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(Communicated by Miloslav Duchoň) 

ABSTRACT. Using suitable fiberings, we calculate the height of the first Stiefel-
Whitney class of any nonorientable real flag manifold 0(nx H h nq)IO(n{) x 
•••xO(nq). 

1. Introduction 

Let nx,..., nq (q > 2) be fixed positive integers, and let F(nx,..., nq) be the 
real flag manifold consisting of all ^-tuples ( 5 ^ . . . , S ) of mutually orthogonal 
vector subspaces in Rn , where n = nx + ••• + nq and d im(5J = n-. As a 
homogeneous space, we have 

F(n1,...,ng)^0(n)/0(n1)x...xO(ng). 

In particular, F(nl,n2) is the Grassmann manifold of all n x-dimensional vector 
subspaces in E n . 

Over the manifold F ( n 1 , . . . , n ), there are q canonical vector bundles 
7 1 , . . - , 7 g with d i m ( 7 j = n{. They are characterized by the fact that the 
fiber of 7 i over ( S ^ , . . . , Sq) G - F ( n 1 , . . . , nq) is the vector space S{. The direct 

sum 0 7^ is the trivial n-dimensional vector bundle. 
i=i 

By K o r b a s [3], the manifold F(nl,...,n ) is nonorientable, hence has its 
first Stiefel-Whitney class wx(F(nly... ,nq)) G Hl(F(n1)... , n g ) ; Z 2 ) non-zero, 
precisely when not all of the numbers nx,...,n have the same parity. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 57R19; Secondary 57R20, 57T15. 
Keywords : height of cohomology class, Stiefel-Whitney class, real flag manifold. 

91 



JURAJ LORINC 

In 2000, I l o r i and A j a y i [2] calculated the height of w1(F(n1)... ,nq)) 
(denoted height(F(nx,...,nq))) for some of those flag manifolds F(nx,..., nq) 
which are nonorientable. (Recall that height (F(n l 5 . . . , n )) is the largest c such 
that iD1(F(n1,... ,n )) £ H*(F(n1,... ,n ); Z2) does not vanish.) Their result 
is the following. 

q-l 

PROPOSITION 1.1. ( I l o r i , A j a y i [2]) Suppose that \\ ni is odd, n-k is 
2 = 1 

q-l 

even, where k = __ n{, and 4 < 2k < n with 2s < n < 2 5 + 1 . Then 
i=i 

( 25+1 - 2 if k = 2 or 
height(w1(F(n1,...,nq_1,n-k))) = I if k = 3 and n = 2s + 1, 

^ 25+1 — 1 otherwise. 

Our aim here is to show that a slight modification of the approach used by 
I l o r i and A j a y i leads in fact to the following complete result covering the 
height of the first Stiefel-Whitney class of any nonorientable real flag manifold. 

THEOREM 1.2. Let F (n 1 , . . . , n ), for q>2, be any nonorientable real flag 
manifold; hence not all of nx,..., n have the same parity. Letting p be the 
sum of all even numbers among n 1 ? . . . ,n . put k = min{p,n— p] . If s is the 
uniquely determined integer such that 2s < n < 2S+1. then we have 

n — 1 if k = 1, 

25 + 1 -2 if k = 2 or 
if k = 3 and n = 2s + 1, 

25+1 — 1 otherwise. 

h e i g h t ^ {F(n1,...1n))) = 

The knowledge of height(F(n1,... , n ) ) is useful for several reasons. For 
instance, I l o r i and A j a y i [2] show how it can be used for deriving a re
sult on immersions of real flag manifolds in Riemannian manifolds. Of course, 
height (F(nx,..,, n )) also gives a lower bound for the cup-length. Results of our 
study of the cup-length for real flag manifolds will be postponed to a forthcoming 
paper [4]. 

2. Proof of Theorem 1.2 

We intend to make the proof of Theorem 1.2 as selfcontained as possible. 
Let w^jj) be the zth Stiefel-Whitney class of the canonical vector bundle 

7- over F(nx,... ,n ). Then according to B o r e l [1; Theorem 11.1], we have 

H*(F(nv. • • ,n,);Z2) 3 Z 2 K ( 7 l ) , • • • ,™ni(7i), • • • ,™i(7g), • • •,«>,.,(7,)]/-", 
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where the ideal I is given by the identity 

q 

H(l + w1(lj) + .-- + wn.(lj)) = l. 
3 = 1 

Let a be any permutation of the set { 1 , . . . , q}. The map a: F(nx,..., nq) —•> 
f K ( i ) » - » n a ( g ) ) given by a(Sv...,Sq) = {Sa(1),...,Sa{q)) is a diffeomor-
phism. Thus we may and shall suppose that there is t £ { 1 , . . . , q} such that 
nx,..., nt are odd, and nt+1,..., nq are even. Then the map 

7T: F(nx , . . . , n f l ) 4 F(nx,..., nvnt+1 + • • • + nq), 

n(S1,..., Sq) = (Sx,..., St,St+1 0 • • • 0 Sq), 

defines a smooth fiber bundle (cf. [5; 7.4]) with fiber F(nt+1,..., n ) . We obvi
ously have 7 i = n*^) for i = 1 , . . . , t. 

