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EXISTENCE OF POSITIVE SOLUTIONS TO
VECTOR BOUNDARY VALUE PROBLEMS II

ILJA MARTISOVITS
(Communicated by Milan Medved’)

ABSTRACT. We show that the question about the existence of a positive solu-
tion to certain m-dimensional differential system of second order with Dirichlet
boundary condition can be answered by multiple (step-by-step) solving of differ-
ential equations of the first order.

1. Introduction

In [2] M. Feckan has dealt with the existence of a solution of the problem:

" = (f,(@) + g(w) u— s(u) v,
=" = (a+r(u) v—-12?,
(1.0.1)
u(0) = u(m) = v(0) = v(m) =0,
u(z) >0, v(z)>0 forall ze (0,7),
where the functions f, g, r, s fulfil the following conditions:

f()()ECI(RXR’R)a g7S7TECI(R>R)7

25050, L0,

9(0) =¢'(0) =0, g'(u) <0 for u>0,

r(0) =7r'(0) =0, s(0)=s'(0)=0,

r/{0,00) < 1, r'/(0,00) >0, 5/(0,00) >0,
limg = —0 for z— 0.

Using the bifurcation method he found a necessary and sufficient condition
for the parameter a that problem (1.0.1) may have at least one positive so-
lution u, v.

1991 Mathematics Subject Classification: Primary 34B15.
Key words: shooting method, positive solution, Brouwer degree.
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ILJA MARTISOVITS

This is the second part of the paper, in which we investigate the existence of
a positive solution depending on definition intervals which are determined by the
Dirichlet boundary conditions for single components of the solution. We consider
the second-order n-dimensional vector differential system, n > 2 (see (3.0.1)).
Attention to similar problems has been paid in papers [7], [4] where solutions
in a cone have been studied. Another problems with similar formulation or with
similar method of solution (degree theory) were studied in papers [3], [1]. In
this whole paper the question about the existence of solution to n-dimensional
differential system can be answered by multiple (step-by-step) solving of differ-
ential equations of the first order. This can be considered as the contribution of
this paper. In the first part [8] some auxiliary lemmas were stated which will be
proved in this part of the paper. Using them Theorem 6.1 (in [8]) was proved
which gives a sufficient condition for definition intervals that guarantee the exis-
tence of a positive solution to problem (3.0.1). In this part of the paper we shall
also introduce and prove the second main result — Theorem 5.3 which gives a
necessary condition on definition intervals for the existence of a positive solution
to problem (3.0.1) under some assumptions on the form of the right sides of that
problem. The last main result in this part is Theorem 6.1 which gives simple
conditions on the right sides of problem (3.0.1). This result gives a necessary
and sufficient condition for the existence of a positive solution to our problem.

2. Auxiliary lemmas

In this section auxiliary lemmas are stated and proved which were necessary
for previous part of this work [8].

LEMMA 2.1. Let the function u € C}y (a,b) fulfil the following conditions:

1)
u(z) >0 for all z € (a,b). (2.1.1)

(2)
u(a) =0, u'(a) =0. (2.1.2)

(3) Let for almost every x € (a,b) the inequality
u'(z) < M - (Ju'(2)] + u(z)) (2.1.3)

hold, where M > 0 is a suitable fized constant.

Then the following assertion is true:

u=0 on the interval (a,b). (2.1.4)
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EXISTENCE OF POSITIVE SOLUTIONS TO VECTOR BOUNDARY VALUE PROBLEMS I

Proof. By contradiction. Hence, let y € (a,b) exist such that u(y) > 0.
Let z, be the first zero point of function u on the left to y. Let ¢ be chosen so
small, that the following condition holds

alzy,<zyi+e<y<b,
u(z,) =0 =1u'(z,), (2.1.5)
Vz € (zg,zy +¢€) u(z) > 0.

Let us now define auxiliary function g on the interval (z,z, + €)

g(z) & max )(u'(t)) : (2.1.6)
te(xo,x

The following assertion is evident:
(2.1.7) If we put g(z,) = 0, then function g is continuous and nondecreasing.

Now we shall also try to prove absolute continuity of g. Let us choose > 0
arbitrary small. Using the fact that u'(-) is absolute continuous, we can choose
d > 0 such that it holds:

(2.1.8) For arbitrary choice of d-partition z;, < ¢, < d; < c¢,--- < ¢, <d,

n Z
<y + e such that ) (d, —c;) < we have ) |[u/(d,) —u'(c;)| < 7.
i=1 i=1
Let us verify that this ¢ fulfils the condition analogous to (2.1.8) where u'(+)
is replaced by function g(-). Let us choose fixed partition (c,,d,,...,c,,d,) and

1 €{1,2,...,n}. According to (2.1.7) only two possibilities can now be true:
(1) g(d;) > g(c;).
(2) 9(d;) = g(c;)-

In both cases we can find cé , d% such that

1 1
¢; <¢ <d; <d,,

lg(d;) — g(c,)| < |u'(d}) —u'(c})| . (2.1.9)

In fact, let us verify:
(1) If g(d;) > g(c;), then from nondecreaseness of g it follows d; > c.. Let
us put ¢! = max{t; te€(c,d;), g(t)= g(c)}-

If we at first suppose that u'(c}) < g(c}), then from continuity of u'(-) it
would follow for sufficiently small £, > 0 that u'(t) < g(c!) = g(c;) for all ¢

from interval (¢}, ¢ +¢&,), what would contradict our definition of ¢!.

So, the case u'(c}) > g(e!) = g(c;) must be true, from what with (2.1.6) we
get
u'(cj) = g(e;) = g(cl) . (2.1.10)
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Because we assume g(d;) > g(c;), according to (2.1.6), u'(-) must reach, on the
interval (c;, d,), the value g(d;) at some point d; . Then the following estimations

(2.1.7) (2.1.6)
must hold v/(d}) = g(d;) > g¢g(d}) > u'(d}) from what we get

u'(d}) = g(d;) = g(d}). (2.1.11)

So, inequality (2.1.9) follows from (2.1.10), (2.1.11) if we are assuming g(d;) >
g(c;) and nondecreaseness of g.

(2) If g(d,) = y(c;), then choosing c} = ¢; and d} = d, we see that (2.1.9)
is fulfilled.

From (2.1.9) for i = 1,2,...,n, when we realize that (c},d},...,cl,dl) is a
d-partition in (2.1.8), we obtain

S lald) = gle)l < S () —u'(ch)] <7 (2.1.12)
=1 =1

and by it the absolute continuity of g is verified.
Therefore ¢'(z), u"(x) exist almost everywhere in the interval (z,z, +¢€).
Now we can define
g'(z) forall z € (zy,z,+ €) such that
f(z) € g'(z), u"(z) exist and (2.1.3) holds, (2.1.13)
0 for remaining z € (zy, T, +¢€) .

In particular we can write f(z) = ¢'(z) almost everywhere, and so from (2.1.7)
and (2.1.13) it follows that f(z) > 0. Now we shall prove that on the interval
(wy,zy +¢€) it holds that

o) SM-(1+e)-glz,)- (2.1.14)

So, let x; be arbitrary but fixed. Two following cases are now possible

(1) f(xz;) =0, then (2.1.14) holds evidently.
(2) f(z,) >0, then from (2.1.13), =, simultaneously fulfils

u'(zy) < M- (|'U'(-'L'1)| +U(£171)) and 9'(z,) = f(x,) > 0. (2.1.15)

(a) Let us now exclude the case u'(z,) < g(z,). By contradiction: If it
were true, then from continuity of /(-) we would obtain that «'(z) < g(ry) is
true in some neighbourhood of z,, exactly for all z € (&}, z, +¢£,) and then
(2.1.6) would imply that on the same interval g(-) = g(z,;), what implies the
contradiction ¢'(z;) = 0.
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EXISTENCE OF POSITIVE SOLUTIONS TO VECTOR BOUNDARY VALUE PROBLEMS II

(b) So, (2.1.6) implies
u'(zy) = g(z,) > 0. (2.1.16)

Let « € (z,,z, + €) be chosen arbitrarily. From definition of g(-) in (2.1.6) we
know that t, < x exists such that u'(t,) = g(z). Let us exclude thecase t, < z,.

