0. Then it is not difficult to verify that

3.7 d= inf ( sup J(iw))
welj—l(l, 0<i<

and that the unstable set B given by (3.4) is equal to the set

(we HY: J(Aw) < d for Ae[l, o)}

(see, e.g., [16], where a similar result for a potential well is demonstrated).

In addition, the infimum in (3.7) is attained at a stationary solution to
Problem (I) (see, e.g., [3, Theorem 6.3.9] or also the proof of Theorem 2 in this
paper), hence

d= m;r} J(@™),
where E* denotes the set of all positive stationary solutions to Problem (I),
thus E* is nonempty. By a stationary solution to Problem (I) we mean a
nonnegative function v such that v"e C*(D)~ C'(D), v =0 on 0D and

A@w™)+v?P —gv) =0 on D.

Remark 2. It follows from the comparison principle stated in Proposi-
tion 1 that we can obtain nonexistence results for Problem (I) with a more
general growth term f(u) assuming f(u) > u” — g(u) for p, g as above, and for
any initial data vy e L*(D) such that v, > u,, where y, satisfies (H2), u{' € B (with
B defined by the growth term u” — g(u)). For the solvability of Problem (I) for
u,€ L*(D) only, see, e.g. [1], [11], [14], [5]. '

In order to describe our result concerning the case m = p > 1, we need the
following

Lemma 1. Suppose that the domain D is sufficiently “large”, i.e. that the first
eigenvalue A, of the Dirichlet problem Ap + 1,9 =0 in D, ¢ =0 on OD is less
than 1, and that m = p > 1. Let

(3.9) gwy=au? foruz0,gw)=0 foru<o0,

where 1 < g <m, 0 < aand

3.9 d= inf ( sup J(iw)).
werry 0S4

Then we have 0 < d < 0.
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Now we can introduce the “unstable” set B:

(3.10) B = {weH): J(w) < d and K(w) < 0},

and formulate

Theorem 2. Assume that D and u, satisfy (H), m = p > 1 and g(u) is given by
(3.8). Suppose further that the domain D satisfies the hypothesis of Lemma 1.
Then uy" € B implies that

(—q@/m+1)
GAD To.< (17‘)—1 f u:+'> (m + )lalg — 1)(m — g)(1 — ) < <o,

where the constant vel0, 1) is such that J(ul") < vd, i.e. the solution u(t, u) of
Problem (1) blows up in finite time for ug'e B. Moreover,
(3.12) ' d = minJ(v"),
veE

where E is the set of all nontrivial nonnegative stationary solutions to Problem (1),
hence E is nonempty.

We show that the following known result (see [9]) is a simple consequence of
Theorem 2. .

Corollary 1. Let us consider Problem (1) with g = 0 and let the hypotheses of

+
Theorem 2 hold. Then u(t, u,) blows up for every u, # 0, uf'€ H}.

+
Remark 3. It is not difficult to verify that if ée Hy, J(£) <0, then £e B,

B given by (3.10).

Now we can proceed to the proofs of the above assertions.

4. Proof of Theorem 1

In order to demonstrate that the unstable set B is nonempty put

@4.1) j(A): = J(Aw)  for weH!, 0 < A < oo.

The assumption (3.1) implies that there exist nonnegative constants r,, ¢ such

that G(u) < cu®for all u > r,, and as 9 < p/m, j(A) - — oo for A - co. Hence B

is nonempty. '
But as the main aim of this paper is to show the blowing-up from the initial

data with positive energy, we should demonstrate that there exists w,e ;I,‘, such
that 0 < J(w,) < d and K(w,) < 0. To see this, one can easily verify that
JjeC'([0, o)), j(0) = 0 and j(A) > 0 in a neighbourhood of the origin, which
together with the convergence of j into —oo for A — co gives the existence
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of such 4, that 0 <j(4,) < d and j'(4) <0, hence w, = A,we B as K(w,) =
= Aoj’(49) < 0.

