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Math . Slovaca 4 1 , 1991, No. 1 , 41—49 

ON THE COMPLETION OF CYCLICALLY 
ORDERED GROUPS 

STEFAN CERNAK 

ABSTRACT. In this paper there is presented a new construction of the completion 
M(G) of the cyclically oredered group G. The results concerning the completion of a 
lenearly ordered group by the Dedekind cuts are applied. 

The notion of a cyclically ordered set was introduced by E. Cech [1]. V. 
Novak [5] defined and studied the completion C(G) of a cyclically ordered 
set G. Another approach to this notion was established by V. Novak and 
M. N o o v o t n y in [6]. 

L. Rieger [7] (cf. also L. Fuchs [3], Chap. IV, §6) defined the notion of 
a cyclically orddered group. Swierzckowski [8] derived a representation 
theorem for cyclically ordered groups. Each linearly ordered group can be 
considered a cyclically ordered group. 

In [4] there is investigated the completion C* of a cyclically ordered group G. 
It is defined to be a certain subset of C (G) which satisfies a maximality condition 
(cf. Section 2 below). 

In this paper there is presented a new construction of the completion of the 
cyclically ordered group G. It seems to be simpler than that given in [4]. The 
results concerning the completion of a linearly ordered group by Dedekind cuts 
are applied. The completion M(G) obtained in this way concides with G*. 

1. Preliminaries 

Let G be a linearly ordered set. Let us denote by Xu (X1) the set of all upper 
(lower) bounds of a subset X ^ G. The system of all subsets of G of the form 
(Xu)1, where X is a nonempty and upper bounded subset of G will be denoted 
by D(G). Each element of D(G) is called the Dedekind cut on G. If the system 
D(G)is partially ordered by inclusion, then D(G) is a conditionally complete 
chain. The mapping cp(g) = ({g}")1 is an isomorphism of G into D(G) and cp 
preserves all intersections and joins existing in G. The elements g and (p(g) will 
be identified. Then G is a sublattice of D(G) and the following conditions are 
satisfied: 
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(c,) For each element h e D(G) there exists a nonempty upper bounded subset 
X of G such that h = sup X in D (G). 

(c2) For each nonempty upper bounded subset X of G there exists an element 
he D (G) such that h = sup X in D (G). 

If G, != G, then D(G,) can be embedded into D(G) in the natural way. 
Let G be a nonempty set and [x, y, z] a ternary relation defined on G with the 

following properties: 
I. If [x, y, z], then x, y, z are distinct; if x, y, z are distinct, then either 

[x, y, z] or [z, y, x]. 
II. If[x, y, z], then [y, z, x]. 

III. If[x,y,z] and [y, u, z], then [x, u, z]. 
Then the ternary relation [x, y, z] is called a cyclic order on G (cf. E. 

C e c h [1]). The set G is said to be a cyclically ordered set. 
Let G be a linearly ordered set. Define a cyclic order on G by 

[x, y, z] = x < y < z or y < z < x or z < x < y. 

We shall say that this cyclic order is generated by the linear order on G. 
R e m a r k . In the whole paper the cyclic order on the given linearly 

ordered set S will be assumed to be generated by the linear order on S. 
Let G be a cyclically ordered set and let (G, + ) be a group. Assume that the 

following condition is fulfilled for all x, y, z, a, b e G: 
(iv) If [x, y, z], then [a + x + b, a + y + b, a + z + b]. 

Then (G, + ) is said to be a cyclically ordered group. We shall write G instead 
of(G, + ) . 

Let K be the set of all reals a with 0 ^ a < 1; the set K is linearly ordered 
in the natural way. If the operation + is defined as addition mod 1 and if the 
cyclic order is generated by the linear order of K, then K is a cyclically ordered 
group. 

Let L be a linearly ordered group. We denote by L (x) K the direct product 
of the groups L and K with the ternary relation defined in the following way. 
For each three elements u = (x, a), v = (y, b), w = (z, c) of L x K we put [u, v, 
w] if some of the following conditions is satisfied: 

(i) [a, b, c]; 
(ii) a = b ^ c and x < y; 

(iii) b = c ^ a and y < z; 
(iv) c = a T-: b and z < x; 
(v) a = b = c and [x, y, z). 

Then L ® K is a cyclically ordered group. 
1.1 Theorem. ( S w i e r c z k o w s k i [8]) Let G be a cyclically ordered group. 

