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ON /3-ALGEBRAS 

J. N E G G E R S * — H E E SIK K I M * * 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. In this paper, we discuss a class of algebras related to both groups 
and sets in a rather natural way. This class contains a wide variety of other objects 
but seems analyzable in somewhat traditional ways nevertheless. 

1. Introduction 

Y. Imai and K. I s e k i introduced two classes of abstract algebras: BCK-al­
gebras and BCI -algebras ([3], [4]). It is known that the class of BCK -algebras is 
a proper subclass of the class of BCI -algebras. In [1], [2], Q. P. H u and X. L i 
introduced a wide class of abstract algebras: BCH-algebras. They have shown 
that the class of 2367-algebras is a proper subclass of the class of JBCif-algebras. 
The present authors [7] introduced the notion of d-algebras, i.e., 

(i) x * x = 0, 
(ii) 0 * 2 ; = 0 , 

(iii) x * y = 0 and y * x = 0 imply x = y) 

which is another useful generalization of .BCTiT-algebras, and then they investi­
gated several relations between d-algebras and BCK -algebras as well as some 
other interesting relations between d-algebras and oriented digraphs. Recently, 
Y. B. J u n , E. H. R o h and H. S. K i m [5] introduced anew notion, called an 
BH-algebra, i.e., (i), (iii) and 

(iv) x * 0 = x, 

which is a generalization of BCH/BCI/BCK-algebras. They defined the 
notions of ideals and boundedness in BH-algebras, and showed that there 
is a maximal ideal in bounded BH-algebras. Recently J. N e g g e r s and 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 08A99, 16Y99. 
K e y w o r d s : /3-algebra, B-algebra, null element, kernel, quotient. 
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H. S. Kim [8] introduced another class related to some of the previous ones, 
viz., B-algebras and studied some of its properties. In this paper we introduce 
the notion of (3-algebra where two operations are coupled in such a way as to 
reflect the natural coupling which exists between the usual group operation and 
its associated B-algebra which is naturally defined by it. This class turns out 
to be both much wider and possessing sufficient general structural properties so 
as to enable one to proceed with the details. 

2. /3 -algebras 

A (3-algebra is a non-empty set X with a constant 0 and two binary opera­
tions + and — satisfying the following axioms: 

(I) x-0 = x, 
(II) (0-x) + x = 0, 

(III) (x-y)-z = x-(z + y) 
for all x,y,z in X. 

EXAMPLE 2.1. Let X := {0,1,2,3} be a set with the following tables: 

+ 0 1 2 3 - 0 1 2 3 

0 0 1 2 3 0 0 1 2 3 

1 1 0 3 2 1 1 0 3 2 

2 2 3 0 1 2 2 3 0 1 

3 3 2 1 0 3 3 2 1 0 

Then (X;+, — ,0) is a /?-algebra. 

EXAMPLE 2.2. Let X := {0,1,2,3} be a set with the following tables: 

+ 0 1 2 3 - 0 1 2 3 

0 0 1 2 3 0 0 3 2 1 

1 1 2 3 0 1 1 0 3 2 

2 2 3 0 1 2 2 1 0 3 

3 3 0 1 2 3 3 2 1 0 

Then (K ;+ , - , 0 ) is a /3-algebra. 
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EXAMPLE 2.3. Let X := {0,1,2,3} be a set with the following tables: 

+ 
T 

0 1 2 3 - 0 1 2 3 + 
T 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 3 3 

Then ( X ; + , - , 0 ) is a /?-algebra. 