(2. (2.1.7)
If it were true, we could obtain g(z) = v/(t,) < g(t ) g(:c ) < yglx),
what implies ¢g(z,) = g(z) and then from (2.1.7) we obtain that 9(-) is constant
on the interval (z,,z), from what it follows that ¢'(z,) = 0, and by (2.1.15) we
obtain the contradiction.
So, z, <t, <z holds, and we can write
9(z) —g(z;) _ w'(t,) — 9(z)) @r10) W(E,) —w'(ey)  W(t,) ~v'(z,)
T -z, T -z, T —x, - otz
If 2 — zi, then evidently ¢, — =i and so ¢'(z,) < u”(z,). From this we

obtain

(2.1.15) , 7 (2:1.19)
f(xl) =9 (171) <u (wl) < M- (|u (371” +u( 1))
L1y, (9(z,) + u(=z, (2.L:5) ( 9(z,) + u'(t) dt)
. (g(wl) + [ att dt) CE M (gl + (21— 20) - 9(a)

< M-(1+¢) g(z)
and so we verified (2.1.14).

From absolute continuity of ¢(-) and from (2.1.14) it follows that for almost
every « € (zg, xy +¢€)
!

(g(z) . e—M-(1+e)-(=r—wo)) — o~ M-(14e)(z—w0) . (g'(z) —M-(1+e¢) -g(z)) <0
where we have also used (2.1.13). By integration from z, to = for z from the
above interval we obtain

gla) - e M OHe =) < g(a) P27 0

Because g(-) is non-negative, we obtain ¢(-) = 0 on interval (z,,z, + €). This
T

together with (2.1.6) implies u(z) — u(z,) = [ «/(t) dt < 0. And finally

Zo

(2.1.1) 1.
< ule) <ulzy) “="0,

what implies u(-) = 0 on interval (z,z, + €) in contradiction with (2.1.5). O
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LEMMA 2.2. Let the function u € C},(a,b) fulfil the following assumptions:

1)
u(z) >0  forall z € (a,b). (2.2.1)

(2)
3z, € (a,b)  u(z;)=0 & ¥/(z;) =0. (2.2.2)
(3) Let for almost every x € (a,b) (in the meaning of the Lebesgue measure),
the inequality
u"(z) < M- (Ju'(z)| + u(z)) (2.2.3)
holds, where M > 0 s a fized constant.
Then the following identity holds:

u=0 on (a,b). (2.24)
Proof. It can be done by an analogous method to that used in the proof
of Lemma 2.1. 0O

LEMMA 2.3. Let the functions f(z,uy,u,), g(z,vy,v,) satisfy locally Cara-
théodory’s conditions on the set ((a,b) x Rf x R) and the conditions:

(1)

f(z,0,0)=0 for all z € {a,b). (2.3.1)
(2)
fl@, vy, a-uy) 2 o fz,ug,u,)
for all (z,u,,u,) € ((a,b) x Rf x R) and for all o >1. (2:3.2)
(3) The function f satisfies locally Lipschitz’s condition
|f(@,uy,u5) = f(@00,09)] < Ly - (Juy = vy + [uy = v,]) - (2.3.3)
(4)
9(z,uy,uq) > flx,uy, uy) (2.3.4)
for all (z,u;,u,) € ((a,b) x Rf xR).

Let the functions u(-),v(-) € AC'({a, b),R{f) be solutions of the equations
u'(z) = f(z,u(z), ' (z))

or almost all z € {a,b 935
v (z) = g(z,v(T),v'(z)) f (a,b) (2.3.5)
which satisfy

uw(z) >0  forall z€ (a,b), (2.3.6)
v(a) < u(a), v(b) < u(b).
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EXISTENCE OF POSITIVE SOLUTIONS TO VECTOR BOUNDARY VALUE PROBLEMS Il

Then at least one of two assertions is true:
v(z) <u(x)  foral z € (ab),
Simultaneously < (Jv(a) — u(a)| + |v'(a) — w'(a)]) >0,
(Jo(b) = u(b)] + |v'(b) — u'(B)]) > 0. (2.3.8)

Ja>1 v(z) =a-u(z) forall z € (a,b). (2.3.9)

Proof. If case (2.3.8) is false, then we shall show that case (2.3.9) must be
true. It shall be useful for us to define the following auxiliary functions ¢, and
¢, on the interval (a,b).

QOU(IE) d:ef ( + (1 . m—aU(z) b—x
Sa ( _"’a)' b—a) ' (3b+(1—8b)' b—a) (2310)
o) & - h
° (sa+(1=5,) F2) - (s + (1= 5p) - £2)

where
{0 if u(a) =0, d {0 if u(b) =0,
s = an Sy =
%a 1 if u(a) >0, b 1 if u(b) > 0.

Let us define the values of functions ¢, , ¢, also at points a, b so that these
functions be continuous at boundary points a, b. (The existence of boundary
limmits in these cases, when at least one number from s_, s, is equal to zero,
follows from inequalities (2.3.7).)

From assumption u > 0 on (a,b), it follows that also ¢, > 0 on (a,b). If
the case ¢, (a) = 0 were true then from the definition it would follow u(a) = 0,
u’(a) = 0 what according to (2.3.1) and (2.3.3) implies that u is identically equal
to zero and this would be a contradiction with (2.3.6). Therefore ¢, (a) > 0 and
similarly ¢,,(b) > 0 must be true. From continuity of ¢, there exists a suitable
small € > 0 such that:

a’

Vz € (a,b) v, (z) >e>0. (2.3.11)
Since (2.3.8) is supposed not to be true, by (2.3.10) it easily follows
xz€(a,

For a > 1 let us define the function
def

Y(e) = min (a9, (z) = ¢, () (2.3.13)

According to (2.3.11) function 1 is increasing, continuous and for a suitable
great « also positive. From (2.3.12) it follows that (1) < 0 and therefore there
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exists a unique number «, > 1 (which we shall denote in the sequel only by «)
such that:
P(a) =0. (2.3.14)
Let us consider two possible cases:
Jz, € (a,b) a- @, (xy) =@, (x,) =0.
Vz € (a,b) a-p,(z) =@, () >0. (2.3.15)
Now we shall show that on the interval (a,b) there exists a point z, with the
following property:
a-u(z;)—v(z;)=0  and a-u'(zy) —v'(z,) =0. (2.3.16)
If the former case is true, then by (2.3.10), (2.3.13) and (2.3.14), statement
(2.3.16) follows. So let us assume that the latter case is true. Then according
to (2.3.14) without loss of generality we can assume that « - ¢, (a) — ¢, (a) =0
(because in the other case the same would be true at the point b). If we now
consider (2.3.10), then we obtain:
(1) If s, = 0 is true, then u(a) = v(a) = a-u'(a) —v'(a) = 0.
(2) If s, =1 is true, then a-u(a) =v(a) > 0.
In the first case we obtain the validity of (2.3.16) for z; = a. Only the second
case is remaining;:

1<a (2.3.7)
0<u(a) < a-u(a)=v(a) < u(a).
This implies @ = 1, and therefore (2.3.15) is transformed to the statement for
all z € (a,b), u(z) > v(z) is true. Because we assume that (2.3.8) is not valid,
at least at one of the points a or b (without lose of generality let it be a) it
must hold: u(a) —v(a) = u'(a) —v'(a) = 0, what immediately implies (2.3.16),
because a = 1.
Now by (2.3.16) and (2.3.14), if we define

w(z) ey u(z) —v(z), (2.3.17)

we obtain that
w(z,) =w'(z,) =0, w(z) >0 on (a,b). (2.3.18)
Let us verify the remaining assumption of Lemma 2.2. Almost everywhere it

holds:
w" (z) (2.3.17) a-u"(z) - U"(x‘)

C29 0 f(m,u(@), (@) - g(z,v(z), v (@)
(2.3.2),(2.3.4)
f(il,', - 'U,((L'), « - ’u,,(ZE)) - f(.fl),’l)(ﬂ?), ‘U,(SL'))
Ly (Jau(z) = v(z)| + |ov' () — o' (z)])

Ly (Jw(@)| + lw'(z)]) -

e IA A

—~
[
—
~

~—
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EXISTENCE OF POSITIVE SOLUTIONS TO VECTOR BOUNDARY VALUE PROBLEMS i

In the last inequality we have used that by (2.3.3) there exists a Lipschitz
constant on the compact set K = (a,b) x (0, M) x (—M, M) where M =

m<a>2>{|a -u(z)], |- v/ (z)], |v(z)|, [v'(z)|}. By this, together with (2.3.18), we
rE(a,

have verified all assumptions of Lemma 2.2, from which it follows that w(-) =0
on (a,b) what implies validity of (2.3.9). 0O

LEMMA 2.4. Let the functions f(z,u), g(z,v) satisfy locally Carathéodory’s
conditions on the set ((0,a) x R}) and all assumptions (2.3.1), (2.3.2), (2.3.3)
and (2.3.4) from Lemma 2.3, where f, g do not depend on arguments u.,, v, .
Let now v(-) € AC'(0,a) be a solution of the equation

v (2) = g(z,v()) .

