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NONLINEAR BOUNDARY VALUE PROBLEMS 

AT RESONANCE 

FOR DIFFERENTIAL EQUATIONS 

IN BANACH SPACES 

BOGDAN P R Z E R A D Z K I 1 

(Communicated by Milan Medved') 

A B S T R A C T . The per turba t ion me thod developed in [12] - [16] is applied to non­
linear BVP ' s x1 — A(t)x = / ( r , x), Bix(0) + H2^(l) = B$(x), in a Banach space, 
where the linear homogeneous problem possesses nontrivial solutions and the 
nonlinearities / , H3 have at most linear growth . Examp les of such problems are 
given. 

1. In t roduc t i on 

The question of the solvability of boundary value problems Lx = N(x), where 
L is a linear differential operator with nontrivial kernel and N is a superposition 
operator, has a long history. The first remarkable result was obtained in 1969 by 
L a n d e s m a n and L a z e r [10] for the zero-data Dirichlet BVP for a second 
order elliptic equation in a bounded domain Q with N(x)(t) = Xox + / ( £ ,# ) , 
where An. is a simple eigenvalue of the elliptic operator and / : f2 x R —> R is 
bounded. The authors used the well-known alternative method (see[l]), which 
was also applied by W i 11 i a m s [17] to generalize this result for an arbitrary 
eigenvalue (this means that the dimension of the linear space of solutions to 
Lx = 0 may be greater than 1 but finite; we shall say that the resonance is 
multidimensional). This and other methods were then used to get existence for 
many similar problems such as: 

x" + m2x = / ( t , x), x(0) = X(TT) = 0 , 

x" = f(t,x,x'), x(0) = x(T), x\0) = x'(T) 

x ; = / ( , , x ) , x(0) = x(T) , 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 34G20, 34B15 . 
K e y w o r d s : Semilinear equa t ion, Fixed point, Green function, Compac tness . 
1 Research suppor ted by grant KBN . 
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(see [6], [8], [11], for example). The almost complete list of references can be 
found in [4]. 

The perturbation method (this name was proposed by K a n n a n [9]) is 
based on the observation that if one perturbs the linear operator L by XI 
(I is the identity map, and A, a small parameter), then it becomes invertible, 
solutions can be found and the only problem is to prove a compactness of the 
set of solutions to perturbed equations. Obviously, the nonlinearity N should be 
bounded or, at least, sublinear as it is in the paper by de F i g u e i r e d o [3]. He 
obtained an abstract result for the equation Lx = N(x), using the perturbation 
method, but his proof does not involve a form of the inverse operators (L—A/)-1. 
The present author has studied the abstract problem, taking into account a 
family of equations L(X)x = N(x) with L(X) invertible for A ^ A0 and L(X0), 
a Fredholm linear operator. The inverse operators are supposed to have the 
special form 

n 

L(X)-1 = G0(X) + J2CJWMX), ' WA), 
3 = 1 

where all terms except Cj(X) have continuous extensions to A0, |CJ(A)| —> oo, 
wj(^o)i J — l , . . . , n , span the kernel of L(A0), and the common part of 
ker Uj(X0), j = 1 , . . . , n , equals the range of L(X0). This generalization of L — XI 
to L(X) enables us to study equations depending explicitly on a real parame­
ter (for instance, the bifurcation problems). On the other hand, the form of 
L(A) _ 1 is natural from point of view of applications: Green operators for ordi­
nary differential equations have this form, and if the Hilbert-Schmidt theory is 
applicable, then L(A) _ 1 is a sum of a series built of eigenvalues and eigenfunc-
tions, Cj(X) = (A0 — A ) - 1 , and G0(X) is the rest of this series in whose terms A0 

does not occur. The method is useful not only for sublinear nonlinearities. They 
may have a linear growth at infinity or even be superlinear. A lot of theoretical 
results based on the topological degree theory and similar techniques are given 
in [12]-[16]. Below, we shall show that this method (with some improvements) 
can be applied to BVP's in a Banach space E. All difficulties connected with 
a partition of a function space into a topological sum of its subspaces are re­
duced to the same (but easier) problem for underlying space E. We shall also 
consider problems with a nonlinear boundary condition, using the observation of 
F u r i and P e r a [7]. We refer the reader to [2] for information on differential 
equations in infinite dimensional spaces. 

