Mathematica Slovaca

LCubica Hola

An extension theorem for multifunctions and a characterization of complete metric
spaces

Mathematica Slovaca, Vol. 38 (1988), No. 2, 177--182

Persistent URL: http://dml.cz/dmlcz/130635

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/130635
http://project.dml.cz

Math. Slovaca 38, 1988, No. 2,177—182

AN EXTENSION THEOREM FOR MULTIFUNCTIONS
AND A CHARASTERIZATION OF COMPLETE
METRIC SPACES

LUBICA HOLA

Let X and Y be topological spaces. If Y is a metrizable space, then Y is
topologically complete (see [1], p276) iff each continuous mapping f: 4 - Y
with 4 dense in X has a continuous extension to a Gsset containing A. To see
" this just consider the identity mapping i: ¥ — Y and view Y as a dense subspace
of its completion.

We show that if Y is a metrizable space, then Y is topologically complete if
and only if each upper semicontinuous compact-valued multifunction F: 4 —» Y
with 4 dense in X has an upper semicontinuous compact-valued extension to a
G;s-set containing A.

We shall use the terminology from [1].

Notation. In what follows X, Y denote topological spaces. The closure of a
subset M of a topological space X will be denoted by .

The intersection of a family % of sets will be denoted by N %.

2 (Y) denotes the collection of all subsets of Y, C(Y) denotes the collection
of all nonempty closed subsets of Y. If (¥, d) is a metric space, (C(Y), d) denotes
the metric space equipped with the Hausdorff metric, ie. d(4,B) =
=inf{e: 4 = S,[B], B < S,[A]}, where S [A4] = u{S,[x]: xeA} and S/[x] =
={y:d(x,y) < e}

7" (x) denotes the set of all open neighbourhoods of x. N denotes a set of all
positive integers, R denotes the set of all real numbers.

A family % of sets has the finite intersection property if the intersection of
every finite subfamily is not empty. A centred family is a family of sets having
the finite intersection property.

A multifunction F from X to Y is a mapping F: X - 2 (Y). We write
F: X - Y for brevity. We suppose F(x) # 0 for any xe X.

A multifunction F: X — Y is upper semicontinuous at x € X if for every open
set V' in Y such that F(x) = V, there exists an open set U in X such that xe U
and F(U) < V, where F(U) = () F(x).

xeU
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F i1s upper semicontinuous if F is upper semicontinuous at every xe X.

Let 4 be a subset of X and F: A — Y be a multifunction from 4 to Y. A
multifunction F*: X' - Y is an extension of F if F*(x) = F(x) for every xe A.

Let (Y. d) be a metric space. Let y be a functional defined on 2 (Y) as follows:
x(0) = 0 and if A4 is a nonempty subset of Y, then y(A4) = inf{e: 4 has a finite
e-dense subset}. In literature y has been called the Hausdorff measure of
noncompactness functional.

Remark. (See [2]) The Hausdorff measure of noncompactness functional

has some good properties.

Lemma 1. (See [2]) The Hausdorff measure of noncompactness functional y for
a metric space (Y.d) acts as follows:
(a) y(A) = x if and only if A is unbounded
(b) x(A) =0 if and only if A is totally bounded
(¢) If A = B, then y(A) < 2y(B)
(d) If A is totally bounded, then for each € > 0, ¥(S,[A]) < ¢

(e) x(A) = x(A)
(f) If {E} is a sequence in C(Y) convergent in the Hausdorff metric to Fe C(Y),

then Iim Y(F) = x(F).

Lemma 2. (See [2]) Let {A,} be a decreasing sequence of nonempty closed sets

in a complete metric space (Y,d). The following are equivalent: (1) ﬂ A, is a

n=1

nonempty compact set, and {A,} is a sequence convergent in the Hausdorff metric

t0 () A4,. (2) lim z(4,) = 0.
n=1 " %

Remark 1. Let (Y,d) be a metric space and F: A —» Y be a multifun-
ction with 4 dense in X. Put G = {xe X: the net {y(F(V n A)): Ve ¥ (x)} con-
verges to zero}, where 77(x) denotes the set of all open neighbourhoods of x.

It is easy to verify that G = {xeX: for any ne N there exists Ve ¥” (x) such

that y(F(Vn A)) < l} which mens that G is a Ggset in X.
n

If F: A—> Y is a compact-valued upper semicontinuous multifunction, then
AcG. Let xeA and neN. Since F(x) is compact by Lemmal (d)

x<S[ [F(.\‘)]) < ZL The upper semicontinuity of F at x implies there exists a set
3 n

Ves (x) such that F(VnAd)<= S, [F(x)). Then by Lemmal (c)

2n

Y(F(VnA)) < l The inclusion 4 = G is proved.
n
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Theorem 1. Let Y be a complete metric space. Let F: A — Y be an upper
semicontinuous closed-valued multifunction, where A is dense in X. Let the net
{X(F(V n A)): VeV (x)} converge to zero for any xe X\ A. There exists an upper
semicontinuous extension F* of F defined on X.

