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INTEGRAL EQUIVALENCE BETWEEN
A NONLINEAR SYSTEM AND ITS
NONLINEAR PERTURBATION

ALEXANDER HASCAK

In the present paper we consider differential systems of the forms
(a) x'=A(t, x)+ B(t, x)
b y'=A(ty),

where x, y, A, B, are real-valued n-vectors, and the functions A(t, x), B(t, x) are
defined and continuous on I X R", I=(to, ®), t,=0, R" is the space of all real
n-vectors. The paper [3] deals with the property of L2-boundedness for solutions of
ordinary differential equations. More specifically: there are determined some
conditions under which all solutions of a perturbed linear differential equation
belong to L?*(0, +) assuming the fact that all solutions of the unperturbed
equation posses the same property. Our objective here is to give a more general
concept. The problem we deal with in this paper is the integral equivalence of two
systems (a) and (b). It is easy to see that if the two systems (a) and (b) are
(1, p)-integrally equivalent (see Definition 1.) and some solution y(t) of (b) is
L*-bounded, then the corresponding solution x(¢) of (a) is also L?-bounded, and -
conversely. On the other hand, two systems (a) and (b) may be (1, p)-integrally
equivalent although no solution of either of them is L?-bounded. ’

Definition 1. Let y(t) be a positive continuous .functiox_l on the interval
(to, +) and let p >0. We say that the systems (a) and (b) are (y, p)-integrally
equivalent iff to each solution x(t) of (a) there exists a solution y(t) of (b) such that

(©) v(O)lx(1) - y(1)| € L (to, +0),

and conversely, to each solution y(t) of (b) there exists a solution x(t) of (a) such
that (c) holds.
In [2] this problem is considered for spec1al systems

A(t,x)=A(t)x.

This problem is solved here for general nonlinear systems (a) and (b), although the |
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case A(t, x)=Ax where A is a constant n X n matrix is not contained in our
results, due to the fact that our hypotheses always require some kind of smallness of
the vector A(t, x) or A(t, y+v)—A(L, y).

All functions considered throughout the paper will be continuous on their
domains and the function A(t, x) smooth enough to guarantee the existence of
a solution y(t), t € I, of (b) which, unless otherwise stated, will be fixed. Let B(a)
be the Banach space of all bounded and continuous R"-valued functions on
(a, +=) with the norm |f|s =sup |f(t)| where, for x € R", |x|=sup |x].

Definition 2. The sequence f, € B(a) q-converges to fe B(a) if ’1_1_12 If.(8)—

f(t)| =0 for every te (a, +=). This will be denoted by f,.—:f.

Definition 3. A set M c B(a) is said to be uniformly bounded if |f|s <K for
every fe M, where K is some positive constant.

Definition 4. A set M B(a) is said to be equicontinuous if for every £ >0
there exists 8(¢)>0 such that feM, t', t"=a and |t'—¢t'|<6(e) imply

If(¢) = f()] <e.

We shall need the following results in our considerations:

Lemma 1. Let g(t)=0 be a continuous function on 0 <t <+ and such that

Lo e
w R

j sg(s)ds<+w, p=1.
Then 0
f g(s) dse L7 (0, +=), p'=p.
Proof. Let g:(t)>0 be a continuous function on (0, +) such that
g()<gi(f) and j stgu(s) ds <+, p=1.
0

It is sufficient to prove that

J gi(s)ds<L”(0, +), p’'=p.