We observe that the three axioms (I), (II) and (III) are independent. Let 
X := {0,1,2} be a set with the following tables: 

+ 0 1 2 

0 

- 0 1 2 

0 0 1 

2 

0 0 0 1 0 

1 1 0 1 1 1 0 1 

2 0 1 0 2 0 1 0 

Then the axioms (II) and (III) hold, but not (I), since 2 - 0 = 0 7-- 2. Similarly, 
let X := {0,1,2} be a set with the following tables: 

+ • 1 2 

0 0 1 2 

1 1 1 1 

2 2 1 2 

0 

0 1 2 

2 0 0 1 

2 

2 

1 1 1 1 

2 2 1 2 

Then the axioms (I) and (III) hold, but not (II), since (0 - 2) + 2 = 2 7-- 0. Let 
X := {0,1,2,3} be a set with the following tables: 

+ 0 1 

1 

2 

0 

3 - 0 1 2 3 

0 0 

1 

1 

2 

0 3 0 0 2 1 2 

1 1 1 0 2 1 1 0 0 0 

2 2 0 1 0 2 2 0 0 1 

3 3 2 0 2 3 3 0 0 0 
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Then the axioms (I) and (II) hold, but not (III), since ( 2 - 3 ) - 2 = 0 ^ 2 = 
2 - ( 2 + 3). 

PROPOSITION 2.4. Let(G\-,e) be a group. If we define x + y := x-y, x-y : = 
x-y~l, 0 := e for any x,y G G, then (G\ +, —, 0) is a (5-algebra, called a group-
derived (5-algebra and denoted by A(G). 

P r o o f . Straightforward. • 

Example 2.1 is a group-derived /3-algebra from the Klein 4-group, and 
Example 2.2 is also a group-derived /3-algebra from the group Z 4 . 

PROPOSITION 2.5. Let S be a set. If we define x + y := x; x — y := x and 
0 £ S, then (5 ;+,—,0) is a 0-algebra, called a left /3-algebra and denoted 
by As. 

P r o o f . Straightforward. • 

Example 2.3 is a left /3-algebra. Given /3-algebras (A";+,—,0V) and 
(F; +, — , 0 y ) , where X is a group-derived /3-algebra and Y is a left /3-algebra, 
let (xl,y1) + (x2)y2) := (x1+x2,y1+y2), (x1)y1)-(x2,y2) := (x1-x2,y1-y2) for 
any (x1 ,y1) , (x2,y2) G XxY. Then (XxY; +, - , ( 0 x , 0 y ) ) is a /3-algebra which 
is neither group-derived nor a left /3-algebra, and denoted by A(G) x As. There 
are other examples of /3-algebras which are neither a group-derived /3-algebra 
nor a left /3-algebra. 

The class of /3-algebras appear to be an interesting class of algebras in that it 
contains both "groups" and "sets" under one heading, including other structures 
such as A(G) x As for example. 

We note that if a /3-algebra is either A(G) or As, then it is also the case 
that 

(IV) x + y = x-(0-y). 

Hence the condition (IV) holds for /3-algebras of the type A(G) x As as well. 

Group-derived and left /3-algebras part ways via the following conditions: 

(Va) x — x = 0 (group derived), 
(Vb) x-x = x (left). 

We list two classes of /3-algebras of special interest. A /3-algebra X is said 
to be a B*-algebra if (IV) and ( V J hold; and an L*-algebra if (IV) and (Vb) 
hold. 

J. N e g g e r s and H. S. K i m [8] introduced the notion of B-algebra, and 
obtained various properties, especially that a F?-algebra can be derived from 
any group using the notion of zero adjoint mapping. 
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An algebra (X',—,0) is said to be a B-algebra ([8]) if it satisfies (I), (Va) 
and 

(VI) (x - y) - z = x - (z - (0 - y)) 

for any x,y,z G X. 

EXAMPLE 2.6. Let X := {0,1} be a set with the following tables: 

+ 0 1 - 0 1 

0 0 1 0 0 0 

1 0 1 1 1 1 

Then (X',+,—,0) is an L*-algebra which is neither group-derived nor a left 
/3-algebra. 

PROPOSITION 2.7. Let (X\-,0) be a B-algebra. If we define x + y := 
x — (0 — y), x,y G X, then (X; +, — ,0) is a B*-algebra. 

