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(Commaunicated by Tibor Katrindk )

ABSTRACT. The main result of this paper is that every stable weak isometry

in a divected group is an involutory group automorphis.

In 11, S wamy introduced the concept of an isometry in an abelian lattice

ordered group (F as a surjection [ G ( such that
Lo =yl = 1f0) — [(y)] for each .y e (1)

and proved that every isometry ¢ in an abelian lattice ordered group ¢ can be
written uniquely as g(@) = T'(r) + a. where a is a fixed element of ¢ and T
is an involutory isometric group automorphism. Jak ub ik [2], [3] proved that
for every isometry [ in a lattice ordered group (l-group) G such that f(0) =0
there exists a uniquely determined direct decomposition (¢ = A x B of (7 such
that [f() = a4 — ay for each &+ € ¢ (x4 and xp are components of . in
the direct factors A and B, respectively) and extended the above mentioned
Swamys result to non-abelian l-groups. Isometries in l-groups investigated
also lMolland [1]. Rachu nek [10] generalized the notion of the isometry
for any partially ordered group (po-group) and studied isometries in a certain
class of Riesz groups. In [5], [6], [8], [9]. was Jak ub{k’s result on the relation
hetween isometries and direct decompositions of l-groups extended to some tyvpes
ol po-groups.

In [1]. Jakubik defined a weak isometry in an l-group (' as a mapping
[ G- Gosatisfving the condition (1) and proved that each weak isometry in a
representable I-group is a bijection. Analogous result concerning weak isometries
in isolated Riesz groups and distributive multilattice groups (and hence also in

9].

l-groups) was obtained in [7],
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In this paper, it is proved that every stable weak isometry in a directed group
G is an involutory group automorphism, and that every weak isometry f in &
can be written as f(z) = T(z)+a, where a is a fixed element of G.and T is an
involutory isometric group automorphism. From this it follows that every weak
isometry in a directed group is a bijection. This generalizes the above mentioned
extension Swamy’s result by Jakubik and some results of [7]. [9].

First we recall some notions and notations used in the paper.

Let G be a po-group. The group operation will be written additively. We
denote GT = {z € G; x> 0}.1f a, b are elements of G, then we denote by
U(a,b) and L(a,b) the set of all upper bounds and the set of all lower bounds
of the set {a,b} in G, respectively. If for a,b € G there exists the least upper
bound (greatest lower bound) of the set {a,b} in G, then it will be denoted by
aVb (anb). Foreach a € G, |a| = Ula, —a).

If G is a po-group, then a mapping f: G — G is called a weak isometry if
If(z) — f(y)] = |z — y| for each z,y € G. A weak isometry f is called a stablc
weak isometry if f(0)=0.

A po-group G is called directed if U(x,y) # 0 and L(x,y) # 0 for each
T,y € G.

1. THEOREM. Let G be a po-group, and let f be a stable weak isometry in
G.Let x € GV, zy = 2+ f(x), 22 = —f(z) + 2. Then ry = f(20) vV 0.
Ty = —f(2L) VO, 2z =2y + 2y = a9+ 21 =21 VT2, T1 AT =0, f(20) =
ry — 19 = 2f(x), flx1) = x1, flz2) = —22, ) = x, fAH~x)—r.
v+ f(z) = f(2)+ o, f(—2) = —f(z).