2. Gene ral p r o b l e m 

Let E be a Banach space, A: (0,1) —> L(E), a continuous function taking 

values in the space of bounded linear operators of £", / : (0,1) x E —> E, a 

continuous function, B\,B2 G L(E), and let B^: C((0, l),E) —» E be a non-
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linear continuous mapping defined on the Banach space of continuous functions 
(0,1) —> E. We look for a solution of the first order differential equation 

x' - A(t)x = f(t,x) (2.1) 

satisfying the boundary condition 

Bxx(0) + B2x(l) = B3(x). (2.2) 

System (2.1)-(2.2) is at resonance, which means that the linear homogeneous 
problem 

x - A(t)x = 0 , Bix(0) + B2x(l) = 0 , 

has a nonzero solution. We shall assume that there exists an operator AQ G L(E) 
commuting with the resolvent U: (0,1) —» L(E) of the operator x' — A(t)x = 0, 
such that F?i + B2 exp(A^n)c7(l) is an automorphism of E for A from a neigh­
bourhood (nhbd) of 0 G R. Usually, AQ = I is the identity operator. Moreover, 
let B\ + B2U(1) be a linear Fredholm operator (its index must be 0, by the 
above). Our assumptions mean that the problems 

x - A(t)x - \A0x = 0 , Bxx(0) + B2x(l) = 0 , (2.3) 

have only the zero-solution for A / 0 belonging to the nhbd of 0, the subspace 
of initial points of solutions to (2,3), with A = 0, is finite dimensional, and the 
range of the operator B\ + B2U(1) has a finite codimension. 

Take any basis X i , . . . , xn in ker(jBi+F?2Z7(l)) and suppose that the following 
limits 

l imB(A)x j / | |B(A)x j | | = : hj , j = l , . . . , n , (2.4) 
A—>u 

where B(\) = Bi + B2U(1) exp A^40, exist and constitute a linearly independent 
system such that 

L in{ / i i , . . . , hn} 0 ImB (0) = E . 

Then, of course, this condition is satisfied for each basis. 

Let Ei = kerB(0) , and let EQ be its topological complement: 

E1@EQ = E. 

We have B(\)EX © B(\)E0 = E for A ̂  0 sufficiently close to 0. Moreover, 

Lin{h1,...,hn}@B(0)Eo = E. 

Define the system of linear bounded functionals on E: vj(A), j = 1 , . . . , n , for 
A / 0 by the formulae 

(vj(\),B(\)xi) = G%||5(A)xi||, i = l , . . . , n , 

Vj(\) | B(\)E0 = 0. 
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Obviously, Vj are continuous functions of A and have continuous extensions to 
0 such that 

(^•(0), hi) = 6i:i, Vj(0) | B(0)Eo = 0. 

If we denote by P\(\) (resp. Fb(A)) the projectors on B(\)E\ (resp. B(\)E0) 
along B(\)E0 (resp. B(\)E\) for A ^ 0 and similarly for A = 0 with natural 
changes, then we can find the representation of B(\)~1: 

n 

6(A)"1 = fi(A)"1Po(A) + £ HBCA^ir^^-CA), • )Xj , 
J = I 

where the first summand has a continuous extension to 0: (.6(0) | Eo)~
1Po(0). 

We shall denote this summand by R(\), and 

cjW : = II^W^H"1, j = l, . . . ,n, 

are the only parts which make A = 0 a singular point of 5 ( A ) - 1 . We have 

n 

5(A)"1 = R(\) + J2 CjWMX), • )xj , (2.5) 
j = i 

which is similar to the corresponding formula from the previous papers [12] - [16]. 
It is easy to see that V\(t) = exp(\tA0)U(t) is the resolvent for the operator 

x' — A(t)x — \A0x. This implies that the unique solution to the BVP 

x - A(t)x - \A0x = b{t), Bxx(0) + B2x(l) = 0 , 

is the function 
t 

x(t) = Vx(t)x0 + Vx(t) J V^(8)b{s) ds (2.6) 
0 

with the initial vector x0 for which 

B 

1 

(A)x0 = - B 2 exp(AA0)lf(l) / exv(-\sA0)U-l(s)b(s) as. (2.7) 