P r o o f . For any x G X, by (IV) and (Va), we obtain (0 — x) + x = 
(0-x)-(0-x) = 0. Using (IV) and (VI) it follows that 

x-(z + y) = x- (z-(0-y)) 

= (x-y) - z 

for any x,y,z G X, proving the proposition. D 

PROPOSITION 2.8. If ( X ; + , - , 0 ) is a B*-algebra, then (X;-,0) is a 
B-algebra. 

P r o o f . It follows that 

(x-y)-z = x-(z + y) (by (III)) 

= x - (z _ (o - y)) (by (IV)) 

for any x,y,z G X. D 

Hence we shall usually identify _B*-algebras with fi-algebras as being "es­
sentially the same". 

Let (X',+,—,0) be a /3-algebra and let 0 G A C X. A is said to be a 
/3-subalgebra of X if x+y,x—y G A for any x,y G A. 

In Example 2.2, the set Ix := {0, 2} is a /3-subalgebra of X, but J2 := {0,1} 
is not a (3 -subalgebra of X, since 1 + 1 = 2 ^ I2. 
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PROPOSITION 2.9. Let ( K ; + , - , 0 ) be an L*-algebra. Then x + x = x for 
any x G X. 

P r o o f . For any x € X we have 

x = x - 0 (by (I)) 

= x-((0-x) + x) (by (II)) 

= (x-x)-(0-x) (by (III)) 

= x-(0-x) (by(V b ) ) 

= x + x (by (IV)), 

proving the proposition. D 

A /3-subalgebra A of a /?-algebra X is said to be an L* -subalgebra of X if 
it is an L*-algebra. 

Given a /5-algebra X, let I(X) be the collection of all (3-idempotents, i.e., 
elements x of X such that x — x-=x-r-x---:x. 

PROPOSITION 2.10. Let (X;+, - , 0 ) be a j3 -algebra. If A is an L*-subalgebra 
of X, then ACI(X). 

P r o o f . If follows from Proposition 2.9 and (Vb) . D 

3. Bi-abelian and /3-algebras 

A /?-algebra X is said to be negative abelian if x — y = y — x for any x, y G X. 
The (3-algebra in Example 2.1 is negative abelian, while the (3-algebra in 

Example 2.2 is not negative abelian. 

PROPOSITION 3 .1 . Let X be a negative abelian (3-algebra. If A is an L*-sub­
algebra of X, then A is a trivial (3-subalgebra. 

P r o o f . Since X is negative abelian, x = x — 0 = 0 — x for any x G X. It 
follows from Proposition 2.11 that x = x + x = (0-x) + x = 0, i.e., A = {0}. 

D 

THEOREM 3.2. Let A(G) be a negative abelian (3-algebra which is group-
derived from a group (G; - ,e ) . Then the group (G;-,e) is abelian and all of 
its elements are of order 2. 

P r o o f . Since A(G) is group-derived, x — y = x-y~l and y — x = y-x~l for 
any x, y G X, and since A(G) is negative abelian, we see that x • y~l = y • x~l. 
If we let y := e, then x = x~l for any x G A(G). This means that x2 = e and 
x -y = x - y~1 = y • x _ 1 = y • x for any x G -4(G), proving the theorem. D 

A /3-algebra K is said to be positive abelian if x + y = y + x for any x, y G Ar. 
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PROPOSITION 3 .3 . Any /3 -algebra A(G) which is derived from an abelian 
group G is positive abelian. 

P r o o f . Straightforward. • 

PROPOSITION 3.4. If a group-derived p-algebra A(G) from a group G is 
negative abelian, then it is also positive abelian, i.e., bi-abelian. 

P r o o f . By applying Theorem 3.2 the underlying group G is abelian. Hence 
x + y = x-y = y-x = y + x for any x,y G G. • 

4. Dissimilarity algebras 

Let (X ;+,—,0) be a /?-algebra. An element 9 of X is said to be a null 
element of X if x - 8 = x, (8 — x) + x = 8 for any x e X. 