Now for a while let us suppose that B is invariant, i.e. that u™(¢, u)) e B for
0<t<T,, if u"e B, which is obvious by (2.3) whenever J(u;") < 0. Then
according to (2.3) and (3.4) we have

(4.2) Jw™(t, u) <vd, 0<t<T,,,

for some constant ve (0, 1) if p satisfies (3.3) and 0 < J(u;') < d, or v=0 if
J(uf") < 0. Because we have supposed that u™(t, up) € B, (4.2) and (3.2) yield

4.3) J" () < vklu()ln 37,

where for simplicity of notation we write u(t) instead of u(t, 4). On the other
hand, we can estimate J(u"(t)) by (3.5) to obtain from (4.3)

4.4 lu™(2)]1* + (gu(@), u™ (@) < xlu@1},
where
4.5) kK = (vk + m(m + p)~")/i(9).

It is not difficult to see that 0 < x < 1.
Now, using the estimate (4.4), the proof of Theorem 1 can proceed in a
standard way. Inserting #™(¢) into (2.1) we obtain

“6) T — ludn = (m+ 1)L (= llu™I* = (g(u), u™) + lulnth

for a.e. t€l0, T,,.). We note that it is possible also in the case of 0 < m < 1, in
which (4™), does not always exist. However, in this case by (2.3) and the
boundedness of u, u, exists and (2.1) yields (4.6). Since y(¢): = [u(D)|2t] is
absolutely continuous on [0, T] for any T < T,,,,, we obtain from (4.6), by (4.4)
and the Holder inequality, the differential inequality

@.7) V(0 = (m+ 1)(1 = K| =PI+ my e pln 1 (g) >

for ae. t€[0, T,,,). As (m+p)(m+ 1)~' > 1, by the standard comparison
theorem for ordinary differential equations we have (3.6), and by (2.2), the
assertion of Theorem 1.

So, it remains only to prove that B is invariant in the case of the positive
energy of the initial data. It would not be difficult if we knew that the solution
u(t, u,) is sufficiently smooth, say,

4.8) u™(t, uy) is a continuous mapping from [0, T,,.) to H},

(see, e.g. [16], [12]). In fact, let u™(¢) leave the set B at the time ¢,. Since u'e B
and B is open with respect to the norm in Hy, t, is positive. Then in virtue of
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(4.8) we obtain that K(u™(t,)) = 0, as the case J(u"(t,)) = d is impossible by
(2.3). However, this and (3.5) yield

d> Jw" (1)) = klu(t)ln 14 > d,

which is a contradiction.

However, since we know of no regularity result like (4.8) if m # 1, we shall
now regularize Problem (I) and present several observations in order to prove
the invariance of the set B. First, for simplicity of notation, let us «.enote
4.9 a(u) = |u|"signu, b(u) = |u|""sign u.

Now, we shall consider the modified problems
(I ) u = Aaé‘(u) + (ae(u))p/m - F;(ae(u)) in QT’
§ u(x, 0) = up,(x) inD,u(x,t)=0 onS;,

where 0 < T < 7T,,., T,.. has been given for Problem (I) by Proposition 2,
0 < e < 1 and u,, a, and F, are defined as follows.

A. The case m > 1

Let us denote by {R,} a set of symmetric mollifiers in one variable with
supp R, = B(0, €) and put

(4.10) a,() = (R, *a)(u), b,=a .

The following properties of a, and b, are easily verified: a,, b,e C*(R), a,(0) =
=5,0)=0,0<d(e) <a.(u) < K(M)< oo for luf < M, M>0 and a, > a in
C'(R), b,— b in C°(R), as ¢ —» 0. From this, according to (H2) it is possible to
choose uy.€ C;* (D) such that

a,(u,) — a(uy) strongly in Hy, as well as,
4.11) 0 < up, < |ugly, + 1 and uy, — uy strongly in L*(D),
as €0,

(see, e.g. [11]). Now, if GeC'([0, «)), we need not to regularize it and put
E = G, but if G’ has a singularity at 0, let us put, e.g.,

QG ™' =G M) u+ (G~ —GmnHu’
@12  G,w={foro<u<n,

Gu) for0<n<su<oo,

and one can easily verify that G,eC ([0, o)), G,(0) = 0. We note, for later
reference, that using (3.1), and (4.12), we obtain the analogy of (3.5):
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(4.13) f G,(dr > i(9)G,wu  forallu>0.

