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THE INFLUENCE OF ARGUMENT DELAY ON
OSCILLATORY PROPERTIES OF A SECOND-ORDER
DIFFERENTIAL EQUATION

JAN OHRISKA

Consider a differential equation
u"(t)+p(u®(z(t))=0 (1)
on [t,, ©], where
(i) 0<p(t)eC, -; p(t) is not identically zero in any neighborhood o(x);
(i) z(¢) is a nondecreasing continuous function on [¢,, ®), t(¢)<t¢, and
lim 7(¢) = o;

t—
r
(i) « =35 where r and s are odd natural numbers.

Without mentioning them again, we shall assume the validity of conditions (i),
(ii) and (iii) throughout the paper.

The basic initial-value problem for (1) is defined as follows : Define a continuous
function @(t) on an initial set E,,. Suppose that u, is an arbitrary real number. Find
a solution u(t) of (1) on [t,, T)(T <o) which satisfies the initial conditions

u(ty) = P(t,), u'(ty+0)=u
u(z(®))=o(t(t)) for (t)<t,.

Suppose that there exist solutions of (1) on [¢,, ). For this there is a sufficient
condition, e.g. that the step method (cf.[2]) be applicable for extending the
solutions. In the sequel we shall use the term “‘solution’ only to denote a solution
which exists on [t,, ®). Moreover, we shall exclude from our considerations
solutions of the equation of type (1) with the property that u(¢)=0 for t=T,,
where t,<T, < »,

Definition 1. A solution u(t) of (1) is oscillatory for t=t, if there exists an
infinite sequence of points {t}, such that u(t)=0 and t,—» for i—>o. A
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solution u(t) of (1) is non-oscillatory if there exists a number T, such that
tv<T,<o and u(t)#0 for t=T,.

Definition 2. Equation (1) is oscillatory if all its solutions are oscillatory. It is
non-oscillatory if at least one of its solutions is non-oscillatory.

Definition 3. Let (1) be oscillatory for t(t)=t. We shall say that an argument
delay t(t)#t influences the oscillatory properties of solutions of (1) if for this
t(t)#t equation (1) is non-oscillatory. If, on the other hand, for some argument
delay t(t), (1) is oscillatory, we shall say that T(t) does not influence the oscillatory
properties of solutions of (1).

In[3],H. E. Gollwitzer showed thatif 0<a<1and 0<t—1(t) <M (where M
is a constant), then equation (1) is oscillatory if and only if

r t°p(t)dt = oo (2)

The following theorem shows that the condition (2) is necessary even if
t—1(t)—> > for t— x.

Theorem 1. Let 0 < a < 1. A necessary condition for (1) to be oscillatory is that

fx t’p(t)dt ==

Proof. The proof is indirect — a modification of the proof given in [4] by Licko

and Svecfor 7(t)=t. Let j t°p(t)dt < . Then there exists ¢, > ¢,=0 such that

T 1
L tp(t)dt<2

Without loss of generality we can assume that t(z,)=0.
Let us investigate a solution u(t) of (1) which satisfies the initial conditions

u(t)=0 for t(t)<t<u,
(3)
u'(t,+0)=1.
We state that thi soluvtion has no zero on (t,, »), and proceed to prove this
assertion.

Let 1, be the first zero of u(r) greater than ¢,. Then u(¢)=0 for t € [7(¢,), t,].
According to Rolle’s theorem, there exists & € (¢,, t,) such that u'(§) =0. However,
we can prove that u'(t) # 0 for t € (,, t,). Suppose that ¢t € (¢,, ¢,). Then for x € (¢,, t]
we have t(x)e[t(2), t(t)] = [t(t)), t] and therefore u(t(x))=0. Looking at (1),
we see that u"(x) =<0 for x € (,, t] so that u'(x) is non-increasing on this interval.
From (3) we see that u'(x)<1 for x € (¢,,¢t] and_u'(x) =0 for x e (z(1,), t,).
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Calculate

T(x)
J u'(s)ds.