(2.4.1)
v(z) >0 forall z € (0,a), v(0)=0, v (0)>0, wv(a)=0.
Then the solution u(-) of the equation
u'(z) = f(z,u(z)), w(0) =0, '(0)=1'(0) (2.4.2)

has a further zero in the interval (0,a).

Proof. By contradiction. If the assertion were false, then u should be in
the interval (0,a) positive, what together with (2.4.1) and (2.4.2) implies that
assumptions of Lemma 2.3 are fulfilled. When we use it, we obtain that at least
one assertion of (2.3.8), (2.3.9) must be true. The first assertion cannot be true,
because by (2.4.1), (2.4.2) it follows that

(lu(0) = v(0)[ + |u'(0) = v'(0)]) = 0.

Also the second one cannot be true, because it is in contradiction with our
assumption:
2.4.1
u(a)>0( = )v(a).

Hence, proof is done. O

3. Preliminaries

Throughout the paper we shall use the following notations
(1) E, “(0,00) x (0,00) x -+ x (0,00).

(N

n times

(2) I} is defined as the compactification of topological space I, by adding

point oo and defining its base of neighbourhoods
0, L{ZeE,; ||# >k} u{oo}.

n?
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dﬁf

8) E,,={Z€E,; z,=0 for some i € {1,2,...,n}}.
@ E,, % 5,\E,,
6) Ei,<E, U {oo}.
6) E;. defE L U{co}.
In the paper we w1ll study the problem

uf (z) = (z,uq(2), uy(2), .. ., u, (7)),

F,
"(z) 2 F, , e Uy (),
i"(z) S Pz, iz) < (@) _ 2211 13w, - () (3.0.1)

u(z) *= F, (z,u,(7), uy(x), ..., u,(z)),
with the boundary conditions

u;(0) = u,(T;) =0

Vz e (0,T) u,(z) >0

In the sequel we shall assume some of assumptions:

Vke{1,2,...,n} VzeR] Vu €eR

for i=1,2,...,n

3.0.2
Fi(z,uy, w500, q,.05u,) = 0. ( )
Vke{1,2,...,n} VzeR] Vu eR
3.0.3
F(z,uy,...,u,) =F, (x, "1+2|"ﬂ, UQ“;]"QI,..., “"+2|""l) ( )
Vke{1,2,...,n—2} VzeR] Vu, €R u - up,,...u, =0
Fi(z,uy,uy, ... u,) = F(z,up,...,u;,0,0,...,0).
n—k times (304)
Vke{1,2,...,n—1} VzeRf Vu eR
OF, OF),
#(w,ul,...,uk_l,O,ukH,.. )_ (.c Ugyevy 1,0, 0,...,0).
k k n—k times
(3.0.5)
3.0.6) The functions F, (x,u,u,,...,u, ) and ﬂ*— Ty Uyy Uy ..., U ) are COm-
k 172 n 172 n

tinuous in (u;,u,,...,u,) on the set En f01 any fixed = € R, , fo
all ki€ {1,2,...,n} and F,(z,u;,u,,...,u,) are measurable in r €
(0,00) for each fixed (uy,...,u,) € E, and forall k € {1,2,...,n}.
(3.0.7) —éi;*_-(t Up, U,y ooy U
k.ie{1,2,...,n}.

) is locally bounded on the set Ry x [£ for all

T



EXISTENCE OF POSITIVE SOLUTIONS TO VECTOR BOUNDARY VALUE PROBLEMS Ii

(3.0.8) For all T > 0 there exist continuous functions ¢, (A),...,c,(A);
¢;(-): (0,00) = (0, 00) such that )\lim ¢;(A) = oo forall i € {1,2,...,n}
—00
and
Vke{1,2,....,n} Vae(0,T) YA>0
Vi€ {i@; u, =c,(\) and 0 <wu, <¢;(A) forall i € {1,...,n}, i #k}
F (z,uy,uy,...,u,)>0.

' 'n

Yk €{1,2,...,n—1} VzeR} Vu,eRf Vu, >0

OF, 1
TyUyyeeyUp, 0,...,0)> —F, (z,uy,...,u., 0,...,0).
o +( 1 k ) Uy k( 1 k ) (3‘0.9)
n—k times n—k times
VscEIR{)" Vul,uz,...,un_IER{)" Vu, >0
1
au—j:(x,ul,uw ceou, 1,0) < u—Fn(:c,ul, Uy g, Uy,) - (3.0.10)

Vk,2<k<n-1 Vi, 1<i<k-1 Vu,uy,...,u, ERf VzeRS
OF,

Ew +(z Uy, Uny ooy Uy, 0,0,...,0) <O

(3.0.11)

n—k times

(3.0.12) gr+ (Ty 5wy Uiy Uy Uy gy -5 Uy, g, 0) i8S nONincreasing in u in the in-
terval (0,00) forall 7, 1 <i<n—1,forall uy,...,u,_, % .- U,
€ R{, and for all z € R{ .
Vk, 1<k<n-1 ‘v’:cEle' Vul,uz,...,unERX
F(@, gy e Uy Uy 5o Uy) > Fy (@, 0y, 00,1,0,0,...,0) . (3.0.13)
n—k times

We will study the question when problem (3.0.1) has at least one positive so-
lution. We shall apply the shooting method and therefore the following definition
of the mapping T'(&) will be of use.

— def

DEFINITION 3.1. Let @ = (ay,.

~,a,) € E . Let @ be the solution of the
tollowing problem

@"(x) "= F(z,d(x)),
@0)=0, ad'(0)=a

If for cach component u,, ¢ = 1,2,...,u, of solution @ there exists a point T,
such that

0<T, <oo, u,(T,) =0, u(z) >0 forall , 0 <& <T,,

(3.1.1)
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then we define T( )def (1,,T,,...,T,).

In the case that at least one component wu,(+) is positive on the whole interval
(0, T, (@), where (0,T, . (&) is the maximal interval where @ is defined,

) Tmax
e

then we put T(d@) = oo € E;.

In the following definition the domain of T will be extended from Et to E, .
) def ui(z) _ wi(x)
a; u;(0)

For this purpose we use the functions ,(z

DEFINITION 3.2. Put

N N def 1 - N

Gy Uy, oy, .., @) = o Tyl o, o) forall «, >0
1
(3.2.1)

and
G(z)iy, ... 10,,0,...,q,)

def __(9F7; 7 . ;]

au—i—- (Z‘ u’l Ckl’ u'i—l 1 1’0 uz+1.ai+1""’un'an). 2

forall o,=0.
Let now @ € E;.
(1) If @ = oo, then we define T(@) = )
(2) If & # oo, then we shall consider the solution 4 of the following problem
i"(z) "= G (g, i(z), @) ,

—

@0)=0, @'0)=(@1,1,...,1). (3.2.2)
\q’—/
n times

Let (0,T,,.(@)) be the maximal interval where the solution @ can be
defined.
(a) If there exists i € {1,...,n} such that u,(z) > 0 for all z €
(0,7,,,.(@), then we define
T(@) ¥ oo
(b) Otherwise let T, be the zero point of 4, for i € {1,2,...,n} such
that
ﬁz(T) = 07 Ti € (0 Tmax( )) ’
and
,(x) >0 for all € (0,T,).