Then there exists a linearly ordered group L such that G is isomorphic to a 
subgroup of L ex) K. 
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Let/be an isomorphism of G into L ® K. The elements g and/(g) will be 
identified. Hence G is a subgroup of L <g) K. Let us form the sets 

L, = {xeL 
Kx = {aєK 
G0 = {gєG 

there exist a e K and g e G with g = (x, a)}, 
there exist xeL and ge G with g = (x, a)}, 
there exists x e L with g = (x, 0)}. 

Then Lj and K, are subgroups of L and K, respectively. G0 is an invariant 
subgroup of G. Let g e G; if we put g > 0 whenever x > 0, then G0 is a linearly 
ordered group (cf. [4]). 

Let A and B be linearly ordered sets. Define the relation ^ on the set 
C = {(a, b): ae A, b e B} by (ax, bx) = (a2, b2) ifbx < b2 or bx = 62 and ax = a2 

for each (ax, bO, (a2, b2) e C. Then C is a linearly ordered set which is called the 
lexicographic product of A and I?. We shall write C = A o B. 

2. Completion of a cyclically ordered set and of a cyclically ordered group 

Let G be a cyclically ordered set. V. N o v a k [5] constructed a completion 
of G in the following way. Assume that g is a fixed element of G. For each x, 
yeG put x <gy if either [g, x, j ] or g = x ^ 7. Then < g is a linear order 
on G with the least element g. A linear order < on G is called a cut on G if the 
cyclic order on G generated by < concides with the original cyclic order on G. 
A cut < is said to be regular if some of the following conditions is valid: 

(i) (G, < ) has neither the least nor the greatest element. 
(ii) (G, < ) has the least element. 
Let C(G) be the set of all regular cuts on G and let h, <, (i = 1, 2, 3) be 

elements of C(G). Define a cyclic order on C(G) by putting [hx, h2, /z3] if there 
exist elements x, y9 z e G such that 

x <xy <xz9 y <2z <2x9 z <3x <3y. 

Let (p(g) = <g for each g e G. Then <p is an isomrphism of the cyclically 
ordered set G into C(G). The elements g and <p(g) will be identified. In this sense 
G is a subset of C(G). The cyclically ordered set C(G) is called the completion 
of G. 

Let G be a cyclically ordered group. In [4] there is defined a completion of G. 
By the completion of G is meant a group (G*, +*) fulfilling the following 
conditions: 

(a) G <= C* cz C(G) 
(b) (G*, +*) w a cyclically ordered group under the cyclic order induced 

by C(G). 
(c) (G, -f) is a subgroup o/(G*, +*) 
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(d) If (G,, +]) is a group satisfying (a)—(c) (with (G,, +x) instead of 
(G*, +*)), then (G,, +,) is a subgroup of(G*9 +*). 

We shall write G* instead of (G*, +*). In [4] it is proved the completion G* 
does exist; the definition of G* implies that it is uniquely determined. 

Let G0 # {0}. We say that a cut h e C(G) is of the type of G0 if the following 
conditions are fulfilled: 

(i) There exist gX9g2eG such that g2- gxe G0, g2- gx > 0, 
(ii) [g],h9g2]inC(G). 

The set of all cuts from C(G) of the type of G0 will be denoted by Dx (G). 
Let g e G; t e G0. The mapping y/(t) = g + t is a one-to-one mapping from 

the set G0 onto g + G0. Assume that gx, g2 e g + G0. Then y/(t,) = g,, y/(t2) = g2 

for some tx, t2e G0. If we put g, < g2 in g + G0 whenever tx < t2 in G0, then 
g + G0 is a linearly ordered set. 

Since Dx (G) and [J D(g + G0) are isomorphic, in the following Dx (G) and 
geG 

U D (S + £o) will be identified. Let he Dx (G). Then there exists g e G such that 
6 g G 

heZ)(g + G0). Put 

/ ( h ) - { x e g + G 0 : x ^ h}. 

Then /z = sup 1(h) in D (g + G0). 
Let /z,, h2 e Dx (G). There exist g,, ^ 2 G G such that hxe D (g, + G0), h2 e 

G £Kg2 + C0). Define the operation +A onD, (G) as follows 

hx + * h2 = sup {/(/*,) + /(h2)} in D((gx) + g2) + C0). 

It is evident, that the operation +A is independent of the choice of the elements 
gx,g2. The set GA of all elements of D, (G) having inverses is a cyclically ordered 
group. 

The following results were established in [4]: 
2.2. Theorem. Let G be a cyclically ordered group. Then 

(i) G* = G//G0^{0}. 
(ii) G* = GifG is finite. 

(iii) G* is isomorphic to K if G is infinite and ifG0 = {0}. 