We shall denote the right-hand side of the last equality by O(A, b), where b G 
O((0,1), E). Applying (2.5), we get, for A # 0, 

n 

x0 = B(A)O(A,6) + J]ci(A)(Vj(A),O(A,6))xj 

3=1 
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and 

t 

x(t) = exp(\tA0)U(t)R(\)C(\b) + exp(\tA0)U(t) Iexp(\sA0)U-1(s)b(s) ds 

o 
n 

+ J2ci(X)(vj(X)>C(X>b))exv(XtA°)U(t)xi • 
i=i 

Now, we are able to write down the system equivalent to the BVP 

x' - A(t)X - XA0x = f(t, x), BlX(0) + B2x(l) = B3X , 

for A ^ O : 

n 

x0 = R(X)(c(X,N(x))+B3(x))+Tcj(X)(vj(X),C(X,N(x))+B3(x))xj, 
K J 3=1 (2.8) 

t 

x(t) = Vx(t)R(X)(c(X,N(x)) + B3(x)) +Vx(t)Jvx-
1(s)N(x)(s) ds 

o 

+ E<.(%(A),C(A1 iV( I)) + B3(X))Vx(t)Xj , (2'9) 

where N(x)(t) = f(t,x(t)) . The scheme of our considerations is the following. 
First, we shall show that the operator defined by the right-hand sides of (2,8), 
(2.9) on E x C((0,1), E) is completely continuous (under some assumptions on 
/ and B3). Then we can find solutions to (2.8)-(2.9) for A ̂  0 if / and B% are 
sublinear, by the Rothe fixed point theorem [5], and prove that the existence of a 
bounded sequence of solutions for Am —> 0 implies the solvability of the studied 
resonance problem (2.1)-(2.2). Next, we should find conditions excluding the 
existence of unbounded sequence of solutions (they correspond to the well-known 
Landesman-Lazer condition). The case of nonlinearities with a linear growth will 
be examined separately by homotopy arguments. 

3 . C o m p a c t n e s s 

We shall assume that / is more than continuous: / ( t , •) is completely con­
tinuous, i.e. it maps bounded sets into compact ones, for any t E (0,1), and 
functions fx E C((0,1),-E7), fx(t) — / ( t , x ) , are equicontinuous for x belonging 
to every bounded set. Moreover, let B^ be completely continuous. Fix A ̂  0. 
The following lemma is essential for the proof of the complete continuity of 
(2.8)-(2.9). 
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LEMMA 1. If f is as above and K: (0,1) —> L(E) is continuous, then 
F: O((0, ! ) , £ ? ) - O«0,1),E), given by 

F(x)(ť) = Jк(s)f{s,x(s))ds, 

is completely continuous. 

P r o o f . The continuity of F is obvious. If we take all continuous functions 
x G C((0, l),E), Hxlloo : = sup | | x ( t ) | | < M , then 

| | F ( x ) ( t ) | | < s u p | | i v ' ( 5 ) | | • sup | | / ( 5 , x ) | | < o o , 
S 5,||x||<M 

so, the functions F(x) are equibounded. Similarly, they are equicontinuous. In 
order to apply the Generalized Ascoli-Arzela theorem, we should show that the 
sets 

[ K(s)f(s,x(s)) ds: | | Z | | O O < M I (3.1) 

are relatively compact in E, t G (0,1). Take e > 0 and 8 > 0, such that 

| t 2 - * i | < 6 implies | | / ( t 2 , x) - f(tu x)\\ < - | sup \\K(s)\\ if | |x|| < M and 

||i^(62) — K(ti)\\ < — sup | | / ( t , x ) | | . Divide the interval (0,1) into subintervals 

of length less than 8: 0 < t\ < t2 < • • • < t^ — 1, and choose finite —-nets for 