Then we define



EXISTENCE OF POSITIVE SOLUTIONS TO VECTOR BOUNDARY VALUE PROBLEMS II

In the following lemmas we shall show the correctness of the previous defini-
tions as well as the relation between @ (@) and @, T_._(@&).

’ l]’l ax max

LEMMA 3.3. Let F fulfil (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Then G(z,u, &)
defined in Definition 3.2 satisfies Carathéodory’s conditions.

Proof. From the second part of assumption (3.0.6) it follows that G, is
for fixed %, & measurable in z in the interval (0, c0).

Let us show its continuity in @, &. From assumption (3.0.3) we have that

5 (. ] i+ i | T .
G(z, Sty ) = Gy, Ty, )

Therefore it is sufficient for us to prove the continuity only for (ﬂ', d’) €
(E, x E,). From (3.0.2), (3.0.6) it follows

Gi(m,fﬁ',&') =di-/%(m,al Ay Pty a,d) dp. o (3.3.1)

Continuity of the right~hand expression follows from continuity of

8F
™ +(w Vi s V15D Uy Vs -5 V) AP

in v € E_ fora ﬁxed z and this easily follows from assumption (3.0.6) (from
Contmmty of a—F’-) The last condition what we need to prove is the existence of

integrable local maJorant of function G|, and this follows from (3.3.1) and from

assumption (3.0.7). Hence, function G (z, @, @) fulfils locally Carathéodory’s con-
ditions. O

LEMMA 3.4. Let F fulfils (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Then the problem
(3.2.2) has the property of global uniqueness.

Proof. Let us choose & € E, arbitrary, but fixed. Let #(-) and ﬁ’() be
two solutions of problem (3.2.2), deﬁned in the intervals (0, T},.,.) and (0,7,.,.)

max max

respectively; we shall show that they are identical on the intersection (0, T)) of
these two intervals.

Let
Mo (i ie{1,2,...,n}, o, =0},
M i ie{1,2,...,n}, a;>0}.
Now we define new functions in the interval (0,T,) for i € {1,2,...,n} by
v(@) E o @) ) E e ().
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Assuming Definition 3.2 we obtain that these functions fulfil:

vf (z) *E Fy(,v,(2),v,(2), . . ,1;”(1_)) for all i€ M*;
v;(0) =0, Uy = @y (3.4.1)

v, () =0 forall i€ M°.
(3.4.2)

By (3.4.2) we see that in problem (3.4.1) only functions v,(-) for ¢ € M+ are
entering. From assumption (3.0.7) we get that F, fulfil locally Lipschitz’s condi-
tion and this implies the property of local and global uniqueness. Therefore for
all i € Mt we have

v(z) = 9;(z) forall z€(0,T,) = wu(z)=4d;(z) forall z€(0,T,).

»Lp
Now it remains to verify that u,(z) = ,(z) for all z € (0,7))) and for ¢ € M°.
When we use Definition 3.2, we can write for all 1 € M?°

ui(2) £ |uy(@)]

ull (z) = p,(z) - —’—2———— , o (0)=0, ul(0)=1,
i i (3.4.3)
0"(a) % po) LN g 020, a0 =1,
where
p(z) & def gF-I- (z,v,(z),...,v,(x) = %(x,v‘l(x), U ()

From assumption (3.0.7) it follows that p,(z) is locally bounded, therefore right-
hand sides of (3.4.3) fulfil locally Carathéodory’s, and also locally Lipschitz’s
conditions, and from uniqueness of solutions of (3.4.3) it follows: u,(z) = 4, (z)

for all z € (0,T,). Hence, we have proved u(z) = d(z) forall z € (0,T). O

Ty
Note. From Lemmas 3.3, 3.4 correctness and uniqueness of Definition 3.2 fol-
lows.

The following lemma is useful for us to estimate some solutions of prob-
lem (3.1.1).

LEMMA 3.5. Let F fulfil conditions (3.0.2), (3.0.3), (3.0.6), (3.0.7) and (3.0.8).
Let T > 0 be a fized number. Let ¢, (X),...,c,(X) be some functions satisfying
(3.0.8). Then the following assertion is true:

Let @ € E, be fized. Let u(-) be the mazimal solution of problem (3.1.1)
which is dcﬁned on the interval (0,T, . (@), that is

i"(z) = F(z,i(z)), (35.1)
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If
T<T,, (&) (3.5.2)

and
w,(T) <0 forall i€ {1,2,...,n}, (3.5.3)
then u,(z) < ¢;(0) for all i € {1,2,...,n}, for all z € (0,T,,, (&)).
Proof. By contradiction. Let all assumptions be fulfilled and let the asser-

tion be not true. So, for suitable & € E solution %(-) of problem (3.5.1) would
fulfil

32'1 € {1727 T 7n} E]:L'l € <07Tmax(&)) uil(.’L'l) 2 Cil(o) >0. (3-5-4)

Assuming (3.5.3) we obtain that if some w, fulfils u,(T) <0, then there is a
point z, < T such that u,(z,) = 0, uj(x,) < 0 and this by assumptions (3.0.2),
(3.0.3) and also by (3.0.7) (which mean locally Lipschitz conditions for F;),
implies that u;(z) = uj(z) - (z —zy) for all z € (z,,T,,,.(&)) and therefore u,
is not positive here. By (3.5.4) this gives

34, €{1,2,...,n} Iz, €(0,T) w, (z,)>¢;(0)>0. (3.5.5)

Let us define auxiliary function 1,
%d:efmax{gﬁ(g; 1<i<n, ogng}. (3.5.6)

Evidently this is a continuous function and if we also assume /\lim c;(A) = o0
—00
(by (3.0.8)), then we get /\lim 1y = 0. From (3.5.5) we obtain 1, > 1, so the
—>00
following definition is correct

Ao Emax{r: ¢, >1}. (3.5.7)

From this definition of A, we immediately have:
VA> A, VYze(0,T) Vie{l,2,...,n} u,(z) < ¢;(A), (3.5.8)
VA>), Yze(0,T) Vie{l,2,...,n} u,(z) < ¢;(A).  (3.5.9)

When we assume %, = 1 and also definition (3.5.6), we have 3z, € (0,T) such
that 3i, € {1,2,...,n} for which u (z,) = ¢, (A;). Let z;, € (0,T) be the
smallest =, with the introduced property, so according to definition we have

vie{1,2,...,n} Vze(0,z,) u;(x) <c;(A)
and (3.5.10)
Jiy €41,2,...,n} u;, (Tg) = €5, (A) -
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Let us consider 4, from (3.5.10). According to u; (z,) = ¢; (},) and (3.5.9) we
have u; (z,) = 0. Let us define function v(-) in some neighbourhood of z, as
the solution of the following problem:

v'(z) = p(z,v(z)),
() = u; (79) = ¢;,(Ao) v'(z,) = uin(-’”o) =0,
where (3.5.11)
p(z,v def F; (z,ul(z), . ,uio_l(w),max{v, cio()\o)}, .. ,un(:z)) .