3. The cyclically orderedd group M(G) 

In this section we shall construct an extension M(G) of a cyclically ordered 
group G. Then it will be shown that G* and M(G) coincide. 

Let G be a cyclically ordered group and let L, K, LX9K} 9LX ® K, be as above. 
Let us form the lexicographic product Lx o K. of the linearly ordered sets Lx and 
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K,. The linear order on Lx o K, will be denoted by < , , Then G is a subset of 
L, o K, and G c D(G) c F>(L, o K,). 

If the system D (G) = Z) (G) u {G} is partially ordered by inclusion, then 
D (G) is a conditionally complete lattice with the greatst element. 

Suppose that T = G, heD(G). Dentote 

T(LX) = {x e L,: there exist g e G and a e K, with g = (x, a)}, 
T(KX) = {a e Kx: there exist g e G and x e Lx with g = (x, a)}, 
U(h) = { g e G : g = h}, V(/z) = {gGG:g = h}. 

Then (c,) implies 

(1) h = sup V(h) in D(G). 

Let hx, h2e D(G). Then according to (1) we have 

hi = supV(hi)(i=U2). 

The usual operation on the group of reals will be denoted by + r. 
Suppose that for all elements vx e V(hx), v2 e V(h2), vx = (xx, a,), v2 = (x2, a2) 

the relation ax +r a2 < 1 is valid. In such a case denote 

V(hx, h2) = {vx + v2: vx e V (/*,), v2 e V(h2)}. 

It is clear that ax +ra2 = ax + a2. If no ambiguity is likely to arise we shal often 
write Vinstead of V(hx, h2). The set Vis nonempty because the sets V(hi) and 
V(h2) are nonempty subsets of G. 

Observe that it can happen that V = G for some hx,h2e D (G), hx, h2 7-= {G}. 
3.1. Lemma. Let g e G, v e V, g < v. Then g e V. 
Proof. Let g e G, g = (x, a), veV. There exist vx e V(h,), v2eV(h2), 

vx = (xx, ax), v2 = (x2, a2) such that v = vx + v2. Then v = (xx + x2, ax + a2). If 
we denote g' = v — g = vx + v2 — g, g' = (x\ a'), then x' = xx + x2 — x, 
ar = ax + a2 — a and g = (—g' + vx) + v2. From g < v we infer that g' > 0. 
Hence ar

 = 0. 
Suppose that a' = 0. Hence x' > 0 and a = a, + «2. Therefore — x' + 

+ xx < xx and so — g' + v, < vx. We conclude that —g' + vxe V(hx). Thus 
geV. 

Now assume that a' > 0. Hence a < ax + a2. Let a2 < ax be valid. We 
distinguish two cases. First suppose that a' < ax. Then —a' + ax < ax and so 
—g' + vx < vx. Thus —g' + vxe V(hx). Therefore geV. Let a' = ax. As for 
a' = ax + a2, we get g = —a' + ax + a2 = a2 < ax. Therefore g < vx. From 
this it follows that g e V(hx) ^ V. The case ax ^ a2 is analogous. 

Let V 7-= G. Then the set Vis upper bounded. However, assume that Vis not 
upper bounded and that g e G. There exists v e V such that g < v. Then 3.1 
implies that g e V, From this it follows that G = V, a contradiction. 
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Therefore there exists sup Vin D(G) whenever V ^ G. Evidently, if V = G, 
then sup V = {G} in 15(G). 

Now, assume that there are elements v, e V(A,), v2 e V(A2), v, = (x , , a,), 
v2 = (x2, a2) with ax -{-ra2= 1. Then 

V(A,, A2) = {v, + v2: v, e V(A,), v2 e V(A2), a, + , a2 = 1} 

is a nonempty subset of G. Then symbol V(A,, A2) wil be often replaced by V. 
The following lemma can be proved in a similar way as 3.1. 
3.2. Lemma. Let g e G, v e V, g < v. Then g e V. 
Analogously to the above we obtain tha V is upper bounded whenever 

V # G. Therefore there exist sup V in D(G). If V = G, then sup V = {G}. 
Define the operation + on D (G) by putting 

h -4- h = ( supV (A, ,A 2 ) , if V(A,,A2) = 0, 
' 2 | i ~ ' 7 2 [ sup V(A,,A2), if V(A,,A2)^0. 

The following lemma is easy to verify. 
3.3. Lemma. (D (G), + ) is a semigroup andO e G is a neutral element of(D (G), 

Let M(G) be the set of all elements of D(G) having an inverse in D(G). 
Then (M(G) is a group. 

