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OSCILLATION CRITERIA OF THIRD-ORDER 
NONLINEAR DELAY DIFFERENTIAL EQUATIONS 

SAMIR H. SAKER 

(Communicated by Michal Feckan ) 

ABSTRACT. In this paper, we consider a certain class of third order nonlinear 
delay differential equations. By means of the Riccati transformation techniques 
we establish some new criteria and also Kamenev-type criteria which insure tha t 
every solution oscillates or converges to zero. Some examples are considered to 
illustrate our main results. 

1. Introduction 

In recent years, the oscillation theory and asymptotic behavior of differential 
equations and their applications have been and still are receiving intensive atten­
tion. In fact, in the last few years several monographs and hundreds of research 
papers have been written, see for example the monographs [1], [2], [6]. [8], [9]. 

In particular case, determining oscillation criteria for second order differential 
equations has received a great deal of attention in the last few years, for some 
contributions we refer to the [17] and the references cited therein. 

Compared to the second order differential equations, the study of oscillation 
and asymptotic behavior of the third order differential equations has received 
considerably less attention in the literature. Some recent results on the third 
order differential equations can be found in [3], [4], [5], [10]-[15], [18], [19]. 

Most of the results of oscillation of the third order differential equations are 
written on the equations of the forms 

y'"(t) + a(t)y"(t) + b(t)y'(t) + c(t)y(g(t)) = 0 , 

y"'(t) + b(t)y'(t) + c(t)y(g(t))=0, 

under some restrictive conditions on the functions a, b, c and g. The oscillation 
results are established by the general means and reducing the equations to the 
second order equations. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 34K11, 34C10. 
K e y w o r d s : oscillation, third order delay differential equation, Kamenev-type criteria. 
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In this paper, by using the Riccati transformation technique which is different 
from that used in the above mentioned papers, we study the oscillation behavior 
of the self-adjoint nonlinear delay differential equation 

(c(t)(a(t)x'(t))')' + q(t)f(x(t-a))=0, t > t0, (1.1) 

where a is a nonnegative real number, the functions c(t), a(t), q(t) and the 
function / satisfy the following conditions: 

(hi) c(t), a(t) and q(t) are positive continuous functions and 
0 0 0 0 

dt= / —— dí = 
J <t) J a(t) 

00: 
a(t) 

to to 

(h2) / e C(R, R) such that uf(u) > 0 for u + 0 and f(u)/u ^ K > 0. 
Our attention is restricted to those solutions of (1.1) which exist on some 

half line [tx,oc) and satisfy sup{|rr;(£)| : t > T] > 0 for any T > tx. We 
make a standing hypothesis that (1.1) does possess such solutions. A solution 
of (1.1) is said to be oscillatory if it has arbitrarily large zeros; otherwise it 
is nonosdilatory. The equation itself is called oscillatory if all its solutions are 
oscillatory. 

For the oscillation of second-order differential equation 

x"(t) + q(t)x(t) = 0, t>t0, (1.2) 

it is known that, due to K a m e n e v [7], the average function Ax(t) defined by 

t 

Ax(t) = ^ J(t-s)xq(s)ds, A > 1 , 

to 

plays a crucial role in the oscillation of equation (1.2). He proved that every 
solution of (1.2) oscillates if 

lim AM) = oo. (1.3) 
t-»oo 

Since K a m e n e v have established the condition (1.3), many authors considered 
some different types of second order differential equations and established some 
sufficient conditions for oscillations which extended and improved (1.3). For 
instance, P h i 1 o s [16] improves K a m e n e v ' s result by proving the following: 

Suppose there exist continuous functions if, h : D := {(£, s) : t > s > t0 } -» R 
such that 

(i) H(t,t) = 0, t>t0, 
(ii) H(t, s) > 0, t > s > tQ, and H has a continuous and nonpositive partial 

derivative on D with respect to the second variable and satisfies 

-^^=h(t,s)^WM>0. (1.4) 
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F u r t h e r , suppose t h a t 

lim —— / 
t - + ° ° t f ( ť , t 0 ) 1 

H(t, s)q(s) - jгh2(t, s)\ ds = oc . (1.5) 

Then every solution of equation (1.2) oscillates. 