Proof. Let z 6 Gt . Then from |z| = |f(z)] we get © = —f(x)V f(r).
Thus z + f(z) > 0, —f(z) +a > 0. From |2z = [f(2z)] we obtain 2 =
—f(2z)Vv f(2z). blnce lz| = |22 —x| = |f(2z)— f(x)|, we have © > f(2x)— f(r).
x > f(z) — f(2z). This implies z + f(z) > f(2z), —f(x) + = > —f(2r).
x+ f(2z) > f(z), —f(2z) + = > —f(x). Hence x, € U(f(22).0). @y =
U(-f(2z), ), 2¢ + f(22) > x + f(z), —f(2x) + 20 > —f(r) + . Let t =
U(~f(22),0). Then z,+t € U(f(2z), —f(2x)) . Thus o+t > — f(2r)V f(2r) =
20 = x; + xo. This implies t > wxo. Therefore xo = —f(2r) v 0. Analo-
gously, we can show that z, = f(2z) V0. Clearly, =} +ay € U(ry.2r2). Let
z € U(xy,x2). Then z € U(—f(2;r),f(2x)). This yields z > 20 = @y + 0.
Hence x{ V z9 = x; + x5. Then we can easily get o Ao = 0. &y + 0y
xo + xy. Since —xy = f(22) A0 and f(22) = f(20r)V O+ f(2r) A 0. we have
f@Rr)y=u2, —xzo=a+ f(z) —x+ f(x).
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The relation |z;| = |f(x,)| yields 1 > f(z1), =1 = —f(z1). Then
fr))+xy > —x1+29 =29 —2, = — f(22). Further, from |z2| = |z, +xo—2,] =
[20 —ry| = |f(2x) — f(x1)]| = |o1 — x2 — f(21)] we obtain x2 >z — a2 — f(ay).
Then f(xy) + 22 > -9+ a1 = 21 — 22 = f(2r). Hence f(zy) + x93 >
—f(2r) V f(2x) = x| + x5 . This implies f(z;) > x; . Therefore f(z,) = x,.

From |xo| = |f(x2)| we get 22 > f(z2), z2 > —f(z2). Hence — f(xg) +xy >
—ry =z — 29 = f(22). From |z1| = |22 — z2| = [f(2z) — f(z2)| we
get x> f(ag) — f(22). Then —f(z2) + 1 > —f(2z). Thus —f(z2) + ;>
—f(2x) v f(2.L) = oy + ;. This yields —f(z2) > 5. Thus —f(z3) = x2, and
hence f(xg) = —

From |r| = |x—|—f(x) f@) = |f(z+f(x)—f fAz)| = lz+f(z)—f*(x)] we get
r > ar+ f(x)— f%(z). Thus f2( ) > f(x). Then from |f(z)—z| = |f*(z)— f(x)]
we get x — f(x) = f2(x) — f(z). Therefore f?(z)==z.

From |z| = | —z| = |f?(—x)| we obtain = > f2(—=z). Since |2z| = |z — (—x)|
= |f%(x) — f2(~x)| = |z — f3(—x)|, we have 2z = z — f?*(—z). Therefore
frlea) =~z

Since |2z — f(z)| = |f(2z) — f?(z)|, we have 2z — f(x) > = — f(2z). Then
r—f(x) > —f(2z). Because of x— f(z) > 0, we obtain z— f(z) > —f(2z)Vv0 >
—f(xr)+z. Thisimplies f(z)+z > z+f(z), z—f(z)+z1 > —f(2z)Vf(2r) = 2z.
From the last relation we have z + f(z) > f(z)+2z. Hence z+ f(z) = f(z)+x.
Then f(2z) = 2f(x).

From |z| = | — 2| = |f(-z)| we get = > f(—z). Since |f(z) — (—z)| =
If2(x) — f(-z)] = |z — f(—x)|, we have = + f(z) = = — f(—=z). Thus
f(= I) —f(x).

2. THEOREM. Let G be a po-group, and let f be a stable weak isometry in
G. Let 1,29 € GT . Then

f(@1 +x2) = f(x1) + f(22), flog —x2) = fz1) = f(z2),
f(=z1 4+ z2) = —fz1) + f(z2) -