Obviously the constant 0 is a null element of X. We let N(X) be the col­
lection of all null elements of X. 

EXAMPLE 4 .1 . Let X := {0,1,2,3} be a set with the following tables: 

+ 0 1 2 3 - 0 1 2 3 

0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 

2 1 1 0 0 2 2 2 2 2 

3 0 0 1 1 3 3 3 3 3 

Then (X\ + , - , 0) is a /3-algebra and N(X) = {0,1}. 

THEOREM 4.2. If X is a (3-algebra, then N(X) is a left ft -algebra as a 
/3-subalgebra. 

P r o o f . If 6X,82 G1V(X),then 61-62 = 01 and hence 0X = (0l-02) + 02 = 
8x+82. It is easy to show that N(X) is a /?-subalgebra. • 

Notice that A(9) := (X; + , -,<9) is a /J-algebra for any 6 e N(X). 
Given elements Qx and 02 of N(X), we shall consider them similar if A(6X) = 

A(62), i.e., if there is a bijection (p: A(9l) -» A(82) such that <p(x + y) = 
tp(x) + <p(y), ip(x - y) = (p(x) - <p(y) and ip(9x) = 02 , where x,y G X, called a 
similarity mapping. 

A mapping (p: X -* X defined by y>(Q) = 1, <p(l) = 0, ip(2) = 3, (/?(3) = 2 
in Example 4.1 is a similarity mapping. 
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PROPOSITION 4.3. If <p: A(91) -> A(02) is a similarity mapping, then 
(p~l: A(92) —> A(0X) is also a similarity mapping. 

P r o o f . For any x,y G Ar, let <p(x) := a and (p(y) := b. Then tp~l(a±b) = 
x ± y = (p~l (a) ± (p~l (b). Clearly (p~l (02) = 0X, proving the proposition. D 

Let A be a /3-algebra and let 0 l 502 G N(X). Define 9X ~ 02 by A(61) 9* 
A(92). Then ~ is an equivalence relation on N(X). Let [0J := {0 G N(X) : 
9 ~ 9X} be an equivalence class of 91. Since 91 ± 02 = 91, the relation ~ 
is a congruence relation on AT(Ar). If N(X)/~ denotes the collection of all 
equivalence classes in N(X), then it follows that [0X] + [02] = [0J — [02] = [0J 
defines a left (5-algebra in a natural way. This algebra is a "measure" of the 
"dissimilarity" of the null elements of X. Thus we may consider N(X)/~ to be 
the dissimilarity algebra of A . 

PROPOSITION 4.4. Let As be a (3-algebra derived from a set S. Then the 
dissimilarity algebra N(As)/~ of As is the trivial ^-algebra. 

P r o o f . In As any bijection ip: S —> S has the property that (p(x + y) = 
(p(x - y) = ip(x) = ip(x) + tp(y) = ip(x) - tp(y). Since N(AS) = As, it follows 
that i4(0x) ^ A(02) for any 0 l 502 G -V(-45), whence N(As)/~ = {[9]} is the 
trivial /3-algebra. D 

THEOREM 4.5. Let X be a negative abelian (5-algebra. Then the dissimilarity 
algebra N(X)/~ is the trivial (3-algebra. 

P r o o f . It is easy to see that N(X) C I(X). Let 0 be a null element of Ar. 
For any x G I(Ar), x = x — 9 = 9 — x, since A is negative abelian. It follows 
that x = x + x=(9-x)±x = 9, proving that I(X) = {9}. This means that 
N(X)/~ = {[9]} , the trivial /3-algebra. D 

Let (A; +, - , 0) and (Y\ + , - , 0') be a /^-algebras. A mapping </?: A —> Y is 
said to be a /3 -homomorphism if tp(x + y) = (p(x) + ip(y), ip(x — y) = ip(x) — tp(y) 
for any x,y e X. 