Our aim in this paper is, by using the Riccati transformation techniques, 
to establish some new sufficient conditions which insure that every solution of 
equation (1.1) oscillates or converges to zero. Our results are different from 
those in [3], [4], [5], [10] [15], [18], [19]. The paper is organized as follows: In 
Section 2, we shall present some lemmas which are useful in the proof of our 
main results. In Section 3, we establish sufficient condition and also conditions 
of Kamenev-type (1.3) and Philos-type (1.5) for oscillation of equation (1.1). In 
Section 4, some examples are considered to illustrate our main results. 

2. Some preliminary lemmas 

In this section we state and prove some lemmas, which we will use in the 
proof of our main results. We begin with the following lemma: 

LEMMA 2.1. Assume that (hi) and (h2) hold. Let x(t) is an eventually posi­
tive solution of (1.1). Then there are only the following two cases for t ^ tx 

sufficiently large: 

Case (I): x(t) > 0 , x'(t) > 0 , (a(t)x*(t))' > 0 . 

Case (II): x(t) > 0 , x'(t) < 0 , (a(t)xf(t))' > 0 . 

P r o o f . Let x(t) be an eventually positive solution of (1.1). Then there 

exists a t 1 ^ t0 such that x(t — a) > 0 for t ^ tY. From (1.1) we have 

(c(t)(a(t)x'(t)) ) < 0 for t ^ tx. Now, we prove that x'(t) is monotone and 

eventually of one sign. We assume that this is not true and let x'(t) = 0 for 

t>t1. Now, since q(t) is a positive real-valued function, we may let t2 > tx so 

that q(t2) > 0. Then in view of (1.1), we have 

0 = (c(t2){a(t2)x'(t2))')' + q(t2)f{x(t2 - a)) = q(t2)f(x(t2 - a)) > 0, 

which is a contradiction. 

We claim that there is t2 ^ tx such that for t ^ t2, (a(t)x'(t)) > 0. 

Suppose to the contrary that (a(t)xf(t)) < 0 for t ^ t2. Since c(t) > 0 and 

c(t)(a(t)x'(t)) is nonincreasing, there exists a negative constant C and t3 ^> t2 
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such that c(t)(a(t)x'(t)) < C for t ^ t3. Dividing by c(t) and integrating from 
t3 to t, we obtain 

ľ ds 
a(t)x'(t)<a(t3)x'(t3) + C J — . 

tз 

Letting t —> oo, then a(t)x'(t) -> —oo by (hi). Thus, there is an integer t 4 ^ i3 

such that for t ^ t 4 , a(t)x'(t) < a(tA)x'(t4) < 0. Dividing by a(t) and integrat­
ing from t4 to £ we obtain 

ds 
î ( ř ) - a г ( í 4 ) < a ( í 4 У ( * 4 ) / ^ y 0 0 ' 

which implies that #(£) —> —oo as £ -> oo by (hi), a contradiction with the fact 
that x(t) > 0. Then (a(t)x'(t))' > 0. The proof is complete. • 

LEMMA 2.2. Assume that (hi) and (h2) hold. Let x(t) be an eventually positive 
solution of (1.1) ana7 suppose that Case (I) of Lemma 2.1 holds. Then there exists 
tx ^ t0 sufficiently large such that 

x\t-a)^Kt
a~t

aJC^{a(t)x'{t))' for t>tx, (2.1 

where 6(t) = J - ^ 
to 

P r o o f . From Case (I) of Lemma 2.1 and equation (1.1) we have for t ^ t{ 

a(t)x'(t) > 0, c(t)(a(t)x'(t))' > 0 and (c(£)(a(')x'(£))/)/ < 0. 