For p=1 we have

L f s gy(s) ds de = f f’s.*.—:gl(s)d,ds= J”stg,(s)ds<+oo. 1)
t . 0 Jo 0
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We have to prove that

J: (Jm g1(s) ds)é dt <+,

In view of (1) it suffices to show that

(2 )
([s0e)

lim —=——— is finite.

e J s*1gi(s) ds

The function

J s7 1 gy(s) ds

is non-negative non-increasing and by (1)
lim | s#! gi(s) ds=0.

t»o Jt

We can use I’Hospital’s rule

([ sy

0<lim—S-———=

o J' 57! gi(s) ds

oo p—1

—pgx(t)(j gx(s)dS) (" g p-1
=L 1' =N te
!Hg =t g4(t) !T:p( J'. 9:(s) s)

o p—1
=lim p(I s#g1(s) ds) =0.

t—©

thus

J' g1(s) ds e L?(0, +).
Since

J g1(s) ds—0 for t—,
there exists T>0 such that
j gi(s)ds<1 for t>T.
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Then for p’>p we have

(J:n g1(s) ds)p’<(J:w g1(s) ds)p for t>T,

which completes the proof.
If p=1, the present Lemma 1 reduces to Lemma 2 in [2].

Theorem 1. (M. Svec [1]) Suppose that NcB(a) is a non-void convex,
g-closed set and T: N— B(a) a q-continuous operator (f.. S s fm, f € Nimply that

lim | Tf.. — Tf|s =0) such that TN is a uniformly bounded and equicontinuous set

with TNc N. Then T has at least on fixed point in N.

For r>0 and a eI, we give two conditions:

Condition C,(l, r, a). The vector D(t, u) satisfies Condition Cy(l, r, a) if there
exists a non-negative function I(t) such that te (a, +=) and |u|<r imply

[D(t, u+y)|<I(t), yeR"
and

r to (1) dt < +oo.

Condition C,(l, g, r, a). The vector D(t, u) satisfies condition C;(l, g, r, a) if
there exist non-negative functions I, g such that

t=a, |u|<r, |v|<sr
imply
ID(t, u+y)—D(t, v+y)|<l(t)g(lu—v]|), yeR"
and

j tr1(t) dt <+,
It is evident that Condition C, implies Condition C,. The converse is true if
I t?|D(t, y)| dt<+» forsome yeR".

Now we are able to prove

Theorem 2. Suppose that the vectors A(t, u), B(t, u) satisfy Condition
C(l, g, r, t,), or Ci(lz, r, t,), respectively. Then for each solution y(t) of the
system (b) there exists a solution x(t) of (a) such that

[x(6) = y(O)| e L*(t,, +0).
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Proof. Let t;=t, be such that

J'”(Kl,(t)+lz(t)) drsr, K=suwp g(lul).

ul<2r

Then the operator
T: S,—>B(t1) (S,= {fE B(tl): lfla < r)

defined by
(m®=-| “(AGs, f(s) + ¥(s))— A(s, y(s))) ds —

- [ Bes, f5)+ y(s) as

is well defined because of
[T 186 161+ ()~ AG, y6D] ds + [ 1BGs, f5)+ y(5)] 0

< ] (KL() + L(t)) dt < r < +oo.
By the standard method it is easy to show that all hypotheses of Theorem 1 are

satisfied. Thus T has at least one fixed point in S,. This fixed point v(¢) has the
property that the function .

x(O)=v(0)+y(1)
satisfies (a). Therefore we have. to prove that
(3) lv(t)| e LP(ty, +).

Using Minkowski’s inequality we obtain

[ ror ay<
<([([ 146, vs)+y()- A, y(s)) as)” ary
* (f (f'%’ v(s)+y(s))] ds)” dz)%s

([ ([ mmona) o

* (f ( I “(s) ds)p dt)%’s
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sK(f(rl,(s) ds)" dt)%_‘_
' (I (f L(s) ds)" d,)t.

By the assumptions of the theorem and Lemma 1 we get (3). The proof of the
theorem is complete.

Theorem 3. Suppose the functions A(t,u), B(t,u) satisfy Condition

C(l,i,r,t), Cl,i,r,t), where i is the identity function on R* = (0, +»),
respectively. Moreover, assume that

r|B(t, y(t)| dt <+,

Then the solution whose existence is ensured by Theorem 2 is unique.

Proof. It is easy to verify that the operator T in this case is a strict contraction
mapping.