Because function p(z,v) fulfils locally Carathéodory conditions, there exists a
solution of this problem defined in an interval (x, —d,z, + d), where § > 0 is
so small that the following conditions also hold:

Vz € (x5 —d,z) v(z) <¢; (Mg +1)

) (3.5.10) (3.5.11) . (3.5.12)

(3.5.8
(i, +1) > uy (zo) = "¢ (N) =" v(zyg))-

Hence, if we put for arbitrary = € (z, — d,z,), v, def max{v(z), cio()\o)}, then
v, € (¢; (M), ¢; (Ag + 1)) and so there exists some A € (Aj, Ay + 1) such that
v, = ¢;,(A). Then from (3.0.8), (3.5.11) and (3.5.9) we get for all z € (z,—4, z,),
p(z,v(z)) > 0. When we use this, we obtain by integration

Zo

v'(z) N v'(z4) — /P(Z,’U(z)) dz < v'(z,) (3511 4

€T
Hence, function v(:) is on the interval (z, — §,,) nonincreasing, and therefore

Vz € (zy—9,z,) v(z) > v(zy) (8.2.11) ¢, (Ag) - (3.5.13)

Thus, using definition (3.5.11) of function p(z,v) we obtain that function v is
in the interval (x, —J,z,) a solution of the following problem:
v'(z) = Fy (z,uy(2), .y, (2),0(2), 15 (2), -0, (7))
v(z,) = Uy, (o), v,(%) = u;[, (2) -

Because F_ fulfils locally Lipschitz conditions, from uniqueness of this problem
we get, when we realize that u, is also solution of this problem, that:

Va € (zy—9,z,) u, (z) = v(z),
what together with (3.5.13) and (3.5.10) gives us the contradiction. O

The following leinma deals with the relation between solutions @ and 7 of
problems (3.1.1) and (3.2.2), respectively.
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LEMMA 3.6. Let the function F fulfil (3.0.2), (3.0.3), (3.0.6) and (3.0.7). Let
@ €L, . Let () and 11’() be the mazimal solutions of problems (3.1.1) and
(3.2.2) respectively, which are defined on the intervals (0,T) and (0,T), respec-
tively.

Then T =T and u,(-) =, -,(-) forallie{1,...,n}.

Proof. Validity of v,(z) = a, - 0,(z) for z € (0,T) N (0,T) is evident,
when we realize that functions «; - ,(-) are components of the solution of prob-
lemn (3.1.1) and when we assume also its uniqueness (which follows from (3.0.7)).
Hemnce, it only remains to show that T' = T . From the above procedure it follows
that 7" < T'. Let us show also inverse inequality.

Let

M*d:ef{ie{1,2,...,n}; a; >0},
M {ie{1,2,...,n}; a,=0}.

Let w(-) be the solution of (3.1.1) defined in the interval (0,7). By means
of it we shall construct a solution ¥(-) of problem (3.2.2), which will be also
defined at least in the interval (0,7") and then the proof will be done if we use
the uniqueness of this solution (Lemma 3.4), from what we have (-) = (-)
on (0,T). Let us put:

def U, ()

v (z) = ) z€(0,T), ie M+. (3.6.1)

@;

Because «; = 0 for ¢ € M?, if we later define the other v;(-) arbitrarily, then
this will be always true:

v;(0)=0, vj(0)=1 forall i€ M"

and

! (z) Fy(e, 000 (@), o 0 ,(2)) . ze(0,T). (3.6.2)

Let us choose i, € M? arbitrary. We define Uio(') as the solution of the following
problem:

o OF, v, (@) + |v; (2)]
I);:)(.I‘) E W%(zaal 'UI(IL'),.. QO 1)”(:1,>) ' 0—2_0_’ (363)

v;,(0)=0, v (0)=1.

We sce that the other v,(-) for i« € M?, i # iy, do not appear directly in this
cquation and these are defined by formula (3.6.1). Function p(z,v; ) (in the
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right-hand side of (3.6.3)) fulfils in v; locally Lipschitz condition in the interval
of its definition (0,T), so we have guaranteed existence of the maximal solution
and also its uniqueness. Moreover from the following estimate

F
Ip(z,v;,)| < 90 + 2 (z,a; v, (z),...,q, v, () vy, |

and from assumption (3.0.7) we would get the estimation of v; () on every
compact interval, and this enables to prolong its definition interval up to (0,7).
Hence, #(-) is defined in the whole interval (0,T) and from (3.6.2), (3.6.3) and
Definition 3.2 it follows that v is solution of problem (3.2.2). So the proof is
complete. O

4. Continuity of the mapping T

In this section we shall prove the continuity of mapping T.

THEOREM 4.1. Let F fulfil (3.0.2.), (3.0.3), (3.0.6), (3.0.7) and (3.0.8). Then
the mapping T: E; — E defined in Definition 3.2 is continuous.

Proof. We shall prove the continuity at every point &€ E’; the proof of
this will be divided into several parts and the proof of each of them will be done
separately in the following lemmas.

(1) de E_ and simultaneously T T(c:x‘) €E, ..
The pIOOf is done in Lemma 4.3.
2) de E, and simultaneously T’(d‘) 00, Tmax(c:i) = 00.
The proof is done in Lemma 4.4.
(3) @e E,, and simultaneously T(&) = o0, T, ax (@ @) < .
The proof is done in Lemma 4.5.
4) & = oo what implies f(&) =
The proof is done in Lemma 4.6.
O

LEMMA 4.2. Let F Sfulfil assumptions of Theorem 4.1. Then the mapping T )
from Definition 3.2 is correctly defined and problem (3.2.2) has the property of
continuous dependence of its solution 4 on parameter ~

Proof. Correctness of the definition follows fiom Lemmas 3.3, 3.4 and by
the well-known theorems on ordinary differential equations they also imply the
continuous dependence of solution on parameter & (for example [5; Lemma 6.1]
can be used). a
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LEMMA 4.3. Let F fulfil assumptions of Theorem 4.1. Let ace E} be chosen
so that: R
aeckE, and stmultaneously T %f T(a) € E, ;.

Then the mapping f() from Definition 3.2 is continuous at the point é.

Proof. Let 1:1,'(-) be the solution of problem (3.2.2), where we put @ = a.
We shall prove the following statements:

u'l.(T;) =0,

(0 <0, (4.3.1)

Vie{1,2,...,n}
The first part is evident. The second part will be proved by contradiction: If the
second part were not true, according to definition of T we would get that
ke {1,2,...,n} 4, (T,)=0.

Hence, the component 4,(-) would be a solution of the following problem:

iy (2) = p(z, iy (x),  z€(0,T}),
ak(Tk) = 07 '&;;;(Tk) =0,
where (4.3.2)
def . . R R R R
p(z,u) S Gy, iy (x), .. iy (@), 4, 0,4 (), ..., 0, (2), &y, .., &) -

From Definition 3.2 it easily follows that p(z, u) fulfils locally Lipschitz conditiou
in u and so from uniqueness of solution it would follow that 4, = 0 in the inter-
val (O,Tk), what would give us the contradiction, because according to (3.2.2),
43 (0) = 1 holds. Hence, (4.3.1) is proved. Now we shall prove the continuity
which we need. Let € > 0 be chosen arbitrarily small. From assumptions of this
lemma it follows

0<T, <T,. (@) forall ie€{1,...,n},

m

therefore when we use (4.3.1), we get that for suitable small €, > 0 the following
assumptions hold:

0<e <e, 0<T,—g <Ty+e <T,,(3) forall ie{1,...,n}
(4.3.3)

a,(T, —e,) >0>a,(T, +¢,) forall i€{1,2,...,n}. (4.3.4)

(2
If we use continuity of solutions of problem (3.2.2) on parameter & (proved in
Lemma 4.2), then we can choose a small § such that the following property
holds: For all & € L, with ||& — @] < § we have: If 4(:) is a solution of

I
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problem (3.2.2) for the chosen &, then @(-) will be defined at least in the interval
<0, max (Tl + 61)> and will fulfil the following inequality:

w, (T, — ;) >0>u(T,+¢,) forall i€ {1,2,...,n}. (4.3.5)
If we use the property (which follows from (3.0.2), (3.0.3) and (3.2.2)) that
every solution u; can have at most one zero point in the interval (0,7, . (&))
(because when it reaches the first zero point then it is only linearly decreasing),
then using (4.3.5) we obtain
T4—51<T <T+€1 forall i€ {1,2,...,n},
where T, > 0 are the zero points of solutions u,(-), precisely (T}, T,,...,T,) =

n
T = T(&@) and that is why ||T(@) — T(@)|| < v/ - €, (4'35'3) V7 - € holds for all
&, § - near to &. O
LEMMA 4.4. Let F fulfil all assumptions of Theorem 4.1. Let & € E* be
chosen in such a way, that

ae E, and simultaneously f(d’) =00, Tmax(c:x') =
Then the mapping ’f() from Definition 3.2 is continuous at the point &.