Since 

t 

j (a(s)x'(s))' ds = a(t)x'(t) - ait^x'^), 

ti 

for t ^ tx we have 

a(t)x'(t) = aitjx'itj + / C ^ H a ( ^ ( ^ ) ) d 5 ^ c(/)5(t)(a(t)x /(0) / • (2.2) 

tl 

Since (c(^)(a(t)x'(t))/)/ < 0, we get 

c(t - a)(a(t - cr)x'(t - a))' ^ c(t)(a(t)x'(t))'. 
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This and (2.2) imply that for t ^ t2 = t_ + a sufficiently large 

a(t - a)x'(t - a) ^ c(t - a)S(t - a)(a(t - a)x'(t - a))' 

^c(t)S(t-a)(a(t)x'(t))', 

and then we obtain 

a(t-a)x'(t-a) ^ c(t)S(t - a)(a(t)x'(t))', £ ^ £_ = 1X + a, 

and this leads to (2.1). The proof is complete. • 

3. Main oscillation results 

In this section we establish some sufficient conditions which guarantee that 
every solution x(t) of (1.1) oscillates. We start with the following theorem: 

THEOREM 3 .1 . Assume that (hl)-(h2) hold and 
t oo oo 

(h3) l i m s u p / ^ / ^ / g ( r ) d r d u d s = oo. 
t->00 t0 8 8 

Furthermore, assume that there exists a positive function p E C1 ([£0, oo), R+) 
such that 

t .2 

limsup / (Kp(s)q(s) - \ , {c, r^ ds = oo . (3.1) 
t-»oo J \ 4p(s^'~ -^ 

to 

Then every solution of (1.1) is oscillatory. 

P r o o f . Let x(t) be a nonoscillatory solution of (1.1). Without loss of gen­
erality we may assume that x(t) > 0 and x(t — a) > 0 for t ^ tx where t1 is 
chosen so large that Lemma 2. L and Lemma 2.3 hold. We shall consider only 
this case, because the proof when x(t) < 0 is similar. According to Lemma 2.1 
there are two possible cases. 
Case (I): x'(t) > 0 for t > tx > t0. 
In this case, we define the function w(t) by 

c(_______i__ 
«>(*) = P(*) \ t _ as > * > * i - (3-2) 

Then by (1.1) and Lemma 2.2, we have 

«•(.) < - W W + £$«.) - J ^ y ^ f O • (3-3) 
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Thus 

w'(t) < -Kp(t)q(t) + 
(p'(t)үa(t-a) 

Ap(t)å(t - a) 

S(t-<r) p'(t) \p(t)a(t-a) 
- . 2 

and hence 

w 

p(ť)a(t — a) 

(t)<-(кP(t)q(t) 

2p(t)У ő(t-a) 

(p'(t)fa(t-a) 
Џ(t)5(t - a) 

(3-4) 

Integrating (3.5), we have, for t > t 2 ' 

t2 

(3.5) 

(3-6) 

Letting t —r oo, in view of (3.1), we have w(t) -» — oo, a contradiction. 

Case (II): x'(t) < 0 for t > tx > t0. 
This implies that x(t) is positive and decreasing function. Integrating equa­
tion (1.1) from t1 to t (t>t1) we obtain 

t 

c(t)(a(t)x'(t))' - c(t1)(a(t1)x'(t1)y + K f q(s)x(s - a) ds < 0 . 

t i 

From Lemma 2.1, since c(t)(a(t)x'(t)) > 0 and decreasing, we have 

oo 

-c(t1)(a(t1)x'(t1))f + K / q(r)x(r-a) dr < 0 . 

This implies that 
oo 

-(a(t)x'(t))' + K^jq(T)x(T-a)dT<0. 
t 

Integrating again from t to oo, using x'(t) < 0, we have 

oc oo 

a(t)x'(t) +K I -—- / q(r)x(r - a) dr du < 0, 
J c(u) J 

so that 
oo oo 

ť(ť) + K-^-r I - ^ - í q(т)x(т - a) d r du < 0 . 
a(ŕ) J c(H) J 
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Integrating from t1 to t, we obtain 

t oo oo 

x(t) - x(L)+K I — T / — - / q(T)x(T - a) d r d u d s < 0. 
J a(s) J c(u) J 
t\ S U 

Hence, using the fact that x(t) is decreasing, we have 

t oo oo 

x(u) - x(L ) + Kx(t,) / —-- / -r— / q(r) d r du ds < 0 . 
J a(s) J c(u) J 

t\ s u 

t t oo 

K^(U ) / -TT / -TT / <1(T) d ^ d ^ d ^ < -X(t) + X(L ) < X(L ) . 
J a(s) J c(u) J 

This implies that 

t 00 00 

/ T T / T T / 4(T) dTduds < — , J a(s) J c(u) J K 

which contradicts (h3). The proof is complete. D 

Next, we present some new oscillation results for equation (1.1), by using 
integral averages condition of Kamenev-type. 