(1)
If for x >¢, is 7(x)<1t,, then
T(x)
f u'(s)ds=0 and u(r(x))=0<x.
T(ty)
If 1, <1(x)<t, then
T(x) [N 7(x) t(x) T(x)
f u’(s)ds=j u’(s)ds+f u'(s)ds =f u'(s)ds sf ds,
(ty) (1) 0y ty N

whence u(t(x))—u(z(t,))<t(x)—1t,, or u(r(x))<tv(x)<x. Thus u(r(x))<x for
x € (¢, t]. Then also

J:l p(x)u"(r(x))dxsf’l x°p(x)dx.

Integrating (1) from ¢, to ¢ (¢, <t<t,), we get

’

N

u’(t)=1—f p(x)u“(t(x))dx?l—J:l x"p(x)dx?l—%=

which proves our assertion.

Thus «’(t) has no zeros to the right of ¢, which means that any solution which
satisfies (3) is non-oscillatory. This completes the proof.

Odari¢ and Sevelo [5] proved that for @ >0 the condition

fmp(t)dt=°°

is sufficient for (1) to be oscillatory. Thus in this case argument delay has no
influence on the oscillatory properties of solutions of (1). We shall therefore

assume in the sequel that J' p(t)dt < oo,

Theorem 2. Let 0<a<1. Let H(t) be a function such that H(t)e C|,, )
H'(t)=0 and lim H(t)=. Let

t(t) = H(t) on some neighborhood 0,(). 4)
If
f He(t)p(t)dt =, (5)
then (1) is oscillatory.
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Proof. The proof will be indirect using the method by which Atkinson [1]
proved this Theorem 1. Suppose that the hypotheses of the theorem hold and that
(1) has a non-oscillatory solution u(¢). Because of (ii) there exists ¢, = ¢, such that
neither u(t) nor u(t(t)) is zero for ¢t =¢,. Furthermore, without loss of generality
we can assume that u(¢)>0, u(H(t))>0 and u(z(¢))>0 for t=¢, and ¢, € 0,().
From (1) we can now see that u"(t)<O0 for ¢t =1¢,, so that u'(t) is non-increasing for
t =1t,. Since the solution u(t) is assumed to be positive and (i) holds, it is evident
that u’(¢) is a positive function converging to a nonnegative value as t— o (if this

were not true, it would mean that lim u'(¢)<C <0 and therefore u(t)— — = for

t— o, which is a contradiction).
Integrating (1) from ¢, to ¢ (t=1¢,) yields the result

u'(t)— u'(t|)+f p(x)u*(r(x))dx=0.
Since Os}ilE u'(t)<o, the last equation yields
[ peourandr<e. (6)
This enables us to integrate (1) from ¢ to » (t=¢,) and we have
!1_{{1: u'(z)—u'(t)+ J:m p(xX)u’(r(x))dx =0
and therefore
W= [ plou(E)ds. (7)

Since u'(t) is non-increasing for ¢t =1¢,, we can use (ii) and (4) to obtain
u'(H@)=zu'(t(t))=u'(t) for t=1¢, (8)

(where u'(r(t)) denotes the value of the derivative of u(t) at the point r(¢)). Now,
using (7) and (8), it is possible to write

u'(H(:))zfp(x)u"(r(x))dx, =1,

Multiplying the last inequality by H'(¢) and integrating from ¢, to ¢ (t =t,=1t,),
we obtain

w(H@)-uH@)= [ H'G) [ peour@)dxds.
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Since u(H(t,))>0, we see that
wH@)= [ H) [ peoux(x)dx ds. ©)

Changing the order of integration in the formula (9), we get

u(H(t))Z[ f H'(s)p (x)u*(t(x))ds dx +

- (10)
+f J H'(s)p(x)u®(t(x))dsdx.
Since the first integral on the right of (10) is positive and
u(t(ﬁr))?u(H(x)) for x=t, (11)
because of (4) and the fact that u’' >0, we have
u(H(t))Bf H'(s)ds f p()u* (z(x)) dx =
’ (12)

>[HO-H®)] | plous (HEx)dx.