KitrfffaB^M)): K(tj)f(tj,xi),j = l,...,k, i = 1 , . . . ,l(j). We get 

\\K(s)f{s,x(s)) - K^f^j^^W < e 

for any ||x||oo < M and s G (0,1), where we take tj such that \tj — s\ < 5, 
and Xi such that \\K(tj)f(tj,x(s)) — K(tj)f(tj,Xi)\\ < —. Hence the set 

[K(s)f(s,x(s)) : 5 G (0,1) , ||x||oo < M } is relatively compact, and so is 
its closed convex hull (the Mazur theorem). But (3.1) are contained in this hull, 
which ends the proof. • 

Notice that C(A,JV(-)) and the second summand in (2.9) are completely 
continuous by Lemma 1, and that the remaining terms involve B3 or are finite 
dimensional. Therefore the right-hand sides of (2.8), (2.9) define a completely 
continuous operator on E x C((0,1), E). 

Suppose that 

\\X o o — > 0 0 

lim \\f(t,x)\\/\\x\\ = ,í\\m | |B3(x) | | / | |x | |o o = 0 (3.2) 
| |x||^oo 
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(the nonlinearity is sublinear). It is easy to see that the boundary of a sufficiently 
large ball centred at 0 is mapped by the above mentioned operator into this 
ball. Due to the Rothe fixed point theorem [5], we have a solution (XQ,XX) £ 
E x C ( ( 0 , 1 ) , £ ) to system (2.8)-(2.9) for any A ^ O . However, the radius of 
the ball tends to infinity as A —> 0, and the assumption of the following lemma 
is not unconditionally satisfied. 

LEMMA 2. If Am —» 0 and ( x ^ , x m ) m is a bounded sequence of solutions to 
(2.8)-(2.9) for A = Am , m £ N, then problem (2.1)-(2.2) is solvable. 

P r o o f . Passing to convergent subsequences, we may assume without loss 
of generality that 

C(\m,N(xm))^yi, B3(x
m)-+y2, 

t 

VXm(t)fv^N(xm)(s)ds^y(t). 
0 

By the linear independence of Xj , j = 1 , . . . , n , and V\rn(')xj , j = 1 , . . . , n , the 
scalar sequences contain the convergent subsequences 

cj(Xm)(vj(Xm),C(Xm,N(xm)) +B3(x
m)) - dj 

for j = 1 , . . . , n; thus 

xm -4 R(0)(yi + y2) + ] T djXj =: x0 , 

xm(t) =| U(t)(R{0)(y1+y2) + ^2djxj)+y(t)=:x(t). 

Therefore 
t 

y(t) = U(t)Ju-1(s)f(s,x(s))ds, 
0 

which implies that the function x satisfies equation (2.1). Since Cj(Am) —> oo, 
we have 

< u i ( 0 ) , C ( 0 , N ( x ) ) + B 3 ( * ) > = 0 , j = l,...,n, 

which means that 

yi+y2 = C(0, N(x)) + B3(x) e B(0)Eo = B(0)E; 

SO 

B(0)x0 = C(0,N(x))+B3(x). 

The last equality is equivalent to boundary condition (2.2). • 
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4. The Landesman -Laze r condi t ion 

Suppose that the sequence (x m , xm) from Lemma 2 is unbounded. Then (xm) 
is unbounded and one may assume that ||xm||oo —• oo. Dividing both sides of 
(2.9), for A = Am , by ||xm | |oo, w e find that the first and second summands on 
the right tend to 0, hence the sequence 

n 

3 = 1 

is bounded and, as in the proof of Lemma 2, one can choose convergent scalar 
subsequences 

| |x m | | - 1 c j (A m )<^(A r n ) ,O (A m , iV(x m ) ) +B3(x
m)) ->dj, 

j = 1 , . . . , n, and obtain 

n 

llx-ll-1*^) =4 Y,dMt)*j-

Thus (vj(X7n), C(Am , N(xm)) + Bs(xm)) has the same sign as dj for large m 
and each j . Introduce the following condition: 

for any (xm) C C ( ( 0 , 1 ) , £ ) with the properties ||