Proof. Let z;, zo € G*. In view of 1, we have z1 + zp — f(z2) > 0,
oy + w2 — f(z2)| = |f(z1 + 22) — f*(22)| = |f(21 + 22) — 2| Hence z, +
ry — f(x3) > x9 — f(zy + xo). This implies f(z; + 22) + o1 + z2 — flz2) >
flri+x2)+xo— f(z1+22) > 0. According to 1, z1+zot+f(T1) > 21+ f(21) >0,
lei oo+ f(xy)] = |1 +zo— f(—x1)] = |f(z1+z2)— 2 (=) = | f(z1+ae)+a | =
[f(1 +22) + @1 + 29— zo| = | f(f(x1 +22) + a1 +32) — f(@2)] = [fl21 +a2) +
&y 4wy — f(x3)|. This yields x; + 22 + f(z1) = f(z1 + x2) + 1z + 19 — f(12).
Then from 1 it follows that f(z1) + f(z2) = f(z1 + T2).
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From |y + 2o — x(| = oy — (xy — a2)] = |f(ry) = flay — r2)] we obtain
£ry g —ay > f(oy —a9) — f(xy). According to 1. —f(r1)+xp > 0. Then g -
ry > fey—mwa)—foy)+a1 > fla 7.1’>) , and hence o 4.ro— fr 7.1_7) > (). I
view of 1, we also have || +ao+f(aa)—f()] = ’f rr s+ f(a)) - / [
‘f(;rl)+f(:1:2+f(:1:2))7:1,'1‘ = |f(;171)+.'1'_>+f o) —ay| = )+ )+
|f(ry +a0) — (2 — )| = | f2(ry +02) — flog — w2)| = oy + 00 — f(.r, o).
Since 1 yields @y + a2 + f(r2) = f(xy) > 0, we have &y 4.0+ [(aa) = fla)
x4 as — f(xy —as). Therefore f(ay —an) = f(axy) — flra).

By 1, ay +xo — f(x2) + f(x1) > 0. Irom o] = Joo = (= = o)
[f(r2) = f(=ay +a2)| we get wy > f(—uwp +a2) — f(a2). In view of 1. we have
ry+ay > f(—ay4as)— f(ay)+as > f(—a14r2) . Then, according to 1. we obtain
[y + @y — f(xa) + f( .1,1)|:"1'1+'1')~~~/(1>)—f(f“ ’/ Ay = fls))
f‘)(*JTI)I = ’.f(4171)+f(~172’—f(fz +11| [fla)+f(e >)“l oty = [ f G +a)
(=) = | f2 (1 +a2) = f(—x1+a2)| = [y +aw2— f(—ry +05)] . This implies
ry +an — faa) + f(xy) = 2y + 22 — f(—21 + x2). Therefore f(—ur| + a2)
—flay) + flx2).

3. THEOREM. Fach stable weak isometry in a directed group is an involutory
group automorphism.

Proof. Let H be a directed group, and let f be a stable weak isometry
in H . It is easy to see that f is an injection. Let x.y € H. Then @ = 2| — r
Yy =y, —yo, where x1, xo, y,, y2 € HT . In view of 1 and 2, we have f( 1—}—1/)
flov+yr = (2 —yi+xo+y1) = flar+y1) = flyz =y + oo+ y) = [l
Sy = f=yr+ a2 +yn) = fly2) = fle) + ) = flre+y0) + ) = f(.u:) =
flay) — fz2) + fy1) — f(y2) = f(x) + f(y). From this and 1 it follows that
i) = f2(xy — a2) = f2xy) — f2(x2) = 21 — a2 = 2. Therefore f is an

involutory group automorphisi.

JI'

If f is a weak isometry in a po-group (7, then the mapping ¢ defined by
g(z) = f(z) — f(0) for each = € G is a stable weak isometry in ;. Hence we
have the following two corollaries.

4. COROLLARY. For each weak isometry [ in a directed group H there crists
Just one involutory isometric group automorphism g such that

fr) =glx) + f(0) for cach &€ M.

5. COROLLARY. Fach weak isometry in a dirceted group is a bijection.
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6. THEOREM. Let G be a directed group and let [ be a stable weak isomelry
in Gi. Then
4 flr) = fla)+x for each x € G.

Proof. Let € G. Then x = x; — x5, where x;, 25 € GT. In view of |
and 2. we have o+ f(x) = 0y ~ao + f(—ra+xo +2) —an) = ) — a0 — f(an) +
flood+ay —ay) =ay— flaa) —wo+ f(aa a1 — o) =21 — (2 )—.l/l — o s+
oy oo+ flratay —as) = ay - fan) —wy—xo+ flaeo+ux) ~~.1,2)+;1'2 Fag e ay =
e fles) = (o d )+ faa+ay) = fla) dFast+xy —ao = ay — f(an)+ [(aw)+
o) =(ratay) +ao—f( ’)+Jl_12 =i+ flry)—ry—aotay— flre) g o -
Sty —ay = feg)ray o = fr)) = fr2) ) —w2 = flog—wy)+ay —ay =
f(a) + 0.
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