EXAMPLE 4.6. Let X := {0,1,2, 3} be a set with the following tables: 

+ 0 1 2 3 - 0 1 2 3 

0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 

2 0 0 2 3 2 2 2 2 2 

3 3 3 3 3 3 3 3 3 3 
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Then ( X ; + , - , 0 ) is a /3-algebra and N(X) = {0 ,1} . If we define a map 
<p: X -> X by <p(0) = 1, <p(l) = 0, <p(2) = <p(Z) = 1, then <p is a /3-homo-
morphism of X . 

THEOREM 4.7. If <p: X —> Y is a (3-homomorphism of /3-algebras, then 
<p(N(X)) C N(Im<p) and (Im<p\+,-,<p(0)), 9 G N(X), is also a p-algebra. 

P r o o f . It is enough to show that <p(6) is a null element in Im <p for any 
0 G N(X). In fact, <p(0) - <p(x) = <p(9 - x) = <p(0) and <p(9) = <p((9 - x) + x) = 
(<p(0) - <p(x)) + <p(x) for any x G X, whence <p(9) G N(lm<p), and hence 
(Im <p; + , - , <p(0)) is a /?-algebra. D 

Let (/?: X -» y be a /?-homomorphism of /3-algebras. We define a set by 
(Ker <p)0 := (/?_1 ({</?(0)}), where 0 G -V(.X"), and call it the kernel of <p at 9. 

For example, (Ker<p)0 = {1} and (Ker<p)1 = {0} in Example 4.6. Observe 
that if xx,x2 G {Ker<p)Q, 0 G N(X), then <.£(£-_ — x2) = ^(a^) — <p(x2) = 0 — 0 = 0 
and <p(xl + x2) = <p(xx) + <^(x2) = (0 — 0) + 0 = 9. Hence xx ± x2 G (Ker<^)0. 
This means that (Ker^)^ is a /?-subalgebra of X, where 0 G N(X). 

5. Quotient /3-algebras 

Let <p: X —•> y be a /?-homomorphism of /5-algebras and x,y G Ar. Define 
an equivalence relation = on X by x = H ^=> (/?(x) = ^(2/)- Let [x] •= 
{y £ X : x = ?/} be an equivalence class of X and let .X/V •= {[XL : x £ ^ } • 
Define [x]^ + [y]^ := [x + ^ and [x]^-[y]^ := [x-y]^. Then (X/V; +, - , [0] j , 
0 G N(X), is a /?-algebra, called the quotient (3-algebra determined by <p. 

In fact, if [x]^ = [x']^ and [y]^ = [y\, then </?(x) = <p(x') and y>(j/) = 
<p(y'), and hence </?(x ± y) = <p(x) ± <p(y) = <p(x') ± <p(y') = </?(x' ± ?/)> i-e-> 
[x + y] = [x' + y'] and [x — y] = [x1 — y'] . Hence the operations are well-
defined. Checking three axioms for /3-algebra is elementary and we omit the 
proof. We summarize: 

THEOREM 5.1 . Let <p: X —> Y be a (3-homomorphism of P-algebras. If we 
define x = y <=> <p(x) = <p(y), x,y G X, then X/<p := {[x]^ : x G X} is a 
P-algebra, where [x] is the equivalence class of x. 

Obviously the map n: X —> X/<p defined by n(x) := [x]^, x G X, is a 
/3-homomorphism, called the canonical P-epimorphism. 