Now we introduce the dependence of n on € and put F: = G,,. For this
purpose, let us define d, like d by (3.2) with G, instead of G and the set B,, and
the functionals J,, K, in the same way. Then, using (4.12), it can be shown that
d,— d as n— 0. Now, by our assumption a(x) € B, hence we can choose 1,
such small that J(a(u)) < d’ < d, for all n < n,and some d’ < d. On the other
hand, we can choose g > 0 such small that J(a,(u,,)) < d’ for all € < g, because
of (4.11). Now let 0 < £ < ¢, be fixed. Then there exists 7 (=7(¢)), 0 < n < 1
such that

4.14) Jy(a(u) < d,, as well as K, (a.(u) <0,

hence a,(u,,) € B,. This results from the construction of G, (c.f. (4.12)).

So we can return to Problem (I). Put M = |lu(t, uo)ll =, + 2, fo(u) =
= (a,(u))”™ — F,(a,(u)) for 0 < u < M, otherwise smooth and such that |f}],
|4 < K< ooonR, 4,(u) = a.(u) for lu] < M, otherwise smooth and such that
|4, |4l < K < o on R, for some positive constant K. With these choices of
data we obtain a unique classical solution of the problem

u, = div(4,(w)Vu) + f(w) in Or,
u(x,0)=u,, inD,u(x,t)=0 onS;,

which we denote by u,, i.e. u,e C>'(Q,) (see, e.g. [10, Chapter 5, Theorem 6.1]).
For later reference, let us denote U, = a,(u,). The proof of the following lemma
will be postponed to the end of this section.

Lemma 2. There exist a T', 0 < T < T and {€}, € = 0 such that

4.15) U,(t) = a(u(?) in C([0, T'); L'+*™(D)),
as €— 0, where u(t) = u(t, uy) is the solution of Problem (I), and U,e B, for
0<t<T.

So we are now ready to prove the invariance of the unstable set B. Choose

constants ve (0, 1), § > 0 such that J(a(u,)) < vd’ — 8. Then, according to (2.3),
the definitions of d,,, B, we have

(W)

(4.16) J@((@)) < vilU.(O $ojm — &
for any 0 < ¢ < 7". Passing to the limit as £ — 0 in (4.16), by (4.15) yields

J(au(?))) < vklu()lnih —
This, in the same way as in (4.3)—(4.5), implies

la()I? + (gu(2)), a(u(t))) < Klu(®)lnis — & >0,
339



hence a(u(t, uy)))e Bfor0 <t < T'.
However, as it will be seen in the proof of Lemma 2, 7" does not depend
explicitly on u,, only on M, and we know that

a((T’, up))e BAL*(D), |u(T", uy)l,. < llullp=op-

So we can repeat the above procedure with u(7”, u,) instead of u,, and after a
finite number of steps we obtain that a(u(t, u,)) € B on [0, T]. However, because
T was arbitrary, 0 < T < T, , we have the desired result in the case of m > 1.

max?

B. The case 0 <m < 1

Here we put
4.17) b.(u)=(R,xb)(u) and a,=b]"

and one can see that b, — b in C'(R), a, — ain C°(R), as £ — 0. Now, in a similar
way as above, we obtain for any ¢, 0 < £ < 1, the unique solution u,e C*'(Q;)
of I) on [0, T], T < T,,,., where u,.€ C;°(D) satisfies (4.11) with our choice
of a,. We note that the function G need not be regularized in this case as
Ge C'([0, o)) for any g satisfying (A). The proof of the fact that the analogy
of Lemma 2 holds also in this case is postponed to the end of this section.

One can now establish the invariance of the unstable set B just as above.
This completes the proof.

Proof of Lemma 2. Recalling that u, is the solution of (IJ)) on [0, T]
we claim that there exists 7" € (0, T] such that

(4.18) O0<u, <M onQp,

+ + + +
for all ¢, 0 < € < 1. To see this let y be the solution of y' = (y + 1), y(0) =

= |lu(t, up)ll .~ (o,y + 1, which may be solved explicitly and we can see that ; <M
on [0, T’] for some T” > 0. So, by the standard comparison theorems (see, e.g.
[6, Chapter 2, Theorem 16]), 0 < u, < ; on Qy, hence (4.18). Thus the solution
u, of (1)) also satisfies (I,) on Q..