THEOREM 3.2. Let all the assumptions of Theorem 3.1 hold except the condi­
tion (3.1). which is changed to 

lim sup 
ť—юo ? / < - Kp(s)q(s) 

(p'(s)fa(s-a) 

4p(s)ő(s - a) 
ds — 00. (3.7) 

Then every solution x(t) of (1.1) is oscillatory. 

P r o o f . Proceeding as in the proof of Theorem 3.1, we assume that equa­
tion (1.1) has a nonoscillatory solution, say x(t) > 0 and x(t — a) > 0 for all 
t > t1 where tx is chosen so large that Lemma 2.1 and Lemma 2.3 hold and 
there are two possible cases. 

If the Case (I) holds, then by defining again w(t) by (3.2) as in Theorem 3.1, 
we have w(t) > 0 and (3.5) holds. From (3.5) we have for t>t1 

1 

j(t-sT 
Kp(s)q(s) 

(p'(s))2a(s-a) 

Ąp(s)S(s - a) 

t 

ds< - í(t-s)nw'(s) ds. (3. 
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Since 

t t 

í(t - s)nw'(s) ds = n í(t - s)n-1ii>00 ds - w(tx)(t - tг) (3.9) 

t i t 0 

we get 

t 

t 

where 

Hence 

l- j(t - s)nQ(s) ds < w(tx) ( - - A ) " - £ / ( * - sГ-iw(s) ds , (3. 10) 

Then 

n<\ K <\<\ {p'^)f^-°) 
Q(s) ~ Kp(s)q(s) - M s ) 6 { s _ a ) • 

1 f(t - s)nQ(s) ds < w(tx) (f-^) U • (3.H) 
t i 

t 

lim sup — / (t - s)nQ(s) ds -» w(tx), 
t->-oo £ n J 

t i 

which contradicts the condition (3.7). 
If the Case (II) holds, we come back to the proof of the second part of 

Theorem 3.1 and hence it is omitted. The proof is complete. • 

Next, we present some new oscillation results for equation (1.1) by using 
integral averages condition of Philos-type. Following P h i 1 o s [16], we introduce 
a class of functions 5t\ Let 

D0 = {(*,s): t>s>t0} and D = {(£,s): t > s > t0} . 

The function H £ C(D,IR) is said to belong to the class 3ft if 

(i) H(t, t) = 0 for t > t0; H(t, s) > 0 for (t, s ) G D 0 ; 
(ii) H has a continuous and nonpositive partial derivative on D0 with re­

spect to the second variable such that 

dH(t,s) 
h(tfs)y/H(t,s) for all (t, s) € D0 . 
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THEOREM 3.3. Assume that (hi) (h3) hold. Furthermore, assume that there 
exist functions p £ C1 ([_0, oo), IR+) and H £ 3ft such that 

lim sup 

where 

^ / g ( M ) ( - T p ( « ) ^ ^ ds = oo, (3.12) 

Q(t,з) = 

4ő(s - a) 

h(t,s) p'(s) 
VW^s) p(s) ' 

_7.en every solution x(t) of (1.1) is oscillatory. 

(3.13) 

P r o o f . Let x be a nonoscillatory solution of (1.1). Let us first assume that 
x is eventually positive and that __(_)> 0 and x(t — a) > 0 for t > tx. The case 
where x is eventually negative is dealt with similarly and is omitted. As in the 
proof of Lemma 2.1 there are two possible cases. 

Let the Case (I) hold: Again, defining w(t) as in (3.1), we obtain (3.3). Let 
us denote 

P'(S) . . „ „ „ _ . _ S(s-a) 7(_) = 
P(s) 

and W(s) p(s)a(s — a) 

Then from (3.3), we get 

í H(t,s)Kp(s)q(s) ds 
ti 

t 

< íH(ťs)[-w'(s)+7(s)w{s)-W(s)w2(s)] ds 
ti 

t 

= -H(t,s)w(s)^ + í í—^w(s) ^ H(ťs)[1(s)w(s) -W(s)w2(s)} ds 
ti 

t 

= H(t, tx )w(t1) - j [VH(ť s) (h(ť s) - y/H(t, 5)7(5)) w(s) 

+ H(t,s)W(s)w2(s) 
2 

ds 

= # ( * , _ . ) _ ( . , ) - | V ^ ^ W Ҷ s M s ^ + i - ^ M + _ _ _ Љ + 4łT(s) 

(3.14) 
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It follows that 

t 

KH(t,s)p(s)q(s) 
Q2(t,s) 
4W(s) 

j „ • < « ; ( * , ) . (3.15) 

This contradicts (3.12). 