THEOREM 5.2. Let <p: X -± Y be a P-epimorphism of /?-algebras. Then there 
exists a P -isomorphism v: X/<p —> Y such that <p = v o IT . 
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P r o o f . Define a map v: X/<p -> Y by v([x]v) := ¥>(*)• T h en 1/ is a 
/?-homomorphism, since v([x]v±[y]v) = v([x±y]v) = <p(x±y) = <p(x)±<p(y) = 
v([x]v) ±v([y]v). Clearly, v is onto. Let [x]v,[y]v € X/ip with v([x]v) = 
v([y]v). Then <p(x) = <p(y) and hence x =v y, i.e., [x]v = [y]v- This means 
that X/<p £* F. For any x € X, (v o n)(x) = v(ir(x)) = v([x]v) = <p(x), i.e., 
v on = <p. D 

Let (X;+,-,9) and (Y;+,-,8') be /?-algebras and x € X. If a mapping 
<p: X —> y is a /3-homomorphism, then we denote by a; - (Ker</?)0 := {x - n : 
n € (Ker¥>)„}. 

PROPOSITION 5.3. If <p: X -> F . s o (3-homomorphism of /? -algebras and 
x <E X, then 

(i) .r - (Kernel.*],, ; 
(ii) [x]v= U ( * i " (Ker *>),); 

.ri6[.r]v, 
(iii) if (Xl - (Ker(p)e) n (x2 - (Ker(p)9) ?Q,xvx2eX, then [xj^ = [x2]^ . 

P r o o f . 
(i) Since (p(0) is a null element in Im^ by Theorem 4.7, for any x - n e 

x - (Ker(p)0, <p(x - n) = ^(x) -- < (̂n) = </?(x) - (p(0) = y?(x). This means that 
x - n = v a:, i.e., [x - n]^ = [x]^,. Hence x - n G [x]^. 

(ii) If follows immediately from (i). 

(iii) If (xx - (Ker(p)g) n (x2 - (Kenp)e) j : Q, xltx2 £ x, then x2 - nx = 
x2 — n2 for some nx,n2 G (Ker(p)e. It follows that <p(xx) = <p(xx) — (p(9) = 
^ i ) - ^ i ) = V(*i ~ n i ) = ^ (^ 2 - ^ 2 ) = V(x2)-(p(n2) = <^(x2)--^(0) = <^(x2) 
and hence [xj^ = [x^. D 

Let (/? be a /?-homomorphism on X and 0 G N(X). \\te construct a graph 
T((p) as follows: V = X is the set of vertices, and there j s a n e(jge between ver­
tices x and y, denoted by x <—• y, provided (x-(KeT V>)e) C\(y-(Ker (p)e) ^ 0, 
whence also [x]^ = [y]^. If there is a path x <—• Ul «—> u2 «—> . . . 
<—> un <—• y (n > 0) in T((p), it follows that [x]v ^ [y^m Hence, if (x)^ 
denotes the component of x in T((p), we obtain [x]<p = (J (y) . The chain of 

structures associated with </? is: 

{ x } C x - ( K e r ^ C ( x ) ^ C [ < . 

Indeed, if y G x - (Ker (p)e, then y - 0 G y-(Ker(p)0 so t^at y e (x - (Ker (p)d)n 
(y - ( K e r ^ ) , and y <—• x, i.e., y G (x)^. 
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PROPOSITION 5.4. Let ip: X -» Y be a /3-homomorphism of (3-algebras and 
let 9 G N(X), 9' G N(Y). If X is a group-derived (3-algebra and x G X, then 
x-(Kenp)e = [x]^. 

P r o o f . If y G [x]^, then <p(x) = <p(y). Since X is group-derived, 
ip(xy~l) = tp(y~~lx) ==- 9' and hence y = (xx~l)y = x(y~lx)~l = x — (y~~lx) G 
x - (Kenp)0. Thus [x]^ C x — (Kenp)e. By Proposition 5.3 we obtain [x]^ = 
x — (Kevip)e. • 

PROPOSITION 5.5. Letip: (K; +, - ,0 ) -> (Y; +, - , 9') be a (3-homomorphism 
of (3-algebras. If X is a left (3 -algebra, then: 

(i) hn<pCl(Y); 
(ii) (limp; +, -,ip(9)) is a left (3-algebra; 

(iii) if I(Y) = {#'}, ^en </? zs £/ie zero mapping. 