Now, multiplying the equation of (I,) by (U), (U, = a.(u,)) and performing
obvious manipulations we get

(4.19) J <J (a;(r))”zdr>
o | \Jo ‘

for 0 < ¢ < T'. In particular, it follows from (4.18), the construction of a, and
(4.19) that

2
+ J,(U:(0)) = J,(U,(0))
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-
(4.20) 0<U<M onQp, sup U3 f W< C
0<r<sT 0

for all €, 0 < € < 1, where the positive constants M’, C do not depend on ¢. To
see the existence of the time derivative of U, we use the fact that

U), = (L e(d;(r))”z dr)’ (ag(u))'”.

Now, in a standard way (see, e.g. [1, Theorem 13]) we obtain a function Ue
€ C([0, T); L*(D)) such that

4.21) U - U in C(0, T'); L’ (D)) as&—0

(through a subsequence), but by the uniform boundedness of U,, U, — U also in
C([0, T"); L' *?™(D)). Now, using the estimates (4.18), (4.20), the properties of
a,, a and the uniqueness of Problem (I) (Proposition 2), it is not difficult to
demonstrate that U = a(u), where u is the solution of Problem (I). Further, as
U(t)e C*'(Qy) and U,(0)€ B,, we obtain by similar arguments as above (see
(4.8) and what follows) that U,(t)e B, for 0 < t < T”, n = n(¢). This completes
the proof of Lemma 2.

Proof of the analogy of Lemma 2 for O <m < 1: In the same
way as in the case of m > 1 we can show that there exists 7” € (0, 7] such that
0 < u, < Mon Q;.. To obtain appropriate apriori estimates, we rewrite Problem
(I) putting U, = a.(u,) into

b)), = AU, + U™ — G(U) in Qr.,
Us(x, 0) = a (up) in D, U(x,t)=0 on Sp.

Now, in the same way as above we obtain from (4.22)

(4.22)

T Us 2
(I AQ) dr)
0 0 tl2

where the positive constant C does not depend on &. As

(4.23)

sup UM< C
0<I<T

UE
(u), = (I bur'”? dr) CAUM G
0 t

it follows from (4.23), the properties of b, and the uniform boundedness of U,
that

(4.24) JSup lu ()% I i< C’, and0<u, <M,
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hence there exists a ve C([0, T"]; L*(D)) such that u, — v in C([0, T"]; L*(D)) as
£— 0 (through a subsequence). Again, it is not difficult to show that v is a
solution of Problem (I), so v = u. To demonstrate (4.15), it is sufficient to show
that a(u,) - a(u) in C([0, T}; L'*?™(D)), as a,— a uniformly on compact
subsets of R. But |a(u,) — a(u)| < a(ju, — u|) and (4.15) follows easily. The
invariance of the set B, = B may be proved as above.

S. Proofs of Lemma 1 and Theorem 2

We start with the proof of Lemma 1. Computmg sup J(Aw) for our choice
of data we obtain

2m +g)

(5.1) d=-""9 inf(%ﬂ) "7 = L inf D(w),
2(m + g) »ee \(wl; — lw])'" weQ

+
where Q = {we H}: |w|; > |w]||}. The set Q is nonempty due to the assumption
A, < 1. Now, because @(Aw) = @(w) for any 0 < A < oo and we Q, it follows
from (5.1) that

2m+q)
(5.2) d=-T""9  mim-a nf( €11 + gim )m—q,
2(m+q) e \(I&)5 — D'

+
where Q, = {ée H{: |&], > ||£]| = 1}. To see that d is positive we use the Niren-
berg — Gagliardo inequality (see, e.g. [7, Theorem 9.3])

(5.3) &1, < clEN°IER 5 Gm>
where c is positive and @ = N(1 — g/m)/(2 + 2gm~"' + N(1 — gm™")).
For &€ Q,, (5.3) yields

€14 gm = 1€ " v > ¢'|ED,

hence d > 0, and the proof of Lemma 1 is finished.

