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Moth. Slovaca 27,1977, No. 3, 213—220 

ON THE CHINESE REMAINDER THEOREM 
OF H. DRASKOVICOVA 

WILLIAM H. CORNISH 

Introduction. As a by-product of her investigation into strongly permutable sets 
of congruences, H. Draskovicova [4; Corollary 3.4] proved that an upper 
subsemilattice of the lattice of congruences of a universal algebra satisfied the 
Chinese remainder theorem if and only if the sublattice generated by the 
subsemilattice is not only distributive but also consists of permuting congruences. 
The purpose of this note is twofold. Firstly, we give a proof of Draskovicova's 
theorem that is based on B. Jonsson's theorem which gives an elegant necessary 
and sufficient condition for the sublattice generated by a subset of a modular lattice 
to be distributive. Since R. Balbes [1] has given an elementary proof of Jonsson's 
theorem, this means that Draskovicova's theorem is independent of the Axiom of 
Choice. Secondly, we consider some naturally arising instances of this Chinese 
remainder theorem. Our main examples involve congruence-kernels in a distribu­
tive pseudocomplemented lattice and the so-called distributive ideals of a general 
lattice. We precede these examples with a brief discussion of ideals (con­
gruence-kernels) in a universal algebra. 

1. The Chinese Remainder Theorem. 

The notation and terminology of this article is based on that of [5]. 
A set ^ of congruences on a universal algebra 21 is said to satisfy the Chinese 

remainder theorem (is finitely strongly permutable, in the terminology of [4]) if, 
for any 0U 02, ...,dn 6 0* and any au a2, ...,aneA, 4-S4(0,v0/)forany/, /=-l ,2, 
..., n implies that there exists aeA, such that a = 0/(0/) for each j=l,2,...,n. 

In [5; Chapter 5* Exer. 68] G. Gratzer generalized the Chinese remainder 
theorem of Zariski and Samuel [12; Theorem 18, p. 280] to universal algebras. 
The proof is via finite induction and can be extended slightly to establish the 
following lemma which has already been observed by DraSkovidova [4; Corollary 
3.3]. 
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Lemma 1.1. Let ££ be a sublattice of the lattice of congruences of a universal 
algebra ?l. Then, J£ satisfies the Chinese remainder theorem if and only if if is 
distributive and consists of permuting congruences. 

The next lemma is due to B. Jons son [9]; a proof is also presented in the book 
[11; Theorem 34, p. 93]. Recently an elementary proof was given by R. 3albes 

Lemma 1.2. Let H be a non-empty subset of a modular lattice L. The sublattice 
ofL, which is generated by H, is distributive if and only if, for any xx, x2,..., xn and 
yi, y2, . . , ym in H 

n tn tn / n 

A*, A Vy, = V I A*. * M 
i=\ j=\ j=\ X i = l 

We now come to Draskovicova's theorem which followed as a consequence of 
her detailed examination of permutability notions. Moreover, Examples 3.1 and 
4.1 of [4] show that in a certain sense the result is the best that can be hoped for. 

Theorem 1.3. Let 9 be an upper subsemilattice of the lattice ^(Sl) of a universal 
algebra SI. Then, SP satisfies the Chinese remainder theorem if and only if the 
sublattice L(<3>) of <€(%), generated by 0>, is distributive and consists of permuting 
congruences. 

Proof. Because of 1.1 it is sufficient to verify the necessity of the conditions on 
L($P). To do this we first prove the following: 

(1.1) UWx,W2,...,Wn\ &x,<P2,...,<Pme2Pthen 

n m n m 

nn(^v<p /)=n^on<p,. 
i=\ y = l i = l j=\ 

Suppose that x and y are elements of A which are congruent with respect to the 
left-hand side of (1.1). Let 6l=Vx, ..., 6n = Wn, 0n+l = 4>l9 ..., dn+m = 0m and 
ax = ... = an =x, while an+x = ... = an+m =y. Then, a, = ay(0, v0y) for any /, / = 1, 2, 
..., n + m. As 2P satisfies the Chinese remainder theorem, there exists a eA such 
that a = aj(0j) for all / = 1, 2, ..., n + m. It follows that x is congruent to y with 
respect to the product on the right-hand side of (1.1). It is now clear that 1.1 holds. 