Raising both sides of (12) to the power a and multiplying by p(t), we have

p@uHW) [ [ peouHE| "2 HO-HGI@.  (13)

Integrating (13) from ¢, to ¢t (t=t;=1,) yields

1
l—a

l-a

[ pwedenas] 125 [ peour )] =

, (14)
af‘ [H(s)—H(t)]I"p(s)ds .

From (6) and (11) we see that the first term on the left of (14) is positive and
finite and the second term converges to zero as t— o« ; thus the left side of (14) is
positive and finite for ¢ — . Since the right part is nonnegative, it is also finite, i.e.

f [H(s)—H(&:)I'p(s)ds <.
It is easy to show that f [H(s)—H(t,)]* p(s)ds<e if and only if

f H?(s)p(s)ds <o, which yields a contradiction with (5) and completes the
proof of the theorem.
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In [5] it is proved that if 0<a <1 and t'(¢)=0, then the condition

[ cwp@a==

is sufficient for (1) to be oscillatory.

The following corollary of Theorem 2 shows when it is possible to replace this
condition by (2), or what supplementary condition ensures that the condition given
by Gollwitzer in [3] remains sufficient when ¢t — 7(¢)— o for t— .

Corollary 2.1. Let 0<a <1 and 1(t)e Cy, -, Let
t(t)=kt (15)

on some neighborhood o0,(») (0<k<1) and

J tp(t)dt =o0.

Then equation (1) is oscillatory.
Theorem 1 and Corollary 2.1 furnish the basis for the following

Assertion 1. Let 0<a <1 and t(t)=kt on some neighborhood o,(«), where
0<k =<1. Then equation (1) is oscillatory if and only if

fzﬂp(z)d:no. (16)

Li¢ko and Svec proved in [4] that (16) is a necessary and sufficient condition
for the equation

y'@O+p@y“()=0, a<l
to be oscillatory.

Comparison of our Assertion 1 with the result from [4] shows that an argument
delay 7(¢) satisfying (15) has no influence on the oscillatory properties of solutions
of (1).

Let us therefore consider the conditions which enable the argument delay to
influence the oscillatory properties of solutions of (1).

The following two corollaries of Theorem 2 give us information about such
conditions.

Corollary 2.2. Let 0<a <1 and t(t) € Cy,,. . Let T(¢t)=kt'"* on some neighbor -
hood 0,(») (0<B<1, k>0) and

[ empeyar=ce.

Then equation (1) is oscillatory.
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Corollary 2.3. Let 0<a <1 and t(t)€ Cy,, - Let ©(t)=k-Int on some neigh-
borhood 0,() (k>0) and

f In°t p(t)dt = .

Then equation (1) is oscillatory.
The following example shows that the condition (16) alone does not ensure the
oscillatoriness of (1) if no further assumptions are made concerning (t).
Example 1. Consider the equation

" 3 1 3 '
u (t)+1—6 ;;,mu"s(r(t))=0. (17)
This equation is oscillatory for t(t)=¢, since j £’p(t)dt=o. For t(t)=t"* (17)

has a non-oscillatory solution u(¢)=1t>*. Let us remark that for t(¢t)=¢'? the
hypotheses of Corollary 2.2 are not satisfied.
The result of the preceding considerations is the following

Assertion 2. Let 0<a <1 and f p(t)dt<w. Let ©(t)e C},, ~, and T'(t)=0.
Then a necessary condition for the oscillatory properties of solution of (1) to be

influenced by the argument delay t(t) is that lim inf 7'(¢) =0.

