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BAIRE FUNCTIONS AND THEIR 

RESTRICTIONS TO SPECIAL SETS 

ZBIGNIEW GRANDE1) 

(Communicated by Ladilav Misik) 

ABSTRACT. In this paper I compare some families of functions whose restric­
tions to special sets have continuity points or intervals of continuity points. More­
over, I investigate the Darboux property in some of these families. 

Notat ion s 

Let R denote the set of all reals. A function / : X —• R (0 ?-- X C R) is said 
to be quasicontinuous (cliquish) at a point x E X ([6] and respectively ([1])) if 
for every open neighbourhood U of x and for every positive number r there is 
an open set V dU such that V n X 7-- 0 and \f(t) — f(x)\ < r for every point 
teVnX (and osc / <r). 

If f: X -+ R (0 ^ X C R) is an arbitrary function, then C(f), Cq(f) 
and respectively Cc(f) denote the sets of all continuity points of / , of all 
quasicontinuity points of / , and of all points at which / is cliquish. For a 
nonempty set Y C X the symbol f\y denotes the restriction of / to Y. 
Intx A denotes the relative interior of A in X and cl A denotes the closure of 
A. Let 

K! = {XCR; X ^ 0 } , 

K2 = {X CR; X i- 0 and X is countable}, 

K3 = {X e Ki; X is perfect} , 

K4 = {X e K1; X is the sum of a sequence of perfect sets} , 

Ai = {/: R - • R; for every XeKi, C(f\x) ^ 0} , 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 26A15, 26A21, 26A30, 26A99. 
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(see [7] for i = 4 and [5] for i = 1,2), 

Aiq -= {/ R ->R; 

Aic -= {/ R -•R; 

Dic-- = {/ R -»R; 

Diq-- = {/ R -»R; 

DІ --= {/ R - + R ; 

for every XeKi, Cq(f\x) ^ 0} , 

for every X € Kt, C c ( / | x ) - - 0 } , 

for every XeKit I n t x Cc(f\x) * 0} , 

for every XeKit I n t x Cq(f\x) -- 0} , 

for every XeKi, I n t x C(f\x) y- 0} , 

(see [3] for i = 3 and [4] for i = 1,2,4), 

Bi = {f 

Q ={f 
D = { / 

/ is of Baire 1} , 

cq(f)=m, 
f has the Darboux property} . 

In this paper I compare the above families Ai, Aiq , Aic , Di, Diq , DiC and I 
investigate the Darboux property in some of them. 

R e m a r k 1. The following inclusions are evident: 

A1CA2; 

Alq C A2q; 

Aic C A2c; 

AгCA4 CA3; 

AXq c A4q c A3q; 

Alc C Aic C A3c; 

Di c D2; 

oi9 c o2<7; 

•oic C D2c; 

/ J 1 C Ű 4 c ű з ; 

Dlq c o4g c o3,; 
Dlc c Г) 4 c C D3c; 

A C i4 ť ; 

Diq C - 4 ^ ; 

Dic C A ^ c ; 

-Л.j c A-iq c -<т-ѓc; 

DІ C Diq C Dic; 
( ť = - 1 , 2 , 3 , 4 ) . 

T H E O R E M 1. A 3 c = A3q = A3 = B 1 . 

P r o o f . The equality .A3 = B1 follows from the well-known Baire Theorem. 
The inclusion A3 C A3q C -A3c follows from Remark 1. We shall prove that 
A3c C B1. If / 6 A3c and I c R is a perfect set then there is a sequence of 
open intervals In , n = 1,2,... , such that: 

cl/n+i C J n , n = 1,2,... ; 
the diameter d(In) of the interval In is less than 1/n, n = 1,2,... ; 
7 n H X ^ 0 , n = l , 2 , . . . ; 
7 O s c ^ / < l / n , n = l , 2 , . . . . 
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oo oo 
The intersection Xn p) In = f] ( X n c l / n ) is a singleton set {x} C X and 

n = l n = l 

the restricted functions f\x -s continuous at x. So, C(f\x) ^ 0 a r-d / £ -Bi • 

This completes the proof. 

In [5] it is proved that A1 = A2. The following theorem is true: 

T H E O R E M 2. Alq = A2q; Dlq = D2q; DX = D2. 