If the Case (II) holds, we come back to the proof of the second part of 
Theorem 3.1 and hence it is omitted. The proof is complete. • 

The following two results provide alternative oscillation criteria when (3.12) 
is difficult to verify. In these results, we make use of the techniques of Y a n [20], 
[21]. The notations of Theorem 3.3 and its proof will be used. 

THEOREM 3.4. Let all the assumptions, except (3.12), of Theorem 3.3 hold. 
Further, let 

0 < inf 
s>t0 

lim inf 
H(t,s) 

and 
i-oo tf(Mo) 

t 

ЩІ 

< 00 . 

limsup / ------- ds < oo. 
ż->oo i-Ҷ£, £0J 

to 
W(s) 

(З.lб) 

(3.17) 

Let ip G C([t0 oo), JR.) such that for t>t0, 

t 

•/• 
limsup / ф+(s)W(s) ds = oo. 

t—>-oo 
to 

(3.18) 

where ip+(t) = max{^(i), 0} . and 

t 

l i m s u P HTTTT / [*#(*,*)/»(*)</(*; °2 ( i 'S 

t^oo H(t,t0) J . 
4IV(s) 

dő > sup ìp(t). (3.19) 
t>to 

Then every solution x(t) of (l.l) is oscillatory. 

P r o o f . As in the proof of Theorem 3.3, we have (3.14). It follows that 

Q2(t,sy 
limsup 

ť-юo Л{t t,*l) J 
KH(t,s)p(s)q(s) 

4W(s) 
ds 

í г 

^^-^нҺГ)! VH(t,s)W(s)W(s) + ^ L ds. 
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By (3.19), it follows that 

t r-

w(Ч) > Ф(h) + l i m i n f — i — / y/H(t,s)W(s)w(s) + - % ^ = 
t-юo nџ.t^) J 2ҳfЂ (sy 

and hence 

t r-

0 < lim inf — ^ [ y/H(tis)W(s)w(s) + ^ ^ = 
t->oo H(t,tx) J 2yJW(s) 

t i 

< iy(t-_) - ^ ( t j < oo. 

Define the functions a and /3 by 

t 

«(*) = Jj~-)jH(t,s)W(s)w2(s) ds, 
t l 

t 

/?(*) = J j ^ J \/H&8)Q(t, s)w(s) ds . 

t i 

Then, it follows from (3.21) that 

lim inf [a(*) + (3(t)] < oc . 
t—>oo L 

NOWT we claim that 
oo 

/ W(s)w2(s) ds < oo. 

t i 

Suppose to the contrary that 

da 

oo 

íw(s)w2( s) ds = oo . 

By (3.16), there is a positive constant C such that 

H(t,s 
inf 

5 > t 0 

liminf T T / ť->oo H(t,tQ) >C-

d s , 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3-24) 

(3.25) 

(3.26) 

Let fi be an arbitrary positive number, then by (3.25) there exists t2 > tx such 
that 

íw(s)w2( s) ds > j , t>t2, 
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and therefore, for t > t2, 

a(t) 

l 

н(t,tx)J • 
í i 

í 

нЩ)J 
ti 

t 

ЩJ ~ 

ds 
(u)w (u) du 

дH(t, s) 

дs 

H(t 

>--- l 

дH(t, s) 

~~дs 

Jw( 
S 

f W(u)w2(u) du 

s 

fw(u)w2(u) du 
í i 

ds 

ds 

(H(t,t п/-
дH(t,з) , uH(t,t9 

ds — — -дs CH(t,t,)-

By (3.26), there exists £3 > t2 such that 

tf(M2) >C: í > ť 3 . 