Now we claim that the set B is nonempty and invariant. To see this we proceed
similarly as in the proof of Theorem 1 and we omit the details. Next, putting
u™(¢) into (2.1) we obtain

1 d
(5.4 —— — (u@n ) + lu" O — " ()5 = —alu(@)l; 14
m+1dt

for a.e. t€[0, T,,,). On the other hand, according to (2.3), (5.1) and the fact
that B is invariant, we have
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Ju™(t) < Va(m———q—)- lu(n)lnt?, hence
2(m + q)

m+q°

m m am — v + v m
(5.5) @1 = (o < — 4 Doyt
m+q
where v = 0if J(u5") < 0 or ve (0, 1) if 0 < J(u{') < d and such that J(iJ") < vd.
If we denote y(¢) = |u(t)|2*1, (5.4), (5.5) and the Holder inequality yield
y'() — a(l = v)(m — q) (m + 1) (m + )~ D[ =M +myln+altn+D(g) > 0

for a.e. t€[0, 7,,,). As (m + q)(m + 1)~"' > 1, (3.11) follows easily.
Now, by the same arguments as we get (5.2) from (5.1), we can obtain

(m—q) a0 [ |wligm ot
(5.6) d = inf (——ﬂg—@ = : inf y(w),
we@,  2(m+ q) 1 —1lwl) weQ,

+
where Q, = {weH,: 1 =|w|,> ||w|}. Hence it follows that there exists
{w,} = Q, such that y(w,) > d as n—> . As ||w,|| <1 for all n, there exists

+
wo€ Hj such that w, - w, weakly in Hj, as well as w, — w, strongly in L2(D) and
L'*9™(D), as n - oo (through a subsequence) and |wy|, = 1, ||w,|| < 1. We claim
that wye Q,. To see this let us note that

— mf(m + q)
d= lim y(w,) = :(m AL li

n

2m+gq) - B,

and that lim A4, exists, is positive and finite. But then lim B, also exists and is

n— o n— o
not equal to zero, hence |w,|* < 1.
This implies that

(5.7) d = D(w,).

Now let us compute DP(w,, @) = (>4~ (—(Vwy, Vo) + (w, — Lawd™, 9)),
where { = (Iwol} — I woll®)/alwli = %m and @€ Hy, so it follows from (5.7) and (5.1)
that D®@(w,, @) = 0 for all pe H{, hence

Awy + wy — Lawd™ = 0 in a weak sense.

Since w,e Hj, the equation holds classically. Putting v = gHa—mylim - the
equation above may be rewritten into

AW™)+v"—av?=0 inD,v=0 ondD,

hence ve E. This completes the proof of Theorem 2.
Proof of Corollary 1. First, 4, < 1 implies that J(u§') < 0. Then there

343



exists £ such that J(u") + em(m + q) ™" |u|? 19<0(e> 0). If we denote u*(s, uy),
the solution of (I) with the absorptive term gu? for u > 0, u®(t, u,) is a sub-solu-
tion of Problem (I) with g = 0 and, by Theorem 2, u°(¢, u,) blows up in a finite
time and so does u(t, uy).

6. A final example

In this section we consider thecase N=1(D =(—L,L),L>0),m=p> 1
and g as in Theorem 2. We first describe the set £ = E(L) and after this the
number d is determined.

Lemma 3.

(i) If 0 < L < n/2, then E(L) = {0}.

@ii) If n/2 < L < L,, L, = nmm/(m — q), then E(L) = {0, v(-, L)}, where v(-, L)
denotes the unique nontrivial stationary solution to Problem (1), positive in
(=L, L).

(i) If L, < L, then E(L) consists of the trivial solution and of continua of
solutions generated by v(-, L,).

Theorem 2 states that blowing up may occur if L > /2. In this case, using

Lemma 3, we obtain

Theorem 3. If n/2 < L< L,, then d = J(v(-, L)). If iL, < L < (i + 1)L, for
some positive integer i, then for any we E(L) it holds that J(w) = jJ(v(-, L,)) for
some je{l, 2, ..., i}, hence

d=J(-, L))).

Proof of Lemma 3. Denote F(u) = 2m)™'u™ — (m+ q) ' au™*¢, x =
= (2am/(m + q))""™"~9 (x is the unique root of F in (0, o)) and for ve[x, o)
define

m 4 sm -1
(6.1 T(v) = \/:j —_— ds.
) 2 Jo JF(v) — F(s)
In the same way as in [1] (see also [4]), it may be demonstrated that the following
proposition holds.
Proposition 3 ([1]). 4 function v, v > 0 in (— L, L), belongs to E(L) if and only
if v
m sm -1
\/: —=—————=ds = |x|,
2 Juw \JF(v) — F(s)
where ve[k, o) and Le (0, oo) are related by the equation T(v) = L.
Now Lemma 3 follows from the next proposition.
Proposition 4.
(i) TeC([x, ) n C'((x, ©)), T(x) = nm/(m — g),
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@ii)) T'(v) < 0 for ve(x, o),
(iii) T(v) » /2 as v— 0.
Proposition 4 may be proved by direct computations and we indicate only the
proofs of (ii) and (iii).
(i1)
T'(v) = \/% J o) — ) ds, where O(s)=a(q—m)(qg+m)~'s""9,
0