P r o o f . The inclusions Alq C A2q, Dlq C D2q, and D1 C i?2 follow from 
Remark 1. We shall show the inclusion A2q C Alq. Let / G A2q and let X C R 
be a nonempty set. If there is an isolated point x in I then Cq(f\x) ^ 0. 
Suppose that X is dense in itself. There is a countable set Y C X such that 

(i) d{ (*,/(*)); *ey}->{(. , / (<)); < e l } . 
Since / G ^2g > there is a point x G Y C X at which the restricted function / | y 
is quasicontinuous. We shall show that the restricted function f\% is quasicon-
tinuous at x. Let r > 0 be a number and let U ^ x be an open set. Since / | y 
is quasicontinuous at x there is an open interval I C U such that J f l F ^ U 
and 

(ii) \f(t) - f(x)\ < r/2 for each * G 7 n Y. 
If there is a point u e I D X with \f(u) - f(x)\ > r , then it follows from (i) 
that there is a point v e IC\Y such that \f(v) — f(x)\ > r/2, in contradiction 
with (i). So, 

\f(t)- f(x)\<r for every telnX, 

and x e Cq(f\x) • Thus, A2q C Alq and consequently, Alq = A2q. Now, we 
will show the inclusion D2q C Dlq. Let / G D2q and let X C R be a nonempty 
set. As above we can suppose that X is dense in itself and we can define a 
countable set Y C X such that (i). Since / G D2q, there is an open interval 
I such that 0 7-- 7 n Y" C C g ( / | y ) . The same as in the proof of the inclusion 
A2q C Alq we show that If)Y C Cq(f\x) • F i x a point x G / n X , r > 0 , and 
an open set U ^ x .It follows from (i) that there is a point u e IdU C\Y such 
that | / ( M ) — f(x)\ < r/2. Then the restricted function f\% is quasicontinuous 
at u and there is an open interval J C I C\U such that J i l l / 8 and 
\f(t) - f(u)\ < r/2 for each teJDX. 

Consequently, 

| / ( t ) ~ f(x)\ < \f(t) - / ( n ) | + | / (u) - f(x)\ < r/2 + r/2 = r 

for each t G JnX, and x G Cq(f\x) . So, IC\X C Cq(f\x), and D2q C Dlq. 

The proof of the equality D1 = D2 is similar. 
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T H E O R E M 3 . Aic = Dic = B± for i = 1,2,3,4. 

P r o o f . From Theorem 1 we have the equality A3c = Bx. Moreover, by 
Remark 1, 

Die C Aic C A3c; D i e C D4c C D3c C A3c; 

-Die C ^ 4 c C Ate C A 3 c ; and Aic C 4 2 c . 

Thus it suffices to prove that A3c C Dlc and A2c C - 4 l c . We start from the 
proof of the inclusion A3c C -Die. Let / E -4.3C and let X c R be a nonempty 
set. If there is an isolated point in X , then Intx Cc(f\x) 7-= 0. So, we suppose 
that X is dense in itself. Then c l X is a perfect set and / | c [ jf is cliquish at 
each point x E cl X. Consequently, 

c l X = C c ( / | c l x ) , X = Ce(f\x), 

and 
I n t x C c ( / | x ) ^ 0 . 

Thus f eDlc. 
The proof of the inclusion A2C C A\c is similar to the proof of the inclusion 

A2q C Aiq in the proof of Theorem 2. 

It is known that Ax ± A4 ^ Bx ([7]) and Dx ^ B± ([3]). 

THEOREM 4. Aiq ^ A4 ; A4q ^ Bx. 

P r o o f . Let (wn) be an enumeration of all rationals such that wn ^ wm 

for n^m, n , m = 1,2, . . . . The function 

. . f 1/n for x E wn , n = 1,2, . . . , 
^(x) = < 

^ 0 otherwise 

belongs to A4 - A\q , since for X = {wn; n = 1,2,. . . } , Cq(g\x) = 0 • 

Let (X n ) be a sequence of nowhere dense perfect sets such that XnDXm = 0 
for n 7-. ra (n , m = 1, 2 , . . . ) and X = IJ X n is dense. The function 

.. for x E X n , n = 1,2,. 
n otherwise 

belongs to Bx _ A*?> s i n c e cq(h\x) = $ 
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T H E O R E M 5. D1 = D2 = D3 = D4; Dlq = D2q = D3q = D4q. 

P r o o f . By Remark 1, D± C D4 c D3, and Dlq C D4q C D3q. By The­
orem 2, D1 = D2 and Dlq = D2q. So, it suffices to prove that D3 C D1 and 
D3q C Dlq. Let / G D3q and let X c R be a nonempty set. If X contains 
an isolated point then Intx Cq(f\X) ^ 0. Suppose that X is dense in itself. 
Then clX is a perfect set. Since / G D3q, there is an open interval I such 
that InX ^ 0 and IndX C Cq(f\c\X) . Evidently, inX-C Cq(f\x) . Thus 
Int x Cq(f\x) + 0 and / G D ^ . Consequently, D3q C Dlq. The proof of the 
inclusion D3 C D1 is similar. 