Proof. Let #(-) be a solution of problem (3.2.2) (where we put & = &)
defined in the interval (0,00). From our assumption by Definition 3.2 we have
that there exists k € {1,2,...,n} such that 4,(x) > 0 for all z € (0,00). Let
us choose sufficiently small neighbourhood of point co in space E ; for example
basic neighbourhood {T; Tl > R} U{cc}. Because @} (0) =1 and ,(z) >0
for all z € (0, R+ 1), we can choose suitable d € (0, R + 1), € > 0 such that:

(z) >1/2 forall z € (0,d); U, (x) > e forall z € (d,R+1). (4.4.1)
Then from continuous dependence of solution (3.2.2) on parameter & (which
follows from Lemma 4.2) we obtain the existence of such a suitably small §
neighbourhood of point &, that it holds:

For all @ € E, such that ||@ — @|| < § it holds: The solution (-) of prob-
lem (3.2.2) with this new @ will be defined at least in the interval (0, R + 1)
and simultaneously:

1@(:) = @M, 41y < min{g, 5}
holds. From this together with (4.4.1) it follows

up(z) >+ forall z € (0,d) and uy (x) > forall v € (d,R+1)

£
2
from what it is evident that function w,(-) has no zero point in the interval
(0, R + 1). So, cither the case T'(&@) = oo will be true, or in the opposite case
we shall have ||T(@)|] > R+ 1 > R. Hence, continuity of T at the point & is
proved. O
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LEMMA 4.5. Let F fulfil assumptions of Theorem 4.1. Let & € E} be chosen
such that

oo, T (&')<oo.

e E, and simultaneously — T(&) hax

Then the mapping T(-) from Definition 3.2 is continuous at the point &.

Proof. Let ﬁ'(-) be the maximal solution of problem (3.2.2) for the above
& defined in the interval (0,7) where T' def Tmax(c:v'). By Lemma 3.6 we obtain
that #(-) which is defined as

i,(2) ¥, (), xe(0,T), ie{l,...,n}
is a maximal solution of problem (3.1.1). Let us choose R > 0, which will
determine arbitrarily small basic neighbourhood of the point oo € E} of the
form L
O, ={T; |IT|| > R} U{oo}. (4.5.1)

Let ¢,(-),...,c,(-) be function whose existence is guaranteed by assumption
(3.0.8) for T = R. Let us define:

Min < inf{0,(z); 2 €(0,T), i €{1,2,...,n}}. (4.5.2)

From assumptions (3.0.2) and (3.0.3) it follows that if some v,(-) (solution of
problem (3.1.1)) reaches negative value, then it is further only linearly decreasing
and that is why we have 0 > Min > —oco. Hence, the following set will be
compact:

K€ {(z,@)) eRf xR"; 0<z<T, Min<u, <c(0) for i € {1,...,n}}.

We know that #(-) is a maximal solution of problem (3.1.1) (which fulfils the
condition of local existence and uniqueness of its solution), and it is defined
according to our assumption in a bounded interval (0, T’). By the known theorem
on behaviour of solutions of ordinary differential equation at both ends of maxi-
mal existence interval ([5; Theorem 5.4], [6; Theorem 2.1]) we obtain that the
whole graph of this solution must not be contained in compact K. According
to its definition using definition (4.5.2) of constant Min we get:

ke {1,2,...,n} Iz, €(0,T)  B(zy) > c(0).

When we use continuous dependence of solution ¥ of problem (3.1.1) on pa-
rameter & (which can be obtained formally from the already proved continu-
ous dependence of solutions of a problem (3.2.2) (see Lemma 4.2) and from
Lemma 3.6), we get that there exists a suitable small  such that

forall @ € E _, ||@— 62|| < d, the above property is true,

n?



ILJA MARTISOVITS

this means that the solution ¥ of problem (3.1.1) for such & is defined at least
in the interval (0,z,) and the following inequality is true

V(o) > ¢, (0). (4.5.3)
We assert that from this it already follows
T(@) €0,  (see (4.5.1)) (4.5.4)

and this gives us the statement of our lemma. Statement (4.5.4) can be proved
by contradiction. If it were not true, then we would consider solution #(-) of
problem (3.2.2) and according to Definition 3.2 every u,(-) reaches the zero value
at the point T}, 0 < T; < R, where (T},...,T,) = T(&). Because components
u,(-) of that solution will be on the right to these points linearly decreasing, we
get R<T, (&) =00 and u,(R) <0 foralli€{1,2,...,n}. From Lemma 3.6
it follows that solution ¥(-) of problem (3.1.1) also fulfils the same inequalities
and it is also defined in the interval (0, c0) what implies that all assumptions of
Lemma 3.5 are fulfilled. From this lemma it follows

vi(z) < ¢;(0) for all z € (0,00), forall i € {1,...,n},
what gives us contradiction to (4.5.3). 0O

LEMMA 4.6. Let F fulfil assumptions of Theorem 4.1. Let ace E be such
that @ = oo and thus T(d’) = 00. Then mapping T(-) from Definition 3.2 is
continuous at the point é.

Proof. By contradiction. If it were not continuous, then there would exist
a suitable sequence {@}, , C E, and R > 0 such that:

@] = oo for oo, but |T(&)|<R forall IEN. (4.6.1)

Let ¢,(-),...,¢,(-) be functions whose existence is guaranteed by assump-

s Gy

tion (3.0.8) for T = R. Let us define the set K:

K {(c,i)) eRf xR*; 0<z<1, 0<u,<¢(0) forall i €{l,...,n}}.
: (4.6.2)
Evidently K is a compact set. By assumption (3.0.2) and (3.0.7), we obtain that
F,(z, ) are locally bounded in Rf x E, and therefore also in every compact
set. So, if we define

M & sup{|F,(z,@)|; (z,@) € K for i € {1,...,n}) (4.6.3)
then we get M < co. Let us put:
®max dzef M + Z C,i(O) >0. (464)
i=1
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According to (4.6.1), there exists ! such that ||@|| > v/n - a,,,, and therefore if
we put a & d,, then there exists k € {1,2,...,n} such that there holds:
o >a..., |IT@I<R. (4.6.5)
For this chosen & we define #(-) as the maximal solution of problem (3.2.2)
which is defined in the interval (0,7, ,. ). From the second part of (4.6.5) we
would obtain from (3.0.2) and (3.0.3) by standard way that:
T . =, u,(R) <0 forall i€ {1,2,...,n}. (4.6.6)

max

If we define a function ¥ as v,(-) e a; -u,(-) for all i € {1,...,n}, then from
Lemma 3.6 it follows that ¥(:) is solution of problem (3.1.1) and by (4.6.6) we
obtain:

v,(R) <0 forall i€ {1,2,...,n}. (4.6.7)
This by Lemma 3.5 implies
Vze(0,00) Vie{l,2,...,n} v,(z) < ¢;(0), (4.6.8)

and therefore the following estimations are true for z € (0,1):

j v (t) dt

0
/Fk(t,vl(t),...,vn(t)) dt'
0

v () — v (0)] =

(3.1.1)

(3.03)

T
/Fk (1, 0] el dt)
0

(4.6.3),(4.6.2),(4.6.8) [
< / Mdt<M.
0

Using this we obtain for all = € (0,1):
v (@) > v,/(0) — v, () —v,,"(0)]
(3.1.1),(4.6.5)

> v (0) - M > O — M

max
n
UL 6,(0) > ¢ (0).
=1

Hence, we have v,'(z) > ¢,(0) in the interval (0,1) from what we obtain

1
(3.1.1)

v, (1) 7= /vk'(z) dz > 1-¢,(0)

0
and this gives us contradiction to (4.6.8). O
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5. Necessary condition for the existence of a solution

In the previous part of this paper ([8; Chapter 5]) we have defined set Q2.
Then we have proved ([8; Chapter 6]) that if (T3,...,7T,) € 22, then problem
(3.0.1) has at least one positive solution.

In this part we shall prove inverse theorem which gives us that if problem
(3.0.1) has a positive solution for some (7},...,T,), then (Ty,...,T,) € Q2
must be true. At first we shall prove two auxiliary lemmas:

LEMMA 5.1. Let F,,...,F, fulfil assumptions (3.0.2), (3.0.6) and (3.0.9).