(3.27) 

H(t,tx) 

This implies that a(t) > fi for all t > t3. As lx is arbitrary, we have 

lim a(t) -= oc. 
t—>-oo 

The reminder of the proof of this case is similar to that of the proof of [17; 
Theorem 5.2] and hence is omitted. 

If the Case (II) holds, we came back to the proof of the second part of 
Theorem 3.1 and hence it is omitted. The the proof is complete. • 

THEOREM 3.5. Let all the assumptions of Theorem 3.4 hold except the condi­
tion (3.17) ; which is changed to 

t 

lim sup TTf
l
tt J H(t, s)p(s)q(s) ds < oc . (3.28) 

н(t, 
ío 

Then every solution x(t) Of (1.1) is oscillatory or x(t) -> 0 as t -» oc. 

The proof of Theorem 3.5 is similar to that of Theorem 3.4 and hence it is 
omitted. 

R e m a r k 3 .1 . For the choice H(t,s) = (t - s)n and h(t,s) = n(t - s)^'2^2, 
the Philos-type condition reduces to the Kamenev-type condition. Other choices 
of H include 

H(t,s)=(\n±)n, h(t,3) = 2(\ní)' 

and 
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(n-2 )/2 
H(t,s) = ( e ' - e 5 ) " , h{t,s) =nes(et-es) 

or more generally, 

H(t •s}=\lw) h(t,s) 

t v n / 2 - 1 
n i f áu \ I 0(s)\J 0(u) 

N s ' x s 

where n > 1 is an integer, and 0 G C([t 0 , oo) ,R + ) satisfies 

lim / —— — 00 . J ť-+oo / #(lť 
ťo 

4 . E x a m p l e s 

In this section, we give several examples to illustrate our main results. 

E X A M P L E 4.1. Consider the third order nonlinear delay differential equation 

(Kln7 x ' ) ) + ^ x ( ^ - 1 ) ( 1 + : E 2 ( ^ - 1 ) ) = 0 f o r *>!» ( 4 1 ) 

where a > 1. Here c(t) = t, a(t) = ^--, r/(t) = t a and f(u) = H(l + u2) > u 
t 

with K = 1. From this we have J(t) = / ^ y ds = I n t . It is clear that the 
1 

conditions (hl)-(h3) are satisfied. It remains to satisfy the condition (3.1). Now, 
by choosing p(t) —t we have 

ť 

limsup / ( Kp(s)q(s) — 
ť->oo / V 

(p'(s))2a(s-a) 

Ąp(s)ő(s - a) 
ds 

= limsup 
ť—Уoo 

t 

/ 

> limsup / 
ť—УOO J 

1 

/-a+1 

t a + 1 -

4 t ( l n ( t - l ) ) 

1 

dз 

4t( lnt) 2 ds = 00. 

Consequently condition (3.1) is satisfied. Hence, by Theorem 3.1, every solution 
of equation (4.1) oscillates or converges to zero. 
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EXAMPLE 4.2. Consider the third order nonlinear delay differential equation 

((t + I ) " V ) " + tx (\2~™st + ( 2 + a n ^ ( j - 1) (1 + x2(t - 1)) = 0 

foг Í > 1 . 
(4.2) 

where 7 and A are positive constants. Here c(t) = 1, a(t) = (t + 1) 7 , g(£) = 
r:A (\2=f*± + sin2 *) and f(u) = u(l + u2)>u with K = 1. Then, for any £ > 1 
we have 

00 00 t 

—- ds = 00 , / —— ds = 00 , 
c(s) J a(s) 

00 

/ 
ő(t) = / -j- ds = ť - 1. (4.3) 

j Ф ) 

Also, 

f q(s) ds = Jsx(A2~^0SS + (2 + sins)) ds 

to to 

{,(> > sx Л 2 — cos 5 + sin s J ds 

to (4.4) 
1 

ľ d[s л (2-coss)] 

to 

= tx(2-cost) - ( 2 - c o s l ) 

> tx — K0 —> 00 as £ —r 00 . 