Proof. Since t'(t)=0 by hypothesis, lim inf 7'(¢)=0. Note that lim inf 7'(¢)

t—oo

cannot be greater than 1 because (as can be shown quite easily) if this were the
case, we should have t(¢) >t for sufficiently large ¢, which contradicts (ii). Suppose

that 1=1lim inf 7'(¢) =c >0. This means that there exists a sequence {f }x-, such
t—>
that t, — o for k— o and the sequence {t'(% }z-, has ¢ as a limit. Moreover, for

each £ >0 there exists T'(¢) such that 7'(t)>c — € for t > T(¢). Putting € = 1

5 € we

obtain

: 1.1 1
T'(t)>c 2c—2(:>0 for t>T<2c). (18)

From Assertion 1 we know that if (18) holds, then (1) is oscillatory if and only if
(16) holds; this, however, is necessary and sufficient for (1) with 7(¢)=t¢ to be
oscillatory, which would mean that t(¢) has no influence on the oscillatory
properties of solutions of (1). This contradiction completes the proof of our
assertion.
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Let us now leave unchanged everything that has been said so far in the paper
including the definitions, and investigate the case a>1 or a =1. As before, let

j T p()de <.

In[3], H. E. Gollwitzer proved that for a >1 and 0<t — 7(t) <M (where M is
a constant) (1) is oscillatory if and only if Jm tp(t)dt = . We shall show that this
condition is necessary also if ¢ —t(¢t)— © for t— .

Theorem 3. Let a=1. A necessary condition for (1) to be oscillatory is that

rtp(t)dt=oo. (19)

Proof. We shall give an indirect proof of the theorem. Let

f tp(t)dt <. (20)
Using this assumption, we can show that there exists a solution of (1) such that
limu(t)=1, limu'(¢)=0, 21

which is therefore evidently nonoscillatory.
It can be verified directly that if the integral equation

u(z)=1—£=° (x — )p (x)u” (t(x))dx (22)

has a solution u(t) which is continuous and bounded for t— o, then it is also
a solution of (1) satisfies the condition (21). We shall prove the existence of such
a solution of (22) using Banach’s fixed-point theorem.

Let S>1. Because of (20) there exists ¢,>0 such that

J:w (x—t.)p(x)dx<ss-1 . (23)

Let t,=7(¢,). Let o denote the set of all functions u(¢) bounded and continuous for

t € [ty, ®); this is a Banach space with the norm ||u||= sup |u(¢)|. Let #, denote

t €ty ®

the subset of & defined as follows:
ot = (w0 est | lul|<S}.

Then o, is a complete metric space with the metric o (u,, u,) = ||u, — u|.
On o, we define the operator V using the right part of (22), i.e. for every u € ,
we put
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Vu)(t)=1- Jz (x—t)p(x)u’(r(x))dx for tefty, t:]
and I

VO =1- [ c-np@we)dx for =4

We shall show that for every u € o, also Vu € o,. In fact, let u € #,. Since p (1),
u(r) and t(t) are continuous, (Vu)(t) is continuous on [t,, *). For ¢ € [to, t:}, (23)
yields

(vwl<1+ [ @ -wp@luEE)ar<

<1+8§° J (x—t)p(x)dx<S.
Analogously, for t=t, we get

Vi@l <1+ [ &= 0pluE)ldx <

x x

x-tpx)dx<1+8° J (x—-t)p(x)dx<S.

n

cres |
It is now easy to see that ||Vul||<S. Therefore ue o,>Vue.«,.
Finally, we prove that V is contractive on «f,. Let F(u) = u“ for |u|<S. Then

dF(u)
u

<alu|*'=aS",

and therefore
|F(u)) — F(u:)| <aS™ ™ '|u, — us|

for any two elements u, and u. such that |u,|<S, |u.|<S, or
|F(uy(t)) — F(ua())| <aS® "ui(t) — u(e)|

for u,(t), u.(t)e oA,. For t €[t,, t,] we have
(Vi) = (Va1 < [ (= 0p It (r) — w3 () dx <
<aS"! Jm (x = t)p ()| u(t(x)) — ux(r(x))|dx < (24)

<aS"' r (x —t,)p(x)dx ||, — u.||

and analogously for t=1¢,
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(Vi) = (V)OI < [ (= 0p (o)l (2() = w2 (2 dx <
(25)

SaS““f (x—t)p(x)dx”u,~u2HSaS"“f (x —t)p(x)dx]||us —usl|.
Thus from (24) and (25) it follows that
HVul—Vuz”SaS““f (x —t)p(x)dx|lu, — u,)|.