Then they also fulfil the following assumption:

(5.1.1) For all k € {1,...,n — 1}, for all z € R for all Uy, Uy € RY,
function %-Fk(x,ul,...,uk_l,u, 0,...,0) is increasing in u in the
interval (0, 00). Tm:s

Proof. So, let & > u > 0 be arbitrary, but fixed.

n—k times

F(z,uy, .., u_4,%, 0,...,0)

u

n—k times
(3.0.2),(3.0.6) OF) ——
= %—i(x,ul,.,.,uk_l,o,0,...,0)
k

n—k times

u
OF ——
+/(—f(x,u1,...,uk~1,,8, 0,...,0)
) Ouy,

n—k times

——
3 F(z,uy,. .., uy_y, B, O,...,O)) %
g g
OF n—k times
(3.0.9) ——
> gﬁ(w,ul,...,uk_l,ﬂ, 0,...,0)
u OF n—k times
——
+/(ﬁ—(m,ul,...,uk_l,ﬁ, 0,...,0)
0 Uk
n—k times
——
B F(z,uy,. . u_q,0, 0,...,0)) %
g p
n—k times
——
(3.0_9)’(3_()‘6) Fk(:v,ul,. .. ,uk_l,u, 0, e ,0)

u
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what we had to prove. (]
LEMMA 5.2. Let F|,...,F,  fulfil assumptions (3.0.2), (3.0.6) and (3.0.11).
Then they also fulfil the following assumption.:
(5.2.1) For all k € {1,...,n—1} forall i, 1 <i < k-1, for all u; € Ry,
1<j<k-1,j#i,foral z€RS,
OF,
au—f(x,ul,.. U1y Uy Uy s ey U150, 0,...,0)
b n—k times
is a nonincreasing function in u in the interval (0, 00).

Proof. Let us choose z € R, u; ERy for 1 <j<k-1,j#i,u€ R ¢
and « > 0 arbitrarily. Then for all u, > 0 by (3.0.11) we obtain

n—k times

——
Fi(@myuy, oty Uy Uy gye ey g5 U, 0,...,0)
Ug
n—k times
——
>Fk(:v,ul,...,ui_l,u—l—a,qu,...,uk_l,uk, 0,...,0)
2 a
When u, — 0", we obtain:
n—k times
oF, e
W(z,ul,...,ui_l,u,ui+1,...,uk_l,O, 0,...,0)
k
OF n—k times
——
k
Z&l—+(:c,u1,...,ui_1,u+a,ui+1,...,uk_1,0, 0,...,0)
23
what we had to prove. 0

THEOREM 5.3'. Let F,,...,F,  fulfil assumptions (3.0.2), (3.0.3) and
(3.0.6) —(3.0.13). Let Q° be defined according to [8; Definition 5.12]. If prob-
lem (3.0.1) has a positive solution for some (Ty,...,T,) € E, ., then there
holds (Ty,...,T,) € Q2.

Proof. Let functions u,(-),...,u,(-) be defined at least in the interval
<0, Juax T7> and let they fulfil (3.0.1). By induction we shall prove the following

assertion step-by-step for k =0,1,...,n.

1n [8] mentioned as Theorem 7.3.
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Assertion. There exist k functions v,(-),...,v, (), which fulfil the following
three conditions:

(1) These functions fulfil in the interval <0, max (TJ> the following system:
<ikn

n—1 times
r—N—
v} (z) = Fy(z,v,(2), 0,...,0),
v,(0) =v,(T}), vy(z) >0 forall z € (0,Ty),

n—2 times
——
’0,2/ ZB) aé. F2(E,’U1(:L'),'U2(x), 0; ve ,0 ) )
v,(0) = v,y (Ty) , vy(z) >0 forall z € (0,T;), (5.3.1)

n—k times
——
v () € Fy(z,v,(2),...,v.(2), 0,...,0),
v, (0) = v, (T},), vi(z) >0 forall z € (0,T}).

(2)

Vi, 1 <i < min{k,n -1} Vz € (0,T;) v,(z) > u,(z). (5.3.2)

(3) If a;,a,(),...,a,(-) are defined according to [8; Definitions 5.6, 5.9],
then it holds:
T, > ay,
T, > a,(Th),
(5.3.3)

T, > a(Ty,- - Tp_y)-

This assertion is evidently true for k¥ = 0. Let now according to induc-
tion assumption the assertion be true for k — 1. So, we have defined functions
v3(:)y -, V,_1(+). Let us define function w(-) as a solution of the following prob-
lem:

n—k times

e OF, — . w(z)+ |w(z)|
w"(:c) = ﬁ(x>vl(x))' .- ’Uk—1($)>07 0,...,0 ) : Ta (534)

w(0) =0, w'(0) = ui(0) > 0.

Now we shall prove that w(-) has the zero point in interval (0,7}). By con-
tradiction. Let w(z) > 0 for all z € (0,7}). No we can use Lemma 2.3,
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in which we put (a,b) = (0,7}), u(-) = w(-), v(-) = u, ("), flz, 4y,%,) =

n—k times

- o e, N N
%ﬁh(x,vl(:c),...,vk_l(:c),(), 0,...,0) - u‘—zM, 9(z,9y,9y) = Fy(z,u,(z),. ..

Sty (2), 01, up 4 (2), .., u, (). Assumptions (2.3.1), (2.3.2), (2.3.5),
(2.3.6) and (2.3.7) easily follow from our assumptions. Lipschitz condition
(2.3.3) easily follows from (3.0.7). Now it only remains to verify (2.3.4). So,
let z € (0,7}), and let u > 0. Then it holds:

Fi(z,uy (), . up_q (2), 0 (2), .. u, ()

n—k times

(3‘0.1:%(3.0.3) F(z,uy(z),...,u_(z),u, 0,...,0)
u .

u

if for k <n—1 we use (5.1.1) from Lemma 5.1 in which we let v — 0" and for
k =n we use (3.0.10), then we can continue in the last inequality:

n—k times
6F —
0 i(w uy(2),. .., uy_4(),0,0,...,0) - u

if besides (5.3.2) in induction assumptions we use (5.2.1) for £ < n — 1 and
(3.0.12) for k = n, then we can continue in inequality:

n—k times
BF —— . u+|u
_6 +(:c vy(2),...,v_1(2),0, 0,...,0) - I

Hence, for u > 0 we have:

g(z,u) > f(z,u). (5.3.5)
Assumption (2.3.4) is verified and we can use Lemma 2.3. Because u,(0) = 0
= w(0), u}(0) = w'(0) holds, possibility (2.3.8) cannot be true. So statement
(2.3.9) must be true and using w'(0) = u}(0) > 0 we obtain o = 1. Then
u,(-) = w(-) in the interval (0,7} ), what by already proved condition (5.3.5)
and cquations (2.3.5) gives us a contradiction. So, we have proved that w(-)
(solution of (5.3.4)) has the zero point in the interval (0,7} ), what together with
(5.3.1) in the induction assumption and with [8; Definition 5.6] for k > 2 or with
(8; Definition 5.9] for k =1 imply T}, > a, . Hence, the second step of induction
for condition (5.3.3) is proved. If we now use analogously [8; Definition 5.1] of
mapping ﬁk we obtain:

R, (cy,...,0p_1,0;) = (Tl, ooy Ty 0, (T, - - ,Tkﬁl))
where

a, =v1(0) >0, ay:=v5(0)>0, ..., ap_, :==v;_,(0) >0, &, :=0.

931
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From [8; Lemma 5.5] continuity of Rk(-) follows, so if we let &, — oo, then
the right-hand side must converge to infinity and because according to the defi-
nition the first components of right-hand side are always T},...,T,_,, the last
component must grow up to infinity from what we obtain, if we consider

0 (Ty,..., Ty ;) < T,

that for suitable «, > 0 the following statement will be true:

—

R (oy,. . 0p_y,0p) = (Ty,..., Ty, Ty).