Since 3P is an upper subsemilattice of ^(Sl), (1.1) immediately implies 

(1.2) L(&) = \C]di:du62,...,dne0>-, AZ^I} 

and L(@>) consists of permuting congruences. 
Hence, 

(1.3) L(P) is a modular lattice. 

We now establish 
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(1.4) For any Wx, W2,..., Vne&and W, 0e&, 

(VxnV2n...n¥n)n(Wv0) = (Vxn...nVnnV)o(Vxn...nVnn0). 

Suppose that x and y are elements of A which are congruent with respect to the 
left-hand side of (1.4). Let 0X = WX, ..., dn = Wn, 0n+x = <P, 0n+2=0 and 
ax = ... = an=an+x=x while a„+2 = y. Then, a, = ay(0, v07) for each i,j=\, ..., 
AZ + 1, an+x = an+2 (0n+xv0n+2), and ai = an+2(0iV0n+2) for all i = l, ..., AZ, since 
* — y(#) f° r e a c h /= 1, 2, ..., AZ. That is, a, = a;(ft v07) for all / , / = 1, ..., n + 2. 
Hence, there exists aeA such that a = a7(0y) for /= 1, ..., n + 2. Then, a = x(W{) 
for # = 1, ..., /z, a = x(*P) and a = y(0). But ^ = y(V>;) for / = 1 , ..., AZ and so 
a==y(Vl) for /= 1, ..., /z. Hence, x is congruent to y under the product on the 
right-hand side of (1.4), and it follows that (1.4) holds. 

Since & is an upper semilattice, induction on (1.4) yields 

(1.5) For any Wx,..., Vn,0x,..., <Pme<? 

/ = i j=\ j=\ > i = \ J 

The theorem now follows from (1.1), (1.2), (1.3), (1.5) and Lemma 1.2. 

2. Ideals and Examples. 

Let z be a fixed element of a universal algebra. For 0 in ^(21), define 
z-ker 6 = {aeA: a = z(0)} and call it the z-kernel of 0. A z-ideal or con­
gruence ~z-kernel is a (non-empty) subset J of A such that /=z-ker 0 for some 
congruence 0 in ^(21). In practice the element z is usually identified with a nullary 
operation in 21. Either for the sake of brevity or because there is no ambiguity the 
prefix "z-" is generally omitted from the above. Thus, in what follows we will 
speak of "ideals" and denote the collection of all ideals by /(2l). 

Ideals in this general context are discussed in [7; 0.2.39—0.2.52, p. 78—82] and 
a fundamental result is [7; Theorem 0.2.41, p. 78] which we single out in the next 
lemma. 

Lemma 2.1. Ordered by set-inclusion, the collection /(2l) of ideals is an 
algebraic closure system on A and hence a complete compactly generated lattice. 

For an ideal / , let 0(J) be the smallest congruence on 21 which has / as its kernel. 
Of course, 0(J) = n { 0 e ^(21): ker 0 = J) and the map /.-» 0(J) is an order-emb­
edding of /(2l) into ^(21). In general, only the following property of this map 
would seem to hold. 

Proposition 2.2. For any collection {/A} of ideals, 0(v/A) = v0(/A). In particul­
ar, if {/A} is directed then 0( v/A) = 0(u/A) = u0(/A). 
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' Proof. For / G / ( 9 1 ) , let d[J]=v{d(a, b): a, be J}. Thus, 0[/] is the smallest 
congruence on 91 identifying all the elements of / . Hence, 0[/]cz0(/). But this 
inclusion implies ker (0[ / ] )c / and so ker(0[/]) = / . Hence, 0[/] = 0(/). 