T H E O R E M 6. Alq = D3q. 

P r o o f . Since D3q = Dlq C Alq, the inclusion D3q C Alq is proved. 
Now, let / G Alq. If / ^ D3q, then there is a perfect set X C R such that 

Intx Cq(f\x) = 0. Let Y C X — Cq(f\x) be a countable set dense in X. Since 
/ G Alq, the restricted function / | y is quasicontinuous at a point u G Y. The 
function f\x is not quasicontinuous at u. There is a positive number r such 
that 

(i) (d{(*,/(*)); t e C ( / | x ) } ) n ( [ u - r , u + r ] x [ / ( t i ) - 2 r , / ( u ) + 2 r ] ) = 0 . 
Since u G Cg(/ |y) » there is an open interval I C (u — r, u + r) such that 
J n Y 7-- 0 and |/(t) - / (u) | < r for every point telnY. The set C(f\x) 
is dense in X. Thus there is a point v G (7 n X) n C ( / | x ) • ̂ e t ^ C / be an 
open interval such that v G J and |/(t) - / (v) | < r for each point t e J CiX. 
Since the set Y is dense in X, there is a point «;G J f l Y . Then we have 

\f(w) - /(ti)| < r , | / H - /(v) | < r, and 

l / W " / ( t0 | < |/(n) - / H I + l / M - /(«)! < r + r = 2r, 

in contradiction with (i). So, / G Z^g, and the proof is complete. 

P r o b l e m . 
(1) D3 = D3q? 
(2) A4 = A4q? 

T H E O R E M 7. DA4q c Q. 

P r o o f . Suppose that there is a function / G DA4q — Q. Then there is a 
point x G R such that 

(x,f(x)) tc\{(t,f(t)); t€C(f)}. 
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Let r > 0 be such that 

([x -r,x + r]x [/Or) - r, f(x) + r]) n cl{(t, f(t)) ; t G C(f)} = 0 . 

Since / G B\, the set C(/) is dense. Consequently, the sets U = \t G R; 
|£—#| < r and | /(£)—/(x)| < r / 2 } and clU are nowhere dense. Since / G DB\, 
the set U is c-dense in itself ([2]) and the set cl U is perfect. From the Darboux 
property of / it follows that \f(u) — f(x)\ > r / 2 for each point u G clU being 
the end of a component of the set (x - r, x + r) — cl U. Since / G A4q and 
U G i^4, there is a point w G £I at which the function / | r / is quasicontinuous. 
Evidently, | / (w) — / ( x ) | < r / 2 . Thus, there is an interval I C (x — r, x + r) 
such that I PI U T-- 0 and | / ( t ) - / ( x ) | < n < r / 2 for each telDU. 

But the set 

17 = {t G / fl cl U; t is the end of a component of the set I — cl U} 

is dense in iClclU and \f(t)-f(x)\ > r / 2 for each T eV, thus the restricted 

function / | ( / n cl C7) *s n o ^ continuous at a point t G I Del U. This contradiction 

finishes the proof. 

C O R O L L A R Y . We have: 

DAlq = DA2qcDA4qcQ; 

DDiq C DA4q C Q , i = 1,2,3,4. 

REFERENCES 

[1] BLEDSOE, W . : NeighЪorly functions, Proc. Amer. Math . Soc. 3 (1952), 114-115. 

[2} BRUCKNER, A. M . : Differentiation of Real Functions. Lecture Notes in Math. 659, 
Springer Verlag, Berlin-Heidelberg-New York, 1978. 

[3] CSASZAR, A .—LACZKOVICH, M . : Discrete and equal convergence, Studia Sci. M a t h . 
Hungar. 10 (1975), 463-472. 

[4] G R A N D E , Z.: The Darboux property in some families of Baire 1 functions, Tatra Moun-
tains Math. PuЫ 2 (1993), 7-14. 

[5] GRANDE, Z.: Quelques remarques sur les familles de fonctions de première classe, Fund. 
Math. 8 4 (1974), 87 -91 . 

[6] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math . 19 (1932), 184-197. 

452 



BAIRE FUNCTIONS AND THEIR RESTRICTIONS TO SPECIAL SETS 

[7] PEEK , D . E .: Baire functions and their restrictions to special sets, P roc . Amer . Ma th . 
Soc . 3 0 (1971), 303-307 . 

Received March 25, 1992 Department of Mathematics 

Pedagogical University 

Arciszewskiego 22 

76-200 Shipsk 

Poland 

453 


		webmaster@dml.cz
	2012-08-01T08:35:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