Clearly it is sufficient to choose r,>0 such that, besides (23), the inequality

= 1
I. (x —t)p(x)dx <o5eT

also holds; the operator V is then contractive on </,.

From Banach’s fixed-point theorem we see that there exists a unique solution of
(1) satisfying the conditions (21). This completes the proof.

A sufficient condition for (1) to be oscillatory is given in the following theorem.

Theorem 4. Let a >1, H(t)e C|,, »,, H'(t)=0 and lim H(t) = . Furthermore,

let ©(t)=H(t) on some neighborhood o,(x). If
f H(t)p(t)dt =, (26)

then (1) is oscillatory.
Proof. The proof will again be indirect. We shall start just as in the proof of

Theorem 2, up to inequality (10). The second integral on the right of (10) is
positive and (11) holds. This enables us to write

u(H(z))zf' f H'(s)p (x)u” (H(x))ds dx
or

w(H()> " [H(x) = H(2)]p (e )u” (H(x)) dx . (27)

Raising both sides of (27) to the power a and multiplying by [H(¢) — H(t2)Ip(t)
yields

(H() - Help@uHO) [ [ HE) - He)p@u (HE) x|
=[H(t) - H(:)]p(¢).
Integrating this inequality from ¢, to (¢t >1t;>1t,) we get
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1 1
a-—1 {[Ii; (H(x) = H(&2))p (x)u” (H(x))dx]* "

1 t
)~ HG e T = |, ) - H@lpe)ds.

(28)

The first term on the left of (28) is a finite and positive number, and for t — = the
whole left part is finite and positive. The right part of (28) is also positive and
therefore finite for t— >, i.e.

[ e -HEp)ds <.

As f’c [H(s)— H(t,)]p(s)ds <> if and only if ) H(s)p(s)ds <=, we have
obtai;ed a contradiction to (26), thus completing tll;e proof.

In [5] it is proved that if @ >1, t'(¢)=0 and fz 7(t)p(t)dt = =, then equation
(1) is oscillatory. We shall now formulate a corollary of Theorem 4 which is

concerned with the possibility to replace the condition j t(r)p(t)dt = = by the

condition f tp(t)dt = > or, in other words, the supplementary condition neces-

sary for making Gollwitzer’s [3] condition sufficient also if t—1(t)— > for
— o,

Corollary 4.1. Let a>1 and t(t)e Cy,,. . Let

t(t)=kt onsome neighborhood o,(»)(0<k=<1) (29)
and

J' tp(t)dt ==,
Then (1) is oscillatory.
Theorem 3 and Corollary 4.1 are the basis for
Assertion 3. Let a>1 and t(t)=kt on some neighborhood o,(*) where

0<k=<1. Then (1) is oscillatory if and only if

f” ip()dt = . (30)

In[1], Atkinson proved that (30) is a necessary and sufficient condition for the
oscillatoriness of the equation

Y +p@y ()=0, a>1. (31)
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Comparison of Assertion 3 with the result given in [1] shows that if (29) is

satisfied, then (1) and (31) are equivalent in the sense that (1) is oscillatory if and
only if (31) is.

Thus if (29) is satisfied, then the argument delay has no influence on the
oscillatory properties of solutions of (1).

Let us now investigate the conditions which permit the argument delay to
influence the oscillatory properties of solutions of (1).