For / , K6/(91), /czK certainly implies 0[/]cz0[K]. Hence, /czK if only if 
6(J) cz d(K). We are now able to prove the assertion. For if Jft e {/A} then /„ cz v/A 

and so V0(/A)cz0(v/A), while/„ czker(v 0(/A)) so that v/A czker(v0(/A)). Hence, 
0( v/A) c 0 (ker( v 0(/A))cz v 0(/A). Hence, 0( v/A) = v 0(/A). The rest follows from 
the algebraic nature of the closure systems involved. 

Of course, we have no right to expect that 6(JnK) = 0(J)n0(K) for any two 
ideals / and K. Thus, in general, {0(/): J e /(9l)} is only an upper subsemilattice of 
#(91). Of course, it does happen when 91 is (z-) weakly regular, i.e. when the map 
Jt->d(J) is a bijection and so induces a lattice isomorphism of /(9l) onto #(91), 
whose inverse is the map 0>-»ker0 of #(91) onto /(9l). This is the case for groups, 
rings, Boolean algebras etc. However, there is another case which is not without 
interest. 

Theorem 2.3. Let ^ be a distributive sublattice ofJ(%). Assume also that SP has 
the same smallest element and largest element as /(9l) and 5P is closed under the 
formation of arbitrary suprema. Let P(3P) be the set of meet-irreducibles of 2P. 
Then the following two conditions are equivalent. 

(i) For any / , Ke&, 6(JnK) = d(J)nd(K). 
(ii) For any J e®, 0(/) = n{0(P): /czP, PeP(^)}. 
Proof. (i)=>(ii). Clearly, 0(/)<=n{0(P): /czP, PeP(SP)} for any Je&. We 

prove the opposite inequality by a contrapositive argument. That is, suppose that 
a, beA and a^b(d(J)). Consider the set 3f{={Ke&: /czK, a^b(d(K))}, 
partially ordered by set-inclusion. Let # be a chain in JC. By the hypotheses on £r\ 
u { C e ^ : Ce%}e&. From Proposition 2.2, this ideal is actually in X. Thus, 
Zorn's lemma implies that JC has maximal elements. Let Q be such an element. It 
remains to prove that Q is meet-irreducible in &. Firstly, notice that since 
a^b(d(Q)), Q is not A, the largest element of ^ . Let A, B e SP and assume that 
A£Q and B£Q. Then, QvA and QvB both properly contain Q. Hence, 
a = b(0(QvA)nd(QvB)). By (i) and the distributivity of ^ , it follows that 
a = b(6(Qv(AnB))). Hence, A nB<£ Q. The distributivity of ^ ensures that Q is 
meet-irreducible. 

(ii)4>(i) is easy due to the distributivity of ^ . Indeed, 0(/nAT)cz0(/)n0(K) 
holds for any / , Ke/(9l). Now, let Pe£P be meet-irreducible and suppose 
JnK^P for given J,Ke@. Then, /czP or KczP. That is, 0(/)cz0(P) or 
0CK)cz0(P). In either case 0(/)n0(K)cz0(P). Thus, (ii) implies 
0(/)n0(lOcz0(/ni<:). 

Taking ^ = /(9l), z = 0, and 91 as a distributive lattice with 0, considered as an 
algebra (A ; v, A, 0) of type (2,2,0) , Theorem 2.3 can be applied to obtain a new 
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proof of [3; Lemma 1.2 (ii)]. It can even be applied to the lattice & of standard 
ideals of a general lattice with 0. This is because of [6; Theorem 3, p. 33]; for the 
sake of brevity, we will omit the details and implications of this application. It can 
also be used to give new interpretations of the pathological behaviour of semirings 
as noted in [2] and an explanation of some of the conditions, in particular (x), of [3; 
Theorem 3.2], wherein Stone lattices are characterized by the behaviour of their 
congruence kernels in the variety of distributive pseudocomplemented algebras. 
Let us look a little more closely at these two instances, particularly in relation to 
Theorem 1.3. 