Proof. Put F*(x) = F(x) for xe A. Now let xe X\ 4 and ¥"(x) be the set
of all open neighbourhoods of x. First we show that n{F(Vn A4):
Ve v (x)} # 0. There exists a decreasing sequence {¥,} of open sets from ¥ (x)
such that y(F(V,n A))) < 1/n. By Lemmall (e) and Lemma2 () F(V,n A)is a

n=1

nonempty compact set and {F(V,n A)}7_, is a sequence convergent in the
Hausdorff metric to () F(V, N A).
n=1 A
Let Ve 77 (x). Then {F(V n V,n A)}_, is a decreasing sequence of closed sets

n n=1

such that the sequence {y(F(V nV,n A))X_, converges to zero and thus by
Lemma2 () F(V N V,n A) is a nonempty compact set and {F(V' n V, " A)};"

n=1
n=1

o
is a sequence convergent in the Hausdorff metric to () F(V n V, N A).

n=1

A family O = {F(V n A) m(ﬂ F, mA)): Ve (x)} is a centred family of
n=1 -

nonempty compact sets. Then @ # N O = N {F(V n A): Ve ¥ (x)}. It is easy to
verify that n{F(Vn A): Ve? (x)} = n (.

Since N O is a compact set, the set N {F(V N A): Ve ¥ (x)}is also a compact
set. Put F*(x) = n{F(Vn A): Ve (x)} for xe X\ A4.

We show that F* is upper semicontinuous. Let xe A. Let U be an open set
in Y such that F*(x) = U. Since F*(x) = F{x) is a closed set in Y and Y is a
normal space, there exists an open set U, such that F*(x) = U, < U, c U. The
upper semicontinuity of F at x implies, there is an open neighbourhood V of x
such that F(VnA)c U,. Let zeV\A. Then F*(z)=n{F(Gn A):
Ge?V (z)} =« F(VnA) < U, < U. The upper semicontinuity of F* at xe 4 is
proved.

Now let xe X\ 4. It is sufficient to prove that for any ¢ > 0 there exists a
neighbourhood V of x such that F*(V) < S [F*(x)] (F*(x) is a compact set for
any xe X'\ 4).

Lete > 0. F*(x) = N {F(Um A) n(ﬁ F(V,n A))i Ue V(x)} < SeplF*(X)),

n=1

where {V,} is a decreasing seciuence of neighbourhoods of x such that the

sequence {x(F(V, n A))}r_ | converges to zero. Put B = () F(¥, N A). The com-

n=1
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pactness of Bimplies that F(U n A) n Bisa compact set for any Ue ¥ " (x). Since
N{F(UNnA)n B: Ue ¥ (x)} is a subset of the open set S,.[F*(x)] by [I] SE

there exist sets U,, U, ..., U,€ ¥”(x) such that ) F(UnA)NBCc S, H[F*(Y)].

i=1
x

Put G=(\U. Then Ge¥ (x) and F(Gm)T)mB:F(GnA)m<ﬂ

i=1 n=1

F(V,n A)) < SH[F*(x)].
By Lemma?2 {F(Gn V,n A)}/_, is a sequence convergent in the Hausdorff

metric  to ﬂF(Gr\ V.~ A). Thus there exists M such that for any

n=1

m=MFGAV,nA) < Sg,[ﬂ FG NV, mA)] c Sgg[ﬁF(Gm;t—)m

n=1 i=1

NFV.n A)] < SpolSea[F¥(0)]] = S [F*(x)]. That implies F*(z) = S,[F*(x)] for
any ze G n V,,. The upper semicontinuity of F* is proved.

Theorem 2. A metric space Y is complete if and only if each upper semicon-
tinuous closed-valued multifunction F: A — Y with A dense in X and such that ford
any xe X\ A the net {y(F(V 1 A)): Ve~ (x)} converges to zero, has an upper
semicontinuous cxtension to X.

Proof. The necessity is obvious from Theorem 1.

Suppose that a metric space Y is not omplete. Then there exists a Cauchy
sequence {),,} such that no point in Y is a cluster point of {y,},-,. We can
suppose that y; # y; i #j. Put X = {y, ..., »,,...}. Let 7 consist of 0 and of the
SEtS {3y Vs Vus1r---p n=1,2,..,7 is a topology on X. Put 4 = {y,, )3, ...}. It
is easy to verify that A is dense in X. Define a multifunction F: A — Y as follows:
FG,) =0 ustr-..} n=2,3,.... Then F is a closed-valued upper semicon-
tinuous multifunction on A.

Since {y,} is a cauchy sequence in Y, the net {y(F(V' n A)): Ve ¥ (y,)} conver-
ges to zero. There exists no upper semicontinuous extension F* of F defined on
X.