Corollary 4.2. Let a >1 and t(t) € C,,, ,. Let t(t)=kt'~* on some neighborhood
0,(») (0<pB <1, k>0). Then
[ e pwdr=-, (32)
is a sufficient condition for (1) to be oscillatory.
Corollary 4.3. Let a>1 and t(t) e C,, .,. Let t(¢t)=k -Int on some neighbor-

hood 0,() (k>0). Then

J' Intp(t)dt =,

is a sufficient condition for (1) to be oscillatory.
The following example is intended to show that the condition (30) does not
ensure the oscillatoriness of (1) unless further assumptions are made concerning

T(2).

Example 2. Consider the equation

W)+ g s w(E0) =0, (33)

For t(t)=t it is oscillatory because f tp(t)dt =. On the other hand, for

7(t) =t'* there exists a non-oscillatory solution of (33), namely u(t) = V. Note that
condition (32) does not hold for t(t)=1t"".

From our investigation of (1) for a >1 the following assertion follows.

Assertiond4. Let a > 1 andJ p(t)dt< . Lett(t)e Cj, - and t'(t)=0. Then

liminf /(1) =0

is a necessary condition for 1(t) to influence the oscillatory properties of (1).
The proof of this Assertion is essentially the same as that of Assertion 2, the only
diference being that Assertion 3 is now used instead of Assertion 1.
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Finally, let us investigate the question of conditions under which 7(t) does
influence the oscillatory properties of solutions of (1).

Theorem 5. Let a >0 and t(t) € C},, .,. Let g(¢) be locally integrable on [t,, ©)
and let

0<t'(t)<g(t) onsome neighborhood o,(®). (34)
Let

f G*()p(t)dt<w, where G(z):f g(s)ds. (35)
Then (1) is non-oscillatory.

Proof. The proof will be direct. Let us start as in the proof of Theorem 1. (35)
ensures the existence of a point ¢, =1¢, such that

= 1
f G"(t)p(t)dt<§.
Whithout loss of generality we can assume that ¢, € 0,(®).
Consider a solution of (1) which satisfies the initial conditions
u(t)=0 for t(t)<t<t,

u'(,,+0)=1.

(36)

We shall prove that this solution has no zeros on (¢,, ). Let ¢, be the first zero of
u(t) greater than ¢,. Then u(¢)=0 for t € [t(¢,), t,]. According to Rolle’s theorem,
there exists & € (¢,, t;) such that u’'(£)=0. We shall now prove that u'(¢) #0 for
te(t, t.). Lett e (¢, t,). Then for x € (¢,, t] we have t(x) € [t(¢,), T(t)] = [T(t.), t] so
that u(z(x))=0. By (1) this implies that u"(x) <0 for x € (¢,, t], i.e. u'(x) does not
increase on this interval. From (36) we see that u'(x)<1 for x e(z,, t] and
u'(x)=0 for x e (z(t,), t,). It follows that
u'(t(x))<1 for t(x)e(t,]
and
u'(t(x))=0 for t(x)e(r(t),t)

(where u'(t(x)) is the value of the derivative of u(t) for t=1(x)).
By (34) this means that

u'(t(x))t'(x)<g(x) for z(x)e(e, 1]
and
u'(t(x))t'(x)=0 for t(x)e(z(t), ).

Let us calculate f u'(r(x))t'(x)dx. If (t)<t,, then
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f' u'(t(x))t'(x)dx =0
and ]
u(t())=0<G().

If 7(t) € (t,, t], then there exists n €[t,, t] such that 7(n)=¢, and we can write
f u'(t(x))r'(x)dx =Jm u'(t(x))t'(x)dx +£ u'(t(x))r'(x)dx =
- j W (v(x))T (x)dx s[ g(x)dx = G(1).
Hence u(t(t)) —u(t(t,))<G(1),or u(t(t))<G(t),for t € (¢,, t,). In that case also
J' p(x)u“(z(x))dx sJﬂ G“(x)p(x)dx, L<t<t,.
Integrating (1) from ¢, to ¢ (where t,<t<t,), we obtain (because of (36))

u’(t)=1—f[ p(x)u“(r(x))dx?l—J” G(x)p(x)dx =

N )=

=1 —j G(x)p(x)dx=1 —%=

Thus u'(t) has no zeros to the right of ¢,, i.e. the solution u(z) of (1) which
satisfies the initial conditions (36) is non-oscillatory. This completes the proof.