By a semiring, we mean an algebra 21 = (A ; + , •, 0) of type (2, 2, 0) such that 
(A ; +, 0) is a commutative semigroup with 0 as its zero, (A, •) is a semigroup and 
the multiplication " •" distributes over addition from either side and a • 0 = 0. Thus, 
we consider semirings as generalizations of both rings and distributive lattices. 
Also, we take z = 0. It is easily checked that a non-empty subset / of A is an ideal if 
and only if 

(2.1) a, beJ imply a + beJ, 
(2.2) aeJ, be A imply ab, baeJ, and 
(2.3) a + beJ and aeJ imply beJ 

hold simultaneously. Indeed, to verify this we also need to verify that 8(J) is 
given by % 

(2.4) x = y(6(J))(x, ye A) if and only if x + a = y + b for some suitable 
a, be J. 

In general we have no right to assume the permutability of the 6(J) nor to 
assume the intersection formula: 0(JnK) = 0(J)nd(K). In [2], a 5-element 
semiring in which both operations + and • are commutative and idempotent is 
given. The intersection formula failed but all the congruences on 21 are in the 
sublattice generated by the subsemilattice {6(J): Je /(2l)} and what is more ^(21) 
is distributive and consists of permuting congruences. Thus, we get a particular case 
of Theorem 1.3, where the fact that we are dealing only with an upper semilattice 
of ^(21) was of prime importance to [2]. 

Now consider a distributive pseudocomplemented lattice considered as an 
algebra 21 = (A ; v, A, *, 0,1) of type (2 ,2 ,1 ,0 ,0) . Take z = 0. Then, the ideals of 
21 are examined in detail in [3]. We will use the notation and terminology of [3] 
freely, except that we will speak of ideals in place of congruence-kernels of 
•-congruences. There the intersection formulae of Theorem 2.3 failed badly, but 
after all that was the interest in the paper, c.f. [3; Theorem 2.5 and Theorem 3.2, 
(x), (xi) and (xii)]. However, for /e / (2t ) and O^n^co, each of the congruences 
2rt(/) (see [3; Theorems 1.5, 1.6, 1.7 and 2.5]) is determined by the minimal 
congruence identifying some filter on A. And the minimal congruences W(F) 
associated with filters F of a distributive lattice form a distributive sublattice of 
#(21) which consists of permuting congruences c.f. the "dual" of Theorem 2.3 and 
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[3; Lemma 1.2, Lemma 1.3] (N.B. The statement of [3; Lemma 1.3] should be 
ended by the clause "if they are congruence relations"). Thus, we can summarize 
and apply Theorem 1.3 to obtain 

Theorem 2.4. Let 21 = (A ; v, A , *, 0, I) be a distributive pseudocomplemented 
lattice considered as an algebra of type (2, 2, 1, 0, 0). With the notation of [3], 
O^n^co and 0>n=(In(J): /e /(2l)) , SPn is an upper subsemilattice of <ti($l) 
satisfying the Chinese remainder theorem and consequently generates a distribu­
tive sublattice of permuting congruences in ^(21). When tz = 0, SPn is actually 
a sublattice of ^(21), while for l^rz^cO, 2Pn is a sublattice if and only if 21 is 
a Stone lattice. 

This is an easy consequence of our previous remarks and [3; Theorems 2.10 and 
3.2 (xii)]. 

Finally, let us turn to the so-called distributive ideals which can be defined as 
those ideals / of a lattice which satisfy either of the equivalent conditions of the 
following lemma. The details are omitted; for a comparison with standard ideals, 
see [6]. 

Lemma 2.5. For a (lattice)-ideal J of a lattice 21 = (A ; v, A), the following 
conditions are equivalent. 
(i) / v (HnK) = (JvH)n(JvK) for any (lattice)-ideals H and K 

(ii) The relation 0(J) defined by x = y(d(J))(x, ye A) if and only if xvj = yvj 
for some I eJ is a congruence relation on 21. 