From (4.3) and (4.4) we see that (hl)-(h3) hold. To apply Theorem 3.3, it 
remains to satisfy the condition (3.12). Taking H(t,s) = (t — s)2 , p(t) = 1 for 
t > s > 1, we have 

(t-s)2 

(t-sУq(s)-
sт(s-2)_ 

1 

= i | 2(t-s)(j q(u)du\ 

1 - Mo ' 

> ^ y 2(t-*)í Jq(u)du) 
1 - Mo ' 

ť / s \ * 

= ^ / 2(í - s) ( / g(w) du j ds - 4 / [ í 2 s - ( 7 + 1 ) - 2ís" 7 + s" 7 + 1 ] d* 
1 M 0 ' 1 

ds 

( í - * ) 2 

s т ( s - 2 ) 

( l - * ) 2 

S 7 + 1 
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t t 

> 1 1 (t - s) (sx - K0) ds-^l [t 2s-( 7 + 1) - 2ts~i + s~7+1] c\s 

2ť K l K2 rs 
+ --г + — - Kn (Л + l)(Л + 2) ť t 

1 
ť 

ť 2í 
+ 

1 
7S 7 ( - 7 + l ) 5 7 _ 1 ( - ^ + ^ ^ s т - 2 ] ^ 

2ť K Kn „ 1 2 #1 I т, 1 
(Л + l)(Л + 2) ť2 t ° 7Í 7 (-7 + 1)*7 (-7 + 2)í7 + KЛ, 

where Ki, i — 0,1,2, 3, are constants. Consequently, condition (3.12) is satisfied. 
Hence, every solution of equation (4.2) oscillates or converges to zero. 

E X A M P L E 4.3. Consider the third order nonlinear delay differential equation 

( ( m ) " 7 ^ : / ) ) + t A ( 2 + c o s t ) x ( t - l ) ( l + x 2 ( t - l ) ) = 0 for t > 1, (4.5) 

where 7 and A are positive constants. Here c(t) = 1/t, a(t) = (t + l ) - 7 , 
q(t) = tx(2 + cost) and f(u) = u(l + u2) > u with K = 1. Then, for any t > 1 
we have 

00 00 t 
ť i Í І / i / 2 - i 
/ —гт ds = 00 , / —— ds = 00 , ő(t) = / —-т- ds = ——— . 

J c(s) J a(s) У J J c(s) 2 
(4.6) 

Also, 

t t t 

~A/r> 1 л л ^ «\ J „ \ 1 „A /^.)d.-/.»(. + ».)d.>/^d.-=o as ,-00. (4.7) 

to ^0 ^0 

From (4.6) and (4.7) we see that (hl)-(h3) hold. To apply Theorem 3.4, it 
remains to satisfy the conditions (3.17)-(3.19). Taking H(t,s) = (t — s)2 and 
p = 1, we have 

1_ fQ2(t,s) _ 1_ f (t-s)2 

PJ W(s) ť J ťr+i(*-2) á S < OO . (4.8) 
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Therefore, condition (3.17) is satisfied and for arbitrary small constant e > 0, 
there exists a tx > 1 such that for T >tx 

H(t,s)q(s) 

ío 

Q2(t,s) 
AW(s) 

ds = 

> 

t 

и 
to 

t 

( t - s ) V ( 2 + coss)-
(t-s) 

(t — s) s cos s 

2*т+Ҷí-2)J 

(t-sf 

ds 

2 ť t + Ҷ ŕ - 2 ) 
ds 

> - T A cosT - e = ip(T). 

Then, there exists an integer N such that (2N + l)n — TT/4 > tx, and if n > N, 

(2n+l)n-^<T<(2n+l)TT+^, ^(T) > (3TX , 

where f3 is small constant. Now, we have 

/í(«^/^)t|4E / 
to t 0

 n - 7 V ( 2 n + l ) 7 i 

(2n+l)тг+f 
2 -°°- <• s2Xs(s-2) 

-1 
às 

(2n+l)тr+f 

4 ľ í(s-2fx^ds = oo. 
(2n+l)7r-f 

Accordingly, all conditions of Theorem 3.4 are satisfied, and hence every solution 
of equation (4.5) oscillates or converges to zero. 

We note that none of the above mentioned papers of oscillation of third order 
differential equations can be applied to the delay equations (4.1), (4.2) and (4.5). 

R e m a r k 4 . 1 . It remains, as an open problem, to study the oscillation behavior 
of equation (1.1) when 

/ ^ ) d í < 0 ° ' 
oo oo 

Iw)dt<æ> Iq{t) dt < oc . 
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