Corollary 5.1. Let a >0, 1(t)eC},, ., 0<t'(t)<t ® on some neighborhood
0,(*) (0<f<1) and

=

f t"Pep()de<oo.

Then (1) is nonoscillatory.

Corollary 5.2. Let a>0, t(t)eCj,. », 0<t'(t)<t ' on some neighborhood
0,(<) and

%

J’ In“t p(t)dt <.

Then (1) is non-oscillatory.

Theorem 5 and its corollaries show that the argument delay will influence the
oscillatory properties of solutions of (1) if 7'(¢+) approaches zero sufficiently
quickly, where the “sufficient speed’” depends on the function p(¢), which was to be
expected anyway.
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Example 3. Consider the equation

—

W)+ —m —

16 \/_2' [2e (z(1))=0. (37)

For t(t)=1t the equation is oscillatory, because J t¥ p(¢)dt = . By Corollary 2.2,
(37) is oscillatory for 7(¢) =% since
f (7@ bp(e)dr =0 .

For t(t)=4¢%, (37) has a non-oscillatory solution according to Corollary 5.1,
because

J 9P ()dr <.

A non-oscillatory solution of (37) for 7(t) =4t is u(t) =1
Example 4. Consider equation

u"(t)+% ?-’:Ttui (x(t))=0. (38)

For 7(¢) =t this equation is oscillatory, as f tp(t)dt = o, By Corollary 4.2, (38) is
also oscillatory for 7(¢) =V, because

Jmt'_*p(t)dt=°°.

However, for t(¢) =Int the equation has, according to Corollary 5.2, a non-oscill-
atory solution, because

J In’t p(¢)de <.
u(t)=r is a non-oscillatory solution of (38) for 7(¢)=Int.
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BIIUSHUE 3AITA3bIBAHHUS APITYMEHTA
HA KOJIEBJIEMOCTb PEUIEHUM
INOSEPEHUHAIIBHOIO YPABHEHHS BTOPOI'O INMOPSOKA

Su Orpucka
Pesome

B pa6oTte paccmatpuBaercs anddepeHUHanbHOEe ypaBHEHHE
u"(t)+p(t)u(z(t))=0. (1)

IMpeanoaaraercs, urto ¢pyHkums t(t) € C,, ., HeyObIBalOWaAs U
t(t)<t, limz(t)==.
t—e

Teopema 1 (TeopeMa 2) naeT HeO6X0AUMOE (ROCTAaTOYHOE) YCIOBHeE Kone6GneMocTH ypaBHeHus (1) ecnu
0<a <. Teopema 3 (Teopema 4) nMpuBOAMT Heo6GXOAHMMOE (JOCTATOYHOE) YCIOBHE KOJIE6IEMOCTH
ypaBHenus (1) ecau a > 1. Teopema 5, B npeanoxenun 4to 7(t)€ C|y, ~, ¥ a >0, aeT [OCTaTOYHOE
ycaoeue HekosnebnemocTH ypaBHeHus (1). ITpu nomolum 3THX TeopeM aBTOp 3aHHMAETCH BOMPOCOM
KakuM 06pa3oM MU3MEHSIOTCS JOCTAaTOYHbIE YCIOBHA Koae6aeMocTH ypaBHeHHs (1) B 3aBHCHMMOCTH OT
XapakTepa M3MeHeHus (yHKUMM T(f) M MPHBOANT HEOOXOMMMbBIE YCJIOBHMS IS TOro, YToObl 3ana3-
abiBaHue (1) BAUANO HAa KoaeGaeMocTh peleHuit ypaBHeHus (1).
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