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PERIODIC ORBITS OF 
CERTAIN HENON-LIKE MAPS 

MICHAL FEČKAN 

(Communicated by Milan Medvěd1) 

ABSTRACT. The existence of periodic orbits for certain two-dimensional Henon-
like maps is shown. For this purpose, critical point theorems are used. 

1. In troduc t ion 

The purpose of this brief report is to show the existence of periodic orbits of 
Henon-like maps of the forms 

rP(x, y) = (b-x + d-y- f(p, x), c • x) (1.1) 

and 

r(x, y) = (b-x + d-y- q(x), c • x) , (1.2) 

where 6, d, c are constant satisfying c • d = — 1. 
We assume / G C2(R x R , R ) , /(-,0) = 0. We shall study the existence 

of periodic orbits of (1.1) near x = 0, y = 0 considering p as a bifurcation 
parameter. Under additional conditions for / we show the existence of a closed 
interval I such that for p £ J the point x = 0, y = 0 is a hyperbolic fixed 
point of (1.1). Hence there is no periodic orbit of (1.1) near (0,0) . On the other 
hand, the set of bifurcation values p of periodic orbits of (1.1) near (0,0) is 
dense in I. Thus for each open neighbourhood U of (0,0) it holds: each s E I 
can be approximated by a sequence {Pn}^=3 C 7 , pn —• s , such that the map 
(1.1) with p = Pn has an n-periodic nontrivial orbit in U. (The trivial orbit is 
the fixed point (0,0).) 
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We study the map (1.2) globally when q is asymptotically linear at the 
infinity. We show the existence of an infinite number of periodic orbits whose 
minimal periods tend to the infinity. 

We see that the orbit {(xn,yn)}_ of (1.1) satisfies 

£ n + 2 - bxn+1 +xn + f(p, x n + i ) = 0 (1.3) 

and similarly for (1.2). Hence we study the difference equation (1.3). Note 
that there is a relation between (1.3) and the area preserving twist maps (see 
A n g e n e n t [1]). Indeed, let us put 

z 

h(x,z) = -l/2(bx - 1/bzf + I f(p,s) ds-(b-b2- l/b2)z2/2, 

0 

and following [1, p. 355] we define a map F in the following way: 

Hence 

r\ г\ 

F(x,y) = (я i ,y i) <É=> y= -føh(x,xг), 2/1 = - - ^ / г ( z , x i ) . 

y = -b2x + Xi , 

2/i = -x + xф2 - f(p, x i) + (6 - ò2 - l / ò 2 ) x i , 

and 

(1.4) 
xi = y + b2x, 

yi = y/b2 - f(p, y + b2x) + (b-b2- l/b2) • (y + b2x). 

But the orbit {(xn,yn)}_ of (1.4) satisfies precisely the equation (1.3). 

Essentially, our approach to the problem is similar to [1]. We shall define a 
functional as in [1, p. 354], whose critical points are periodic orbits of (1.3) or 
of a similar equation corresponding to (1.2). Then we apply theorems of [2] and 
[5] to prove our results. The author of this paper has recently used the same 
approach for studying discretizations of higher dimensional variational problems 
[4]. We note that for 6 = 2 the equation (1.3) is the Euler discretization of 
z" + f(p,z) = 0. 

2. Local results 

We study the existence of periodic orbits of (1.1) near (0,0) . We assume 

/ £ C2(R x R ,R) , / ( - , 0 ) = 0 and g(-) = - | ^ ( ' , 0 ) satisfies g'(-) > 0, 

inf# < - 2 + 6 < 2 - f 6 < sup# . 
R R 
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THEOREM 2 . 1 . For each s € (flf_1(& - 2)> 0 _ 1 ( & + 2 ) ) , 6 > 0 there exists a 

sequence {Pn}n°=2 C (d 1Q) ~ 2) — 5, <7_1(6 + 2) + 6) with the properties: 

i) p n "^ s fl5 n -* oo, 
ii) for p = pn the map (1.1) has a nontrivial n-periodic orbit { y i , . . . , y n } 

such that max |t/i| < 6. 
i 

We see that { x i , . . . , x n + i } , x n +i = xi is the n-periodic orbit of (1.3) if 

and only if for / ( p , z) = (2 — b)z + / ( p , z) there holds: 

x2 ~ 2xi + xn + / ( p , x i ) = 0 , 

: n = 2 . 

xi - 2xn + x n _ i + / ( p , x n ) = 0 , 

We put 

D: Rn -> R n , D ( x i , . . . , x n ) = (x2 + x n - 2 x i , . . . , x i + x n _ i - 2 x n ) , 

F ( p , . ) : R n - > R n , F ( p , x i , . . . , x n ) = ( / ( p , x i ) , . . . , / ( p , x n ) ) . 

Then the above equation has the form 

Dx + F{p,x) = 0 , x = ( x i , . . . , x n ) . (2.1) 

Note that grad((Dx,x) /2 + q(p,xi) + • • • + g(p,x n)) = Dx + F(p,x), where 
z 

q(p,z) = Sf(p>s) ds-
0 

LEMMA 2.2. The spectrum of D is {-4sin 2 —j , j = 0 , . . . , n - l } . 
n ' 

P r o o f . See [3]. • 

P r o o f of T h e o r e m 2.1. The linearization of (2.1) at x = 0 has the 
form 

A(p) = D + ( 2 - & + 0 ( p ) ) . I d . 