For the inclusion of the fiber, i: F(nt+1,..., n ) M* PXnj,..., nq), one has 
7- = i*(lj), i = * + 1J • • •, q, and the classes 

^ m ( 7 j ) = * * ( ^ m ( 7 j ) ) f o r J = « + 1 , . . . , 9 , m - r - l , . . . , ^ . 

generate H* ( F ( n t + 1 , . . . , n^)) as a vector space over Z 2 . Choosing an appropri
ate basis we see that the assumptions of the Leray-Hirsch theorem (see, e.g. [7]) 
are satisfied. This implies that 7r* is a monomorphism. 

Prom the K o r b a s formula ([3; Theorem 1.1]) for the first Stiefel-Whitney 
class of F(nx,..., nq), we obtain 

K*{w1(F(nv...,nvnt+1 + -> + nq)) 

= ^ * K ( 7 i ) + --- + w;1(7t)) 

= ^ K ( 7 i ) ) + --- + 7r*(ti;1(7t)) (2) 

= w1(-y1) + ... + w1('yt) 

= w1(F(nli ...,nq)). 

It is needed to analyse two cases. 
Case of k = 1: 

Now certainly nx = 1 and n 2 , . . . , nq are even, hence t = 1. The relevant fiber 
bundle (see (1)) is now 

7T: F ( l , n 2 > . . . , ng) -> F(l, n2 + • • • + nq); 

its base is the (nonorientable) (n-1)-dimensional real projective space F ( l , n2 + 
• • • + n ) = R P n _ 1 . As it is well known 

' 

height K(RP«-i ) ) = „ _ ! , 
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and by (2), n* (w^RP71"1)) = wx (F( l ,n 2 , . . . ,n )). Since n* is a ring mono-
morphism, we have 

0 -.. TT* K - 1 (RE""1)) = < - J (F(l, n2,..., n,)), 

while 
0 = 7 r * « ( l R P " - 1 ) ) = < ( F ( l , n 2 , . . . , n ( 7 ) ) . 

This proves the theorem in case of k = 1. 
Case of k>2: 

From (2) and the fact that -IT* is a monomorphism, we know that w\(F(n1,... 
. . . ,ng)) = 0 if and only if ^ ( F ^ , . . . ,nvnt+1 + • • • + n )) = 0. Therefore 
the height of wx (F(nx,..., nv n t + 1 + • • • + ng)) is the same as the height of 
^(FX^, . . . ,^ ) ) . 

We know that now wx (F(n1,..., n t, nt+1 + • • • + n )) / 0. Further consider 
the fiber bundle 

p: F(nx,..., nv n t + 1 + • • • + nq) -> F(nx + • • • + nv nt+1 + • • • + nq), 

P(S\,... ,S t + 1) = (ox © • • • © St, Sj+ 1) , 

with fiber F(nx,..., n t ) . Of course, its base space is nothing but the Grassmann 
manifold F(n—p,p). In addition to this, the K o rb as formula (cf. [3]) yields 

wx (F(nx,..., nv nt+1 + • • • + nq)) =w1('y1) +---+ wx (%) 

= w1(-y1®---®nrt) 

= TT*(K;1(71)) 

= 7r*K(72))-

Note that for the Grassmann manifolds the Whitney sum of their two canon
ical vector bundles is trivial, hence their first Stiefel-Whitney classes coincide. 
The Leray-Hirsch theorem now again applies, and it implies that the height of 
wx (F(n1,... ,nvnt+1-\ ^n

q)) coincides with the height of w2(7i) = ^i(72) € 
H*(F(n-pyp)) (7X is the (n-p)-plane bundle over F(n-p,p)). But the height 
of w1(

fy1) = w1(
r)2) e H*(F(n—p,p)) is known (S t ong [6]): 

heighЦгD^)) = 

n — 1 if k = 1, 

2S+1 - 2 if k = 2 or 
if A; = 3 and n = 2 s + 1, 

2 S + 1 — 1 otherwise. 

This completes the proof of Theorem 1.2. 
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