P r o o f . Straightforward. • 

6. N(X) and X* 

The set N(X) appears to be an important substructure of a /3-algebra X. 
We explore this idea a little further still. 

THEOREM 6.1. Let X be a (3-algebra and 015 02 G N(X). If 92 G (9X - X) n 
V(X) ; tten 0X = 0 2 . 

P r o o f . Since 92 € 9X — X, there exists x G l such that 92= 9X— x and 
02 + x = (0 1-x) + x = 01. It follows from (III) that 92 = 92-92 = (9x-x)-92 = 
9X — (92 + x) = 9X — 9X = 9X, completing the proof. D 

Of course 9X = 9X - 9X G (0X - X) PI -V(.K), we obtain the corollaries: 

COROLLARY 6.2. Let X be a (3-algebra and 9 G N(X). Then \(9 - X) D 
V(K) | = 1. 

COROLLARY 6.3. Let X be a (3 -algebra. If 9 - X = X for any 9 G N(X), 
then \N(X)\ = 1 and N(X) = {9}. 

Let A" be a /?-algebra. We define a set X* := \J (9 — X), and investigate 
oeN(x) 

some relations with N(X). Note that N(X) C X*. If u=9l-x,v=92-y G -X*, 
then u - 1 ; = (9l - x) - (02 - y) = 9X - ((02 - y) + x) G 0X - -K C X*, i.e., K* 
is a closed system with respect to —. Suppose now that we look for X* to be a 
closed system with respect to + as well. Thus, we need conditions: 

(VII) For any 9x-x,92-y G X, there exists 03 - z G X such that (91 - x) + 
(92-y) = 03 - z, where 0• G -V(K), i = 1,2,3, and x,y,ze X. 
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(VIII) For any x ,y G X, there exists z £ X such that x + y = x — z. 

Note that, since X = A(G) or X = As or X = A(G) x As satisfying (IV), 
they satisfy (VIII) also. If a /3-algebra X satisfies (VIII), then it satisfies (VII). 
Indeed, for any 91-x,92-y G X , where 0l,92 G N(X) and x,y G A", there 
exists a e X such that (0X - x) + (02 - y) = (0X - x) - a = 01 - (a + x). 

P R O B L E M S . 

1. Under which conditions on the (3 -algebra X are rules (VII) and (VIII) 
equivalent? 

2. If rule (VII) holds, then ( X * ; + , - , 0 ) is a /3-algebra. 

Let X be a /3-algebra. If X = X*, then x e X implies x = 0 — y for some 
0 G -V(X) and y G I . This means that x + y=(9-y) + y = 0, i.e., even/ 
element of X has an additive right inverse for certain null elements of N(X). 
Also, if X = X*, then (0X - x) + (82 - y) = w G X, where Hj = 03 - z G A'*, 
so that the condition (VII) holds. 

Let X be a /3-algebra. Note that N(X) C N(X*). We denote A** by 
IJ (0* — X*) . Then we have the following theorem: 

THEOREM 6.4. If X is a (3-algebra, then A** C A* and N(X*) C N(X**). 

P r o o f . If z G A**, then z = 9* - x for some 0* G JV(A*) and some 
x G A*. Since x G A*, there exists 0X G N(X) and y1 G X such that x = 
0[-y1. Moreover, 0* G N(X*) implies 0* = 02 - y2 for some 02 G iV(Ar) and 
y2 G A . Hence z = 9* - x = (02 - j/2) - (0X - Vl) = 92- ((9, - Vl) - y2) G A*, 
i.e., A** C A*. It follows immediately that jV(A*) C N(X**). U 

From Theorem 6.4 we construct a tower: 

N(X) C N(X*) C N(X**) C • • • C 7V(A*(i)) C jY(A*(?'+1)) C • • • 

with y/N(X) = \J N(X*^). Similarly we have a descending chain: 
г=0 

X DX* DX** D---D X*(i) D X*{i+1) D • • • 
W 

with X*(w) = f| A * ( i ) . Notice that if A is a finite /3-algebra, then we expect 
i=0 

that y/NjX) = N(X*M) for some i G Z and thus also that X*^w) = X*^l) 

according to the definition above. 