Theorem 4. Suppose that x(t), te I, = (t., +=) is a fixed solution of (a) and
that A(t, u) satisfies Condition C(l;, g,r,t) with y(t) replaced by x(1)
throughout. Moreover, assume that

r to|B(t, x(¢))| dt < +oo.

x

Then there exists a solution y(t) of (b) such that
|x(8) - y(t)| e L7 (8., +o).

Proof. We consider now the operator T: S,— B(t,) such that

(THO= - [ (AGs, f6)+ 5(s) = AGs, x(s))) ds

—J B(s, x(s) ds
and the proof follows as in Theorem 2.
Previous Theorems imply the following theorem and corollary:

Theorem 5. Assume that

IAG u)= AGOISBO =] 14l lo| <40 and re(h. +o0
|B(t, u)— B(t, v)| <L(t)|u—v| |ul, |v] and te (to, +)
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where

I 7 1,(t) dt < + o, ] £ 1(1) dt < +oo,

(1] o

J 7| B(t, 0)| dt < +oo.

o

Then between the set of bounded solutions of the system (a) and that of (b) there is
a (1, p)-integral equivalence.

Corpllary 1. Consider the system
(az2) x"=B(t, x)+ Q(1),

where Q(t) is a continuous vector-valued function defined on I and B(t, u)
satisfies Condition C(1,, r, t) for every function

y(t)=d +£ Q(s) ds,

where d is an n-vector. Then for every n-vector d there exists a solution x(t) of (a;)
such that

€ LP(ty, +).

x()- (d+ L Q(s) ds)

Consider now the following n-th order equations
(as) x®=A(t, x, X', ..., X* ) +B(t, x, X/, ..., x®V)
(bs) YP=A@,y,y', ..., y"V)

where A, B are real-valued functions defined and continuous on I X R", I=
(to, +w), to=0. '

Theorem 6. Suppose that the function A(t, u) satisfies the Lipschitz-like
condition

IA(‘, X1y X2y ooy x,.)—A(t, Yis Y2y oo0y Yn)l
<S Aalx-y)
for any x, y € R" with |x —y|<r (r is some positive constant), where

f () dt<+o for i=1,2,..., n.

(1]
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Assume also that for any solution y(t) of (DS),. any vector v € R" with |v|<r and
any t e I, we have

IB(t, y + v1, ' + 03, ..., YO+ v)| <L(D),

jw t"_”%'L(t) dt< 4o,

Then for every solution y(f) of (bs) there is a Solution x(#) of (as) with the property
|x9(6) — y(t)| € L” (fo, +0)» i=0,1,..,n—1; '
p'=p-
Proof. Let
ve=x*()—y* () for k=1,...n
and
Bo(t, v(1)) =
=A(t, y+wn(), ..., 'y"'"’ +v. (D))= At ys - yo )+
+B(t, y +vi(1), ..., Y0+ va(0)-

Then it suffices to prove that the system

vV =— ' ((tn s)ln)_' Bo(s, v(s)) ds = By(t, v)

== [ UL B, (o) =Bl ),

v, = —Jm Bo(s, v(s)) ds =B.(t, v)

has a solution v(t) € L?'(to, + ).
Theorems 2—4 can be extendedd to n-th order systems if all of the integral
conditions considered are replaced by those having integrands multiplied by

—141
tu 1+p.

In this case one would have to replace B(a) by Banach space B,.-i(a) of all
(n—1)-times continuously differentiable functions with bounded derivatives and
with the norm

— i)
|fls..= max sup {|f(D)]}-
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We shall give some results for 2nd-order systems

(as) x"=A(t)x+F(t, x)

(bs) y'=A()y

with n X n matrix A(t) and the n-vector function F(t, x).

Theorem 7. Let A(t) and F(t, x) satisfy the conditions

j £1B(0)] dt <+, I 43| C(0) A(1)] dt <+,

y

r 15 A(f) dt <+ oo,
where ¥
BO=[" A(s)ds
R (assumed to convergc)
cw=[" B(s)ds
and '

|F(t, v+ y(s))|<A(t) forany veR" with |v|<r

and for fixed solution y(t), te I, =(t,, +®) of (bs). Then there exists a solution
x(t) of the system (as) such that

|x(8) = y(OleL" (to, +), p'=p.
Proof. If we put

v()=x(1) - y(1),

then we have

v"()=A(t)v(t)+ F(¢, v(t) + y(2)).
Thus, we only have to prove the existence of a solution
“4) v(1)eL(t,, +)

of this equation. This can be done by considering the operator

(TN =~ COfO+2[ Bls)f(s) ds
+[ -0 A ds

+ (s~ (B~ C())F(s, f(s)+y(s)) ds
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defined on the ball of bounded functions in B,(a) with the norm <r for t=¢, (4
some suitable number, t;=1,). It is easy to show that T has at least one fixed point
v(t) in

S.={feBi(t): |fls,<r}.
Now we have to show (4). Since

IC(t)ISJ: IB(s)| ds—0 as t—>+o

there exists t, such that |C(t)| <1 for t=1,.

Then
(j: lv(t)]? dt)%$3r(1j (J’m |B(s)| ds)p dt)'l’
+ r(j’: (J:ws|C(s)A(s)| ds)p dt)“E
+2 (J: (J:msl(s) ds)p dt)%< + o

according to Lemma 1. The proof of the theorem is completed.
Theorem 8. Suppose that y(t), tel, is a solution of the system
y'=Q(1).
Let A(t) and F(t, x) satisfy the conditions

f“tély(t)B(t)l dt<+o, Jmttly(t)C(t)A(t)I dt <+

and
j 1P A(t) dt < +o,

Then there exists a solution of the system
x"=A(t)x+F(t, x)+ Q(t)
for which we have
[x(t)— y(t)| € L” (max (&, 8,), +), p'=p.

Proof. In this case it suffices to show that the integral equation
v(f)=—C(t) v(t)+2 f B(s) v(s) ds
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+j”(s— £)C(s) v(s) ds

+ f " (s = )(E + C(s))(A(s) y(s) + F(s, v(s) + y(s)) ds

has a solution v(t) which belongs to L?'(max (., t,), +®), p’=p.
Theorems 7, 8 guarantee the existence of a unique solution x(t) if F(t, u)
satisfies a Lipschitz condition of the form

|F(t, u)—F(t, v)|<A(t)lu—v|, u,veR"

where
f 1145 2,(1) dt < + 0.
The following result deals with second order scalar equations of the forms
(as) x"=a(t)x
and
(bs) y"=(a(®)+p(1)y.
Let

b(t)= ] ) a(s)ds (assumed to converge)

and

c(t)= I b(s) ds.
t
Theorem 9. Let the functions a, b, c, p satisfy the conditions

f t7|b(t)] dt < +oo, f 1'*2|a(t) c(t)| dt < +oo,

ty

f t*7|p(t)| dt <+,

where I, = (t,, +) is the domain of a fixed solution y(t) of the equation (bs) such
that

y()eL?(t,, +»).
Then there exists a @ique solution x(t) of (as) such that
x(t)eL?(t., +x).
Proof. Let
(%) u(t)=x(0)—y(®)
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be the unique solution of the differential equation

u"=a()u(t)—p()y(1)

such that ,
u(t) € Lp(max (tx ’ ty)’ +w)'

Now the assertion of the theorem is obtained from (5) and the Minkowski
Inequality. :
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VIHTEI'PAJIbHAS 3KBUBAJIEHTHOCTh HEJIMHENHOW CHUCTEMBI
" CHUCTEMB], ITOITYYEHHOM BO3MYIIEHWUEM EE
Alexander Ha§¢4k

Pe3iome

B craThe Rarorcs gocTaTouHble yenosus ais (Y, p)-MHTErpaibHOM 3KBUBAICHTHOCTH HENTMHEHHOM
cucreMbl AuddepeHIMANLHBIX YPaBHEHMI W BO3MYIIEHHOH HEJIMHCHHOM CHCTEMBI.
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