From the definition it follows that we can complete kK —1 functions v,,...,v,_,
to k functions so that (5.3.1) will hold for new k. Hence, induction step for
condition (5.3.1) is proved. If ¥ < n — 1, we need to do induction step also
in condition (5.3.2): Functions u,(-), v,(-) are solutions of the following two
problems:

n—k times
ve(x) = Fy (z,v,(2),. .., v (2),v,(2), 0,...,0),

v,(0) =0, v, (T,) =0, v(xz) >0, forall z € (0,7T))

uj(z) = F, (z,u,(2), ..., Uy (@), uy(2), w0y (2), - u,(2))
u,(0) =0, u,(T),) =0, u,(z) >0 forall z€(0,7),).

Now we can use Lemma 2.3, in which we put (a,b) = (0,7}), u(:) = v.(-),
n—k times

v(-) = u, (), fz, 0y, 0y) = F(z,v,(2),...,v_,(x), 4, 0,...,0), g(z,d,,%,) =
Fi(z,uy (@), .. uy_y (@), U5, (2),. .., u,(x)). Let us verify assumptions of
Lemma 2.3: (2.3.1) follows from (3.0.2). Condition (2.3.3) follows from (3.0.6)
and from (3.0.7). Conditions (2.3.5), (2.3.6) and (2.3.7) hold evidently. Let us
verify assumption (2.3.2): So, let v > 0, @ > 1. Using Lemma 5.1 we easily
obtain

n—k times

——
F, (z,v,(z),...,v,_;(x),a-u, 0,...,0
(@), (@) ) 5.5.6)

n—k times
——
>a- Fy(z,v(),...,v_(x),u, 0,...,0)

from what we have (2.3.2). Now it remains to verify (2.3.4):

Fy(z,uy(2), .. upy (@), u,u 4 (2), .. u,(2))

(3.0.13),(3.0.3) n—k times
-U. ,(9.0.0
2> F(z,uy(x),...,u_q(2),u, 0,...,0)
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by using (5.3.2) and induction assumption and assumption (3.0.11)

n—k times
——
ZFk(m,vl(w), vy Uy (2),u, 0,...,0 )

and (2.3.4) is verified. So Lemma 2.3 can be used and it gives us that at least
one of the following cases must be true:

1. Assertion (2.3.8) is true. In this case u,(r) < v,(z) holds for all z €
(0,T,), and the induction step in condition (5.3.2) is complete.

2. Assertion (2.3.9) is true. In this case we obtain (using notation from
Lemma 2.3) there exists a > 1: v(-) = - u(-). We shall eliminate the case
a > 1. By contradiction: Let = € (0,7T},).

e (2.3.4)
v'(z) = g(z,v(z)) = g(z, @ u(x)) > f(z,a- u(z))

by use (2.3.6), u(z) >0 and a > 1 in (5.3.6) we can continue

>a- f(z,u(z)) E a-u'(z) =v"(z).

Because this holds for almost every = € (0,7)), so we got contradiction which
we needed. Hence « = 1 = wu,(-) = v,(-), and induction step in condition
(5.3.2) is complete.

So, we have shown validity of all three induction assumptions also for this
new k. From induction principle it follows, that the proved assertion holds also
for k = n and then from condition (5.3.3) and from [8; Definition 5.12] we obtain
(Ty,...,T,) € 22, what we needed to prove. O

The following lemma can be applied in order to simplify assumption (3.0.8)
by easier assumption (5.4.1), which can be verified separately for every compo-
nent F..

K3

LEMMA 5.4. Let Fy,...,F, fulfil (3.0.13) and also the following condition:
Vke{l,...,n} VI'>0 VR>0 3IC>0
Vre (0, TY Vu, €{(0,R), i=1,....,k—1 VYu, >C
(Ve e0.T) Vu € O,R) ‘ (5.41)
Fy(@,ty, sty gy 2y, 0, ,0) > 0)
n—k times

Then Fy,...,F, fulfil also (3.0.8).

Proof. Let T > 0 be chosen arbitrarily, but fixed. We shall construct some
functions ¢, (A),...,c, (\) which will fulfil all conditions in form (3.0.8). To do
it, we prove the following statement for k =1,...,n.
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Statement:
There exist k functions cl('), . ,Ck(‘)i (0,00) + (0,00) such that
vje{l,...,k} lim ¢;(A) = o0

Aooo J

and

Ve e (0,T) YA>0 Vu, €(0,c(\), i=1,...j-1
F(z,uy,... u;_q,¢:(N), 0,...,0) >0.
———

J [ et R
n—j times
‘We shall prove this by induction.
The case (k = 1).
Let us choose C > 0 according to assumption (5.4.1), where we put k = 1 and

R arbitrary (for £k = 1 it has no meaning). If we choose continuous function
¢;(-) such that

VA>0 ¢(A\)>C and lim ¢;(\) = o0,
A—00

then the statement will be true for k = 1.

Induction step (2 < k <mn).
We assume that the statement is true for kK — 1, so we have already constructed
functions ¢ (-),...,¢;_1(-). Let us put for every [ € N

R :=max{c,(\); 1<i<k-1, 1-1<A<I}. (5.4.2)

We shall choose C; for every I € N according to assumption (5.4.1), in which
instead of R we shall put R,. Then it will be true:

VieN Vze(0,T) Vu,€(0,R), i=1,....k—1 Vu,>C,
Fo(z,uy,. ., _1,%, 0,...,0) >0. (5.4.3)
n—k times

If we now construct continuous function ¢, (-) such that

/\lim ¢, (A) =00 and VIEN Vie(l-11) ¢\ =C,
—> 00

then by (5.4.2), (5.4.3) we easily verify that functions ¢;(-),...,c,(-) fulfil the
statement for k. Hence, induction step is complete and the statement holds also
for k =n. By it and by assumption (3.0.13) we can easily verify that functions
¢, (*),+ .., ¢, () fulfil all conditions from (3.0.8) for the above chosen T. Hence,
the lemma is proved. O
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6. Example of weak assumptions on F;

In this section we present a special form of functions F;, which we can apply
in already proved [8; Theorem 6.1] and in Theorem 5.3 in present paper. We
summarize it in the following theorem:

THEOREM 6.12. Let the functions F, have the following form for all (z,u,, ...
cou,) ERE X E,

F(z,uy,...,u,)
def { uy - [fe(@ ug, . ug) + gi(@,uy, .. u,)] for k<n—1,
T, fal@ug,uy) for k=mn,

where functions f;, € C'(R§ x (R{)*,R) fulfil the following conditions:

VkE{l,...,’n} V(xaulr"?uk) ER{T XEk7 uk>0
of,

au+(z,u1,...,uk) >0,
k

Vke{2,...,n} vie{l,...,k—=1} V(z,uy,...,u;) €R} x E,

af,
M—i(z,ul,...,uk) <0,

Vke{l,...,n} Vz€Ry Vu, €Ry, i=1,... k-1
ullglofk(x’ul""’uk—hu)>01
and where functions g € C* (Ry x (R{f)",R) fulfil:

VkE{l,...,n—l} V(x’ul""7un) e]Rl—)i_ XEn
9@, uy, .. u,) >0,

Vke{l,...,n—1} VY(z,uy,...,u,) ER{ X E,_, U Upyq e U
9p(T,uy, .. u,) =0.

We shall define functions Fy for all k € {1,...,n} and for all (z,uy,...,u,)
€ RS x R™ in the following way:

def + nt|un
F (z,uy,...,u,) = F (a:, C 2““[,...,” 2[“ [> .

n

Then problem (3.0.1) has a positive solution if and only if (T},...,T,) € Q°,
where the set Q% 1is defined so as in [8; Definition 5.12] and practical “algo-

rithm” for verifying whether (Ty,...,T,) belong to this set is shown at the end
of Section 5 in the first part of this paper [8].

In (8] mentioned as Theorem 8.1.
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Proof. Let us verify assumptions of [8; Theorem 6.1] and Theorem 5.3.
Conditions (3.0.2), (3.0.3)-(3.0.7), (3.0.9)—(3.0.13) can be easily proved with
using assumptions which are stated on f;, g,. From the first and the third as-
sumption on f, we can easily verify condition (5.4.1) when we use compactness

of the set (0,T) x (O,R,)k_1 in it. Hence, according to Lemma 5.4 also condi-
tion (3.0.8) is true. All assumptions of [8; Theorem 6.1] and Theorem 5.3 are
verified. o
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