3.4. Lemma. The cyclically ordered set 15(G) is isomorphic to C(G). 
Proof . Let heD(G) and let V'(A) = G\U(h). Assume that A # {G}. Let 

us form the ordinal sum W = U(h) © V'(li) of the linearly ordered sets U(h) 
and V'(h). The linear order w on Wis a regular cut on G. If we put (//(A) = vv 
for each A ^ {G} and y/(A) = < i whenever A = {G}, then i//is an isomorphism 
of 15(G) onto C(G). _ 

We may identify 15(G) and C(G). 

A) The case G0 ^ {0} 

Now assume that G0 ?-- {0}. Let he D (G), a e K,. Denote 
f/'cvW = {w G t/(A): there exists i e L , with u = (x, a)}, 
Va(h) = {v G V(A): there exists x e L, with v = (x, a)}. 

Then one of the following cases must occur: 
(a) V(A)(K,) has the greatest element a e K, and Vu(h) a v + G0 for each 

vGV„(A). 
((3) V(A)(K,) has the greatest element a e K, and J^(A) = v + G0 for each 

veVa(h). 
(y) V(A)(K,) has no greatest element. 
In the case of (a) we say that A is of type (or). 
R e m a r k 1. If A is of type (a), then U(A)(K,) / 0 and A 7- {G}. The 

greatest element of V(A)(K,) is at the same time the least element of U(h)(Kx). 
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The verification of the following lemma is a routine. 
3.5. Lemma. Let /z,, /z2, h be elements of D(G) of type (a), V(h,) _Z G0 

(i= 1, 2). Ifhx = /z2, then hx+h = h2 + h and h + hx ^ h + h2. 
R e m a r k 2. If the hypothesis V(/z,) _l G0 (i = 1, 2) is omitted, the asser­

tion does not in general hold. 
Let heD(G). In the next we want to establish a necessary and sufficient 

condition for h e M(G) to be valid. 
Let hx, h2e D(G) be of type (a) and let ax(a2) be the greatest element of 

V(hx)(Kx) (V(h2)(Kx)). The definition of the operation + on D(G) implies that 

(2) hx+h2 = sup {vx + v2: vx e Vtly(hx), v2 e K2(h2)} in 5(G). 

Let h eD(G\ h ^ {G}. Denote 

Wx ={u-v: ueU(h), ve V(/z)}, W2 = {-v + u: ueU(h\ve V(/z)}, 

Wi0 = {w e W{. there exists xe L, with w = (x, 0)} (i = 1, 2) . 

3.6. Lemma. Let he D (G), h ^ {G} and let inf Wx = 0 irz G. F/zerz 
(i) /z is of type (a). 

(ii) /z has a right inverse in D(G). 
P r o o f (i) inf Wx = 0 in G implies that Oeff , (K,). In fact, if 0 <£ W, (K,), 

then either the inf JV, does not exist or the inf Wx > 0 in G. Therefore there exist 
a e K,, xx, x2 e Lx, u e U(h), v e V(h) with u = (xx, a), v = (x2, a), x2 < xx and 
a is the greatest (least) element of V(h)(Kx) (U(h)(Kx)). We obtain Va(h) a 
cz v + G0 for all v e Va(h). We conclude that h is of type (a). 

(ii) The proof is similar to that in [2] (Theorem 6). We have 0 = inf Wx = 
= inf Wxo = inf {u — v: UG Ua(h), v e Va(h)} = —sup {v — u: ue Ua(h), v e 
e Va(h)} in G. Whence sup {v — u: ue Ua(h), v e Va(h)} = 0 is valid in G. Then 
sup {v — u: u e Ua(h), v e Va(h)} = 0 in D(G), too. it is clear that the set - U(h) 
is nonempty and upper bounded in G and —a is the greatest element in 
-U(h)(Kx). There exist W eD(G), W * {G}, W = sup ( - U(h)). Obviously 
that - U(h) = V(h'\ - Ua(h) = V a(W). In view of (2) we obtain h + W = 
= sup {v + u: v e Va(h), u e V_a(h')} = sup {v + u: v e Va(h), u e —Ua(h)} = 
= sup {v — u: v e Va(h), u e Ua(h)} = 0 in D(G). Thus W is a right inverse of h. 

In an analogical way we prove 

3.7. Lemma. Let he D (G), h # {G} and let inf W2 = 0 in G. Then 
(i) h is of type (a). 

(ii) h has a left inverse in D(G). 
The element W = sup (— U(h)) is a left inverse of h. 