Suppose that F* is an upper semicontinuous extension of F defined on X. The
upper semicontinuity of F* at y, for n = 2,3, implies F*(y,), contains no point
from the set {y,, )5, ...}. Let i > 1 be such that y,€ F*(y,). Let n > 1. There exists
an open set U in Y such that F*(y,)=F(,) < U and y,¢U. Thus
S¥O) N (XY\U) # 0, which is a contradiction with the upper semicontinuity of
F*aty,. F*()) 0 ({y5, 3, ...}) = 0, that means V' = Y\{y,,...,y,} is open in Y
such that F*(y)) < V and F*(y,) n V = 0 for any n = 2,3, ... However, that is
a contradiction with the upper semicontinuity of F* at y,.

Theorem 3. Let Y be a metric space. Y is topologically complete if and only if
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each upper semicontinuous compact-valued multifunction F: A — Y with A dense
in X has upper semicontinuous compact-valued extension to a G s-set containing A.

Proof. Suppose that a metric space (Y, d) is topologically complete. That
means, there exists a complete metric o in Y topologically equivalent to d.

Put G = {xe X: the net {y(F(V n A): Ve¥ (x)} converges to zero}. By Re-
mark1 G is a Ggset and 4 < G.

Define F* as in the proof of Theorem 1., that means F*(x) = n{F(Vn A):
Ve (x)}for xe G\ A and F*(x) = F(x) for xe A. Then F* is an upper semicon-
tinuous compact-valued multifunction. (see the proof of Theorem 1.)

Suppose that the metric space (Y, d) is not topologically complete. We show
that there exist a topological space X and an upper semicontinuous compact-
valued multifunction F from a dense set in X to Y, which has no upper
semicontinuous compact-valued extension to a G4set in X.

Let (¥, d) be a completion of (Y, d). Put X = (¥, d). Then Y is a dense subset
of X, which is not a Gsset in X. (Suppose that Y is a G4set in X. Then by [4]
p. 49 Y is topologically complete.)

Consider the identity mapping i: Y — Y. There exists no upper semicon-
tinuous compact-valued extension of i to a G-set in X containing Y.

Suppose that there exists an upper semicontinuous compact-valued extension
i* of i to a Ggset L containing Y. Let ye L\ Y. There exists a sequence {y,} of
points of Y which is convergent to y. The sequence {y,} has no cluster point in
Y, that means every subsequence of {y,} is a closed set in Y.

There exists N, € N such that for any n > N, y,ei*(y). Otherwise there exists
a subsequence {y,, } of {y,} such that y, ¢i*(y) for any k€ N. The upper semicon-
tinuity of i* at y implies there exists an open set V such that ye V and i*(z) < -
Y\ sV s Vn» ---} fOr any ze V. But there exists Ne N such that for any
k =2 N, y, €V, which is a contradiction.

Thus i*(y) = {Vns Vu+15.-.; Where n > N,, that means i*(y) is not compact,
which is a contradiction.

The following example shows that the assumption on values of the multifun-
ction in Theorems 1 and 3 is essential.

Example 1. Put Y =R with the usual topology. Put X ={1,1/2,...,
1/n,...,0}. Let ¥ be a family consisting of @ and of the sets of the form
{0,1/n,1/n+1,...}forn=1,2,... Then ¥ is a topology on X. Put 4 = {1,1/2,
1/3,..., 1/n,...}. Then A is dense in X in the topology ¢ and only the G4set
containing A is the set X. Define F: 4 — Yin this way: F(1/n) = (—1/n,0). Then
F is upper semicontinuous on A. It is easy to verify that the net {y(F(V n A)):
Ve v (0)} converges to zero, where 77 (0) is the set of all open neighbourhoods
of 0. There is no upper semicontinuous extension of F defined on X. (Suppose
that there exists an upper semicontinuous extension F* of F defined on X. The
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upper semicontinuity of F* at points of 4 implies F*(0) = () (=1/n,0)=0.

n=1

That is a contradiction.)
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TEOPEMA O MPOJO/IKEHUU OJ1si MHOTO3HAUHBIX OTOBPAYXEHUWN
U XAPAKTEPU3ALUSA IMOJIHbIX METPUUECKUX TNMPOCTPAHCTB

Lubica Hola
Pe3rome
[Mycte Y — MeTpu3yemMoe MpocTpaHCTBO. JlOKa3bIBAaeTCA: NMPOCTPAHCTBO Y TOMOJIOrMYECKH
MOJIHO, TOTrA M TOJIBKO TOIJa, KOr/Ia KaXJ0e CBEPXY HamnpepbiBHOE MHOrO3HAYHOE OTOOpaxeHHe

@: A — Y c OUKOMNIAaKTHBIMU 3HAYCHUSAMH, TIe A MIOTHOE MHOXECTBO B X, HMEET CBEPXY He-
NpepbiBHOE NpogobkeHne Ha [;-MHoxecTBO I, npuvem "o A.
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