Hence the matrix A(p) has eigenvalues 

{-4sin 2 Z-j + 2-b + g(p)t j = 0 , . . . , n - 1} . 
П' 

If 2 — b + g{p) 7-- 4 sin — j for each j = 0 , . . . , n — 1, then A(p) is invertible and 
n 

we can define the positive Morse index (see [5, pp. 53]) M(p) of A(p) . Moreover, 
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if p passes through the numbers g~x (4 sin2 —j + 6 — 2) , then there is a change 

of the numbers M(p). Hence by a result of C h o w and L a u t e r b a c h 

[2] the numbers y _ 1 (4s in 2 —j + 6 — 2) are bifurcation values of p for (2.1). 

Finally, we see that the set {g~x (4sin2 —j + 6 — 2) , j G { 0 , . . . , n — 1} , 

n G { 2 , 3 . . . } } , is dense in (g~1(b-2), sf-1(6 + 2) ) . Note that 6 - 2 > inf g and 
s u p # > 6 + 2 . • 

It is clear that for p £ (g~x(b - 2), g~x(b + 2)) the fixed point (0,0) of 
(1.1) is hyperbolic, i.e., the eigenvalues of Drp(0,0) lie off the unit circle. For 
p G (g~x(b — 2), g~x(b + 2)) the eigenvalues of Drp(0,0) lie on the unit circle. 
The following theorem is the consequence of this fact. 

THEOREM 2.3. For p (£ (g~x(b - 2), g_1(6 + 2)) there is a 6 > 0 such that 
for each s £ (p — 6, p + 6) the map (1.1) with p = s has no nontrivial periodic 
orbits {2/1, . . . , yn} satisfying max \yi\ < 6. 

3. A global result 

We shall study the map (1.2). For this purpose we need the following result: 

THEOREM A. (see L i and L i u [5]) Let a: Rm - • R be a C2-function 
satisfying \ grada(x) — AQOXI/IXI —> 0 as \x\ —> 00 for a symmetric nonsingular 
matrix Aoo G C(~lm). Suppose that a has critical points X i , . . . , x^ and all 
of them are nondegenerate. If M(d"(xi)) 7-- M(Aoo) for each i, then a has 
another critical point. Here a" is the Hessian of a, M(B) is the positive Morse 
index of the symmetric matrix B . 

THEOBLEM 3 .1 . Let us assume: 

i) lim q(x)/x = s, 
\x\—•oo 

ii) q has only a finite number of roots x±,..., xm , 
i.e., q(xi) = 0 , m> 1, 

iii) s G ( 6 - 2 , 6 + 2) , q'(xi)^b-2, s^q'fa), 
for i = 1 , . . . , r a . 

Then the map r has an infinite number of nontrivial periodic orbits whose min­
imal periods tend to 00, i.e., there is a sequence of natural numbers {m}<^.l, 
ni+1 > ni, such that r has a periodic orbit with the minimal period Ui for any 
i. (Here the trivial periodic orbits are fixed points of r .) 

P r o o f . We take a sequence of prime numbers {pt}^2zl such that 

2 - 6 + 5, 2-b + q(xj)^Asm2—k, pt > 2 , 
Pt 
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for each natural number t and jf -= 1 , . . . , ra, 0 < k < pt. Then we solve (2.1) 
for n = pk, / ( a , x) = q(x). We shall apply Theorem A with 

a(x) = (Dx, x) /2 + q(xx) + - - • + q(xn), 
z 

q(z) = (2-b)z2/2+ fq(s)ds, 

0 

X* = \xii • • • j xi) 5 

A ^ = D + (2 - 6 + s) • Id . 

In this case we have 

a"(xi) = D + (q'(xi) + 2 - b) -Id, 

and eigenvalues of a"(xi) and A ^ are the following: 

f - 4 s i n 2 ^ j + 2 - 6 + q,(^), 0 = j=Pk-l\ 
{ Pk ) 

and 
i-A sin2 

Pk 

respectively. 

By the choice of {pk} we see that a"(xi), Aoo are nonsingular. We can 

define the positive Morse indexes M(a"(xi)) and M(Aoo). By [3] we know that 

0, —4 sin2 — jf, 0 < j < (pk — l ) / 2 have the geometric multiplicities 1, 2 in 
Pk 

D, respectively. Hence 

M(a"(xi)) = 2#{0 <j< (pk - l ) / 2 , - 4 sin2 £-j + 2 -b + q'(Xi) > 0} + 1, 
Pk 

M(Aoo) = 2 # { 0 < j < (Pk - l ) / 2 , - 4 s i n 2 ^-j + 2 - b + s > 0} + 1, 
Pk 

( # means the cardinality). 

Using the assumption iii) we see that 

M ( a / , ( x i ) ) ^ M ( A 0 0 ) , i = l , . . . , m , 

for pk large. Hence Theorem A implies the existence of a critical point, i.e. 
a solution of (2.1) for our case / ( - , x ) = q(x), n = pk , different from Xi, 
i = 1 , . . . , m. This gives a p^-periodic nontrivial orbit of r, for k large. Since 
{pt}t^i is a sequence of prime numbers, we can conclude the proof. • 
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