VF(v) — F(s)

i.e. @ is decreasing on [0, v].
(iii) Putting s = vy in (6.1) we obtain

T()=\/E v f y d
VN2 TR b ST FopEw)

and one can see that the integrand has the integrable majorant y™ ~'(1 — y*")~'?
and converges pointwise to it as v— oo, hence the conclusion.

To see that v(-, L,) generates families of nonnegative stationary solutions
to Problem (I) on (—L, L) with L > L, let us note that

v(xLy, L)=@").(+L,L)=0

as F(x) = 0. So we can, e.g., extend v as zero on intervals larger than (—L,, L,)
(for further details see [1]).

REFERENCES

[1] ARONSON, D. G—CRANDALL, M. G—PELETIER, L. A.: Stabilization of solutions of
a degenerate nonlinear diffusion problem. Nonlinear Analysis, 6, 1982, 1001—1022.
[2] BALL, J. M.: Remarks on blow-up and nonexistence theorems for nonlinear evolution
equations. Quart. J. Math. Oxford, (2), 28, 1977, 473—486.
[3] BERGER, M. S.: Nonlinearity and functional analysis Academic Press 1977.
[4] FILA, M.—FILO, J.: Stabilization of solutions of certain one-dimensional degencrate dif-
fusion equations. Math. Slovaca 37, 1987, 217—229.
[5] FILO, J.: On solutions of a perturbed fast diffusion equation. Aplikace matematiky 32, 1987,
364—380.
[6] FRIEDMAN, A.: Partial differential equations of parabolic type. Prentice-Hall, N.J. 1964.
[71 FRIEDMAN, A.: Partial differential equations. Holt, Rinehart and Winston, New York 1969.
[8] FUJITA, H.: On the blowing up of solutions of the Cauchy problem for u, = Au + u'*°
J. Fac. Sci. Univ. Tokyo, Sect. 1A 13, 1966, 109—124.
[91 GALAKTIONOYV, V. A.: A boundary value problem for the nonlinear parabolic equation
u, = Au'*° + u®. Differential equations 17, 1981, 551—555 (Russian).
[10] LADYZENSKAJA, O. A—SOLONNIKOV, V. A—URALCEVA, N. N.: Linear and quasi-
linear equations of parabolic type. Nauka, Moscow 1967.
[11] LEVINE, H. A.—SACKS, P. E.: Some existence and nonexistence theorems for solutions of
degenerate parabolic equations. J. Differential Equations 52, 1984, 135—161.

345



[12] NAKAO, M.: Existence, nonexistence and some asymptotic behaviour of global solutions of
a nonlinear degenerate parabolic equation. Math. Rep. College of Gen. Edc., Kyushu Univ.
14, 1983, 1—21.

[13] NAKAO, M.: I*-estimates of solution of some nonlinear degenerate diffusion equations. J.
Math. Soc. Japan 37, 1985, 41—63.

[14] SACKS, P. E.: Continuity of solutions of a singular parabolic equation. Nonlinear Analysis
7, 1983, 387—409.

[15] SATTINGER, D. H—PAYNE, L. E.: Saddle points and instability of nonlinear hyperbolic
equations. Israel J. Math. 22, 1975, 273—303.

[16] TSUTSUMI, M.: Existence and nonexistence of global solutions for nonlinear parabolic
equations. Publ. R.I.LM.S., Kyoto Univ. 8, 1972/73, 211—229.

Received April 13, 1987 Katedra matematickej analyzy
Matematicko-fyzikdlnej fakulty UK
Mlynska dolina
842 15 Bratislava

Ustav aplikovanej matematiky
a vypoétovej techniky UK
Mlynskd dolina

842 15 Bratislava

O/IVH PE3YJIbTAT O HECYIIECTBOBAHUU I''TOBAJIbHBIX PELIEHU
U1 YPABHEHUI HEJIMHEVHON JU®DY3UU

M. Fila—]J. Filo
Pe3omMme
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