3.8. Lemma. Let h e M(G). Then 
(i) h * {G}. 
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(ii) inf W, = 0(i= 1, 2) in G. 
Proof . Let A' be an inverse of A in D(G). 
Assume that V(A)(K,) ^ {0}. Then there exists aeV(A)(K,), a > 0. 

Therefore V(A, A') # 0. In fact, if V(A, A') = 0, then 0 = A + A' = sup V(A, A') 
in D(G) and 0 < a + a' < 1 for each # ' e V(A')(K,), a contradiction. Thus 
0 = A + A' = sup V(A, A') = sup {v + v'\ ve V(h), v' e V(h'), v = (x, a), 
v' = (x', a'), a + a' = 0}. Hence a is the greatest element of v(A)(K,) and 
a' = —a is the greatest element of V(A')(K,). According to (2) we get 
0 = A + A' = sup{v + v'\ veVa(h), v'e V a(h')} in 5(G). Hence {v + v': 
ve V„(A),v'e V a(h')} cz G0. Therefore Va (A) c v + G0, V a(h')cv' + G0for 
all ve Va(h), v' e V a(h'). 

_Now assume that v(A)(K,) = {0}. Then V(A, A') = 0 and thus 0 = A + A' = 
="sup V(A, A') = sup{v + v'\ veV(h), v'eV(h')} in D[G). From this it 
follows that V(A')(K,) = {0} In a similar way as above we prove that V0(A) c: 
c v + G0, V0(A') c v' + G0 for all v G V0(A), v' e V0(A'). 

In both cases we obtain that A and A' are of type (a). Remark 1 implies that 
h ?- {G}. 

(ii) we want to show that inf Wx = 0 in G. It suffices to prove that 0 = 
= inffV10 = inf {u — v\ u e Ua(h), v e Va(h)} in G(). We have 0 ^ u — v for each 
ueUa (A), v e V^ (A). Assume that htere exists g e G0 such that 0 < g ^ u — v for 
every ue Ua(h), ve Va(h). Therefore g + v ^ u. In view of (1) we obtain 
g + v = A. The elements g + v and A are of type (a). By using 3.5 and (1) we infer 
that the relations v = — g + A and A = — g + A are valid. Since A G M(G), A has 
an inverse. Thus 0 ^ — g and g = 0, a contradiction. 

The proof of (ii) is analogous. 
From 3.6, 3.7 and 3.8 there immediately follows 

3.9. Lemma. Let A e D(G). Then the following conditions are satisfied'. 
(i) Ifh = {G}, then h$M(G). 

(ii) If h ?- {G}, then heM(G) if and only i / inf W{ = 0 (/ = 1, 2) /« G. 

3.10. Theorem. Lei G he a cyclically ordered group. Assume that G0 ^ {0}. 
77ICT M(G) = G*. 

Proof . The cyclically ordered group M(G) fulfils the conditions (a)—(c). 
Hence M(G) <= G*. According to 2.2 we have G* = GA. Further the relation 
GA c C(G) = D(G) is valid. Let A,, h2eGA. Then there exist g, , g2 e G, 
g, = (x,, a,), g2 = (x,, a2) with A, G I)(g, + G0), A2 G D(g2 + G0) and A, + A A2 = 
= sup {/(A,) + /(A2)} (in D ((g] + g2) + G0)) - sup {v, +_v2: v G Va{ (A,), v2 G V,2(A2)} 

(in D (G)) = A, + A2. Therefore GA is a subghroup of D (G). Since M(G) is the 
greatest element of the semigroup D(G), we obtain GA= M(G). Hence G* = M(G) 
is valid. 
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B) The case G0 = {0} 

Assume that G0 = {0}. Let g e G, g = (x, a). If y/(g) = a, then I/MS an isomor­
phism of the cyclically ordered group G into K. In this sense G will be considered 
a subgroup of K. 

If G is finite, then M(G) = G and G0 = {0}. According to 2.2 we get 
3.11. Theorem. Let G be a finite cyclically ordered group. Then M(G) = G*. 
Now let G be an infinite cyclically ordered group and let G0 = {0}. Assume 

that h e M(G). Then h = sup V(h) in D(G). There exists W e K9 h' = sup V(h) 
in K. The mapping y/(h) = W is an isomorphism of the cyclically ordered group 
M(G) onto K. 

With respect to 2.2 we get 
3.12. Theorem. Let G be an infinite cyclically ordered group. Assume that 

G0 = {0}. Then M(G) is isomorphic to G*. 
From 3.10, 3.11 and 3.12 we infer that the following theorem is valid: 
3.13. Theorem. Let G be a cyclically ordered group. Then M(G) is the com­

pletion of G. 
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