THEOREM 6.5. Let X be a /3-algebra and let 01 ? 02 G N(X). If u G (9X - X) 
C\(92- X), then 9l=92. 

P r o o f . Since u G (9X - A) D (02 - X ) , there exist x,H G A such that 
u = 9x— x = 92—y. Hence H — w = (0X — x) — (6l — x) = 9X — ((9X — x) + x) = 
0j — 0j = 9X. Similarly u — u = 02 , whence 9X= 92. • 
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COROLLARY 6.6. If X is a 0-algebra, then {9 — ̂ }eeN(X) ^s a Var^'on 

of X*. 

P r o o f . It follows from Theorem 6.5. D 

PROPOSITION 6.7. Let X be a (3-algebra. If X = X*, then x-x = 0 € N(X) 
for any x G l . 

P r o o f . If X = X*, then we know that every element x oi X has an 
additive right inverse for certain null elements of N(X), i.e., there exists 9 G 
N(X) and y G X such that x = 9 — y and x + y = 9. Hence x — x = (9 — y) — x = 
9-(x + y) = 9-9 = 9eN(X). D 

THEOREM 6.8. Let X be a (3 -algebra and let 91 G N(X). If 92 G (91 + X) 
C\N(X), then 9X=92. 

P r o o f . Since 92 G 9X + X, 92 = 9X + x for some x G X. Hence 9X = 
0l-92 = 9l- (9l + x) = (0X - x) - 9X = 9X - x. It follows that 92 = 9l+x = 
(#! - x) + x = 9X, proving the theorem. D 

We obtain the following corollaries from Theorem 6.8 and omit the proof. 

COROLLARY 6.9. Let X be a (3-algebra and let 9 G N(X). Then \(9 + X) n 
N(X)\ = 1. 

COROLLARY 6.10. Let X be a (3-algebra and let 9 G N(X). If 9 + X = X, 
then \N(X)\ = 1. 

PROPOSITION 6 .11 . Let X be a (3-algebra satisfying (VIII) and let 9X,92 G 
N(X) .lfue(01+ X) n (92 + X), then 91=02. 

P r o o f . Since u G (9X + X) D (92 + X), u = 91+x = 92+y for some 
x,y G X. Since X satisfies (VIII), 9X + x = 9X — p, 92 + y = 92 — q for some 
p,q G X. Hence u = 9X - p = 92 - q G (6l - X) n (02 - X). By Theorem 6.5, 
0 X = 6>2 . D 

PROPOSITION 6.12. Let X be a j3-algebra satisfying (VIII) and let 9,9' G 
N(X). Then 

(i) 9 + X = 9-X; 
(ii) if 9^9', then (9 + X) n (^ + X) = 0. 

P r o o f . It follows immediately from (VIII) and Theorem 6.5. D 

PROPOSITION 6.13. Let X be a (3-algebra satisfying (VIII) and let X° := 
U(9 + X). Then (9 - X) n X° = 9 + X for any 9 G N(X). 

eeN(x) 

529 



J. NEGGERS — HEE SIK KIM 

P r o o f . By (VIII) it is clear that 9 + X C (0-X)nX°. If a G {0-X)CiX°, 
then a G 0 - X and a G 0' + X for some 6' G N(X). By Proposition 6.12(i), 
a E (0 - X)Pi (01 - X). It follows immediately from Theorem 6.5 that 9 = 0; 

and hence a £ 0 -f .K. • 
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