(Note: 6(J) can be defined equivalently by x = y(0(J))(x, ye A) if and only if 
Cr]v/=(y]v/ ) . 

Of course, here we have not insisted on the existence of OeA (i.e. a disting­
uished element z) and 6(J) of Lemma 2.5 is the smallest congruence on 21 having 
the distributive ideal / as a class. The collection />(2I) of distributive ideals of 21 is 
a complete upper subsemilattice of the lattice of ideals of lattice 21 and 
^(Z?(2l)) = {#(/): JeD(%)} is a complete upper subsemilattice of <€(&) (the 
proof is similar to that of Proposition 2.2). 

Theorem 2.6. Let 21 = (A ; v, A ) be a lattice. Then the upper subsemilattice 
SP(D(VL)) of ^(21) and consisting of the minimal congruences associated with the 
set D(W) of distributive ideals satisfies the Chinese remainder theorem. 

Proof. Let Ju /2, ..., /„eD(2l) and xu x2, ..., xneA be such that 
Xi=Xj(d(Ji)vd(Jj) = d(Jtv Jj)) for each /, / = 1, 2, ..., n. It follows that there exist 
kteJi and £, eJ; such that x{v ktv k},=xivk{vk, for each /, I = l, ..., n. Hence, we 
certainly have (xivki]vJi = (xivki]vJi for each /, I = l, ..., n. Let 
x = (x1vk1)A...A(xnvkn). Then, 

(x]vJi = ((x1vk1]n...n(xnvkn])vJi 

= ((x1vk1]vJi)n...n((xivki]vJi)n...n((xnvkn]vJi) 
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= ((x,vki]vJj)n...n((Xj]vJj)n...n((xjVkn]vJI) 
= (x /]v/ /, 

using the distributivity of /,. That is, X = XJ(6(JJ)) for / = 1, ..., n. 
In general, the intersection JnK of two distributive ideals / and K may even 

turn out to be distributive and yet 0(JnK) £ 6(J)nd(K). This is illustrated by the 
five element non-modular lattice {0, a, b,c,l: 0 < a < l ; 0 < c < b < l } , wherein 
(a]n(b] = (Q], (a], (b] and (0] are all distributive ideals, yet b±c and 
b = c(6((a])n0((b])). On the other hand Theorem 2.6 and Theorem 1.3 yield 
positive results. 

Corollary 2.7. Let / , , . . . , / „ , K.,..., Km be n + m distributive ideals in a lattice 21. 

Then, the congruences f]6(Jr) and f\d(Js) are permutable. 
r = l s=l 

Corollary 2.8. Let 21, 21,, 2l2, ..., 2l„ be lattices with 0. 777en, 21 is isomorphic to 
the direct product of 21,, 2I2,..., 2l„ if and only if there exist distributive ideals /,, /2, 
..., /„ in 21 5i/cA tAat 
(i) the Jt are pairwise comaximal i.e. r±s implies JrvJs = A, 

(ii) f)d(Ji) = o), and 

(iii) for each i=l, ..., n, % ^Wd^). 
Proof. Corollary 2.8 follows from Corollary 2.7 using a familiar argument, see, 

for example [10; Corollary 1.6, p. 67]. 
We note that Corollary 2.7 simplifies for standard ideals ([6; Theorem 3, p. 33]) 

and takes into account many known results, see [8; Theorem 2 and its corollaries]. 
The ideals / of Corollary 2.8 are easily seen to be standard when 21 = 21, x ... x 2I„ 
U, = {fe A: /(/) = 0} and 0(Jt) is given by f=g(f,geA) if and only if /(/) = g(i) 
or equivalently either fvk = gvk or fvg = (f/\g)vk for some keJt) and hence, 
an alternative form of Corollary 2.8 can be stated, wherein the ideals Jt are 

n 

assumed to be standard and (ii) is replaced by (ii)' p | / , = (0]. 
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