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ON G-LATIICES

HAVIAR ALFONZ

E. Fried in [2] and H. Skala in [5] have introduced a class K, of weakly
associative lattices (called trellises in [5]). In [6] a class K, of weakly commutative
lattices (N-skew lattices) is given. In this paper a class of G-lattices is defined,
which is a generalization of both classes K, and K.

1. Basic definitions and properties

Definition 1. A trellis (or WA-Iattice) is an algebra (L ; A, v), where A and v
are two binary commutative operations on L, called meet and join, respectively,
satisfying the following identities:

¢)) xa(yvx)=x and dually
2) xA((xvy)a(xvz))=x and dually.

We obtain the dual identity by changing the operation symbols and reversing the
sequence of variables (e. g. the dual Identity of x A(y AZ) = xA(zAy)is(zVvy)vx

= (yvz)vx).
Proposition 1. In a trellis there holds
(B) (xAy)ax=xa(yAx) and dually.
Proof. If follows from the commutativity of the operations A and v.

Definition 2. An N-skew lattice is an algebra (L ; A, v), where A and v are
two binary associative operations satisfying the following identities :

@) xAa(yAz)=xA(zAy) and dually
©)) XAX =X and dually
6) xA(xvy)=x and dually.

Proposition 2. (1) and (2) hold in teach N-skew lattice.
Proof. The verification of (1) is in [6]. The associativity of both operations and
the identity (6) imply the identity (2).
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Definition 3. Let (L; A, v) be an algebra, where A and v are two binary
operations on L called meet and join, respectively. Let us call the algebra
(L; A, v) a G-lattice (a generalized lattice) if the operations A and v satisfy the
identities (1), (2), (3), and (4).

Proposition 3. If an algebra is a trellis or an N-skew lattice, then it is a G-lattice.
Proof. It suffices to use Proposition 1 and Proposition 2.

Proposition 4. For every x, y of a G-lattice the identities (5), (6) and the
following identities are satisfied:

(7) (xAy)Ax=xAYy and dually

8) (xAy)Ay=xAy and dually

9) xA(xAy)=xAy and dually
(10) xAy=x ifandonlyif xvy=y.

Proof. Proof of (5). Using (1) and (2) we get
xAx=xA((xAx)v(xAx))vx)=x.

x vx =x can be proved dually. Proof of (6) follows from (5) and (2). It is obvious
that (1) and (6) imply (7), (8), and (10). Proof of (9) follows from (4), (3) and (7).

2. G-ordered set
Definition 4. A binary relation R is called weakly transitive if
R.(RNnR™HcR and (RNR™').RcR.
Let L be a non-void set. The identity on L will be denoted by 1,.

Definition 5. We call a G-ordered set a relational system (L ; R, R,, R,), where
R, R,, R, are binary relations on L satisfying the following conditions :

(a) R is reflexive and weakly transitive

(b) R, and R; are reflexive and antisymmetric

(¢) RinR and R,cR

(d R,Ri'nRNR7'cl, and R3'R,NnRNR7'c1,.

Let L; R, R;, R;) be a G-ordered set, n a natural number and (a,, ..., a,) e L".
An element v eL is called a G-lower bound of (ay, ..., a,) if

vRa forall je{l,...,n}.

An element u €L is called a G-upper bound of (a, ..., a,) if
a Ru forall je{l,...,n}.

18



Definition 6. An element i€ L is called a G-infimum of (a., ..., a,) if the
following conditions are satisfied :

() iR, a :
(ii) i is a G-lower bound of (ay, ..., a.)
(iii) v R i holds for every G-lower bound v of (ay, ..., a,).

An element s € L is called a G-shpremum of (ay, ..., a,) if the following conditions
are satisfied:

(J) a, R2 N
(jj) s is a G-upper bound of (a, ..., a,)
(iii)) s R u holds for every G-upper bound u of (ay, ..., a,).

Proposition 5. Let (L; R, R,, R,) be a G-ordered set. If a G-infimum (or
a G-supremum) of (a, ..., a,) exists, then it is unique.

Proof. Assume that i, and i, are G-infima of (a,, ..., a,). Then i, R, a,,
i»Ryay, iy R iy, and i, R i, are valid. It follows that (i,, i) € R,Ri'nRNR™',
hence i, =i, by (d). The verification for G-supremum is analogous.

The G-infimum of (a, ..., a.) (if it exists) will be denoted by inf (a,, ..., a,). We
write sup (ay, ..., a,) for the G-supremum of (a,, ..., a,).

Proposition 6. Let (L; R, R,, R;) be a G-ordered set. For all a, beL the
following conditions hold:

(e) inf(a,a)=a and sup(a,a)=a
(f) aRb < inf(a,b)=a and a R b < sup(a,b)=b
(g0 aR, b <inf(b,a)=a and a R,b < sup(b,a)=>b.

Proposition 6 follows directly from the Definitions.

3. GR-lattice

Definition 7. Let (L ; R, R, R,) be a G-ordered set. If each pair of elements of
L has a G-infimum and a G-supremum, then (L; R, R,, R,) will be called
a GR-lattice.

Proposition 7. Let #=(L; R, R,, R,) be a GR-lattice. Let us define the
operations A and v on L in the following way

(0) anb=inf(a,b), avb=sup(a,b).

Then (L; A, v) is a G-lattice.
Proof. The identities (1) and (2) follow directly from the definitions. Now we
will verify the identity (4). Let i, =inf (a, inf (b, ¢)), i»=Iinf (a, inf (¢, b)), v,=
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inf (b, ¢), v.=inf (¢, b). Then i; R v, v, R v,, v, R v, are true and imply (i,, v2)
€ R(RNR™) and using (a) we get i; R v,. i, R a is evident, hence i, R i,. A
similar argument shows i, R i,. From i, R, a, iR, a, i, R i,, i, R i, by (d) we
claim i, = i,. The second identity of (4) can be proved similarly. For the verification
of (3) it is sufficient to prove (x Ay)Ax = xAy and x A(yax) = xAy. The first
identity holds by (f). Using (4) we obtain x A(yAx) = xA(xAy) and by (g)
inf (x, inf (x, y)) = inf (x, y), which completes the proof.

Denote by #* = (L ; A, v) the G-lattice corresponding to a GR-lattice # = (L ;
R, R,, R;), which operations A, v are defined by (0).

Proposition 8. Let £=(L; A, v) be a G-lattice. Let us define binary relations
R, Ry, R; on L in the following way :

(r) aRb < anb=a
(p) aR,b <bra=a
(Q aR,b < bva=b.
Then (L; R, R,, R,) is a GR-lattice.

Proof. First we prove the conditions (a)—(d) of Definition 5. (a). From (5) it
immediately follows that R is a reflexive relation. If (a, b)e R(RNR™"), then
there exists such ce L thata R ¢, ¢ R b, b R ¢ hold. Thus by (r) and (4) we get -
anb = an(bac) = an(cab) = anc = a, which imply a R b. The inclusion
(RNR™MR cR can be proved dually. (b). By (5) it follows that R, and R, are
reflexive relations. We assume a R, b and b R, a. Then by (p) and (7) b=anAb
= (bAa)Ab = bAa = a, i.e. R, is an antisymmetrical relation. A similar
argument shows that R, is also antisymmetrical. (c). a R, b implies that aAb
= (bara)Ab = baa = a, hence a R b. R,c R can be proved dually.

(d).Let aRb, bRa, aR,c, b R,c be valid; then by (4) a = cAa
= ca(aab) = ca(bra) = cab = b. The second condition can be proved
similarly.

It remains to prove that all pairs of elements of L have both a G-infimum and
a G-supremum. We will show that
(s) inf(a,b)=anb, sup (a, b)=avb.

From (9) and (8) we obtain aanb R,a and aab R b. Fromx R a and x R b by
(2) and (10) we get xA(anb) = xA((xva)Aa(xvb)) = x,i.e. x R aab. The
other equality can be proved in the same way.

A GR-lattice correspoding to a G-lattice £=(L ; A, v), and the relations of
which are given as in the conditions (r), (p), (q), will be denoted by ¥*.

Theorem 1. Let ¥=(L; A, v) be a G-lattice and R=(L; R, R,, R,) be
a GR-Iattice. Then
(F*)"'=Z and (R)*=XR.

Proof. Letusdenote (£*)* = (I3 1, L), (B*)* = (LS, S,, S.). From (0) and
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(s)it follows that anb = inf (a, b) = anb. Similarly aub = avb. By (r) and (0)
and (f)

aSb<anb=a < inf(a,b)=a<>aRb.
We can prove analogously that S, =R, and S,=R..

Thus, we are justified to speak of a G-lattice without specifying whether one is
defined by relations or by operations.

Proposition 9. A G-lattice (L ; A, V) Is

a) a trellis if and only if in £*=(L; R, R, R,) is R=R,=R,,
b) an N-skew lattice if and only if the relations R, R,, R, are transitive,
c) a lattice if and only if it is both a trellis and an N-skew lattice.

Proof. a) Leta G-lattice (L ; A, Vv) be a trellis and let there hold a R, b. By (p)
bAa=a andso a Ab =a, which implies a R b. The equality R, =R can be proved
similarly. ConVersely, let R =R, =R,. It is enough to verify that anb = b Aa,
avb = bva. Because of

inf (a, b)R,a Ainf (a, b)Rb < inf (a, b)Ra Ainf (a, b)R,b

we have inf (a, b) =inf (b, a). In a similar manner we obtain avb =bva.
b) This part follows from [6].
c) This is an immediate consequence of the definitions.

4. Some properties of G-lattices

Proposition 10. The elements x, y of any G-lattice satisfy the following iden-
tities
(11) xA(YyAX)=XxAYy and dually
(12) (xAy)A(yAx)=xAy and dually.

Proof. The identity (11) follows immediately from (3) and (7). The identity
(12) holds by (4) and (5).

Proposition 11. Let (L; A, v) be a G-lattice. If a R b and b R a hold for a,
b e L, then the following identities are valid:
13) xana=xAbandavx=bvxforeachx €L,

(14) (anx)Aa(bAax)=aAx and (xvb)v(xva)=xva for each xeL.

Proof. By (r) anb=a and bAa=>b, therefore by (4) xna = xA(anb)
= xA(baa) = xAb. Similarly avx = bvx. Further, (aAnx)Ab = (anx)Ara
= aAx by (13) and (7), hence (aAx)vb = b by (10). It implies (a Ax)A(b Ax)
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= (anx)A(((anx)vb) A ((anx)vx)) = anx by (6)and (2). The second identity
in (14) can be proved dually.

Theorem 2. Let = (L ; A, v) be a G-lattice. A relation = on L defined in the
following way

(15) a=b ifandonlyif anb=a and bra=b

is a congruence relation of £.

Proof. It can be easily shown that the relation = is reflexive and symmetric. If
a=b and b=c, then by Proposition 11 aanc = anb = aandcara = cAb = ¢
and so a=c. If a=b, then by Proposition 11 xAa = xAb (hence x ra = xAb
too) and anx = bAx forall x e L. Similarlyavx = bvx andxva = xvb. This
completes the proof.

Remark. From (12) it follows that x Ay =y Ax, hence the quotient algebra
Z/=is a trellis. Every congruence class (with A and v) is a nest.

S. Examples

1. Let Z be the set of all integers. We define binary relations R, R,, R, on Z as
follows
1Rxand =1 Rx and x RO for all xeZ,

x R x if and only if % is either 1 or a prime number, for x# *1 and y+#0,

x R,y if and only if x R y and (either xy >0 or x =0, y =0),

x R,y if and only if x R y and xy =0.

Then (Z; R, R, R,) is a G-lattice. It is neither an N-skew lattice nor a trellis.
For instance

(An6)A12=2A12=1, 4A(6A12)=416=2,
(—4)v6=12, 6v(—-4)=-12.

2. Let C be the set of all complex numbers. Define the relations R, R, on C in
the following way

b=difb#+0and d#0
(a, b) R (c, d) if and only if |a| =|c| and{d§0ifb=0
b=0ifd=0

(a, b) R, (¢, d)if and only if (a, b) R (¢, d) and ac =0. Let R, =R,. Then (C; R,
R, R,) is a G-lattice which is neither an N-skew lattice nor a trellis.

3. Let £=(L; =) be a trellis (x=y means xAy=x) and A be a finite set
A ={a,,...,a,}. Let (f,, ..., f.) and (g, ..., g.) be n-tuple mappings of L onto A
such that
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fix)e A\{fi(x), ..., fii(x)},
gi(x)e A\{g.(x), ..., gi1(x)}
for all xeL, i€{2, ..., n}. Define on L XA the relations R, R,, R, as follows

(x,a)R (y,q;) ifandonlyif x=y,
(x, @) R, (y, a;) if and only if x =y and there exists an f,
such that f,(x) =a; and fi.(y) =a;,
(x,a) R, (y, a;) if and only if x =y and there exists an g,
. such that g,(x)=a; and g,.(y) =ga;,

i,j, k,he{l,..,n}. Then & = (LXA; R, R,, R,) is a G-lattice and
(xs a)A(y, a)=(x Ay, f(xAy)),
(x, a)v(y,a)=(xvy, g.(x vy))

if f,(x)=a; and g,(y)=a;.

Remark. If &, is a G-lattice given as in Example 3 and = is the congruence
relation given by (15) of &,, then it is possible to show that %,/= is a trellis
isomorphic with £. '
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O G—CTPYKTYPAX
A. T'aBbsp
Pesiome
B pa6orte onpenensiercs noustue G-CTPyKTypbl. 1O anrebpa Tuna (2, 2), OCHOBHbIE ONEPaLKH

KOTOPO# CBsi3aHbI Ha OCHOBHOM MHOXecTBe ToxaectBamu (1), (2), (3), (4). Kaxnyio G-cTpyKTypy
MOXHO paccCMaTpuBaTh U Kak G-ynopsiiO4EHHOE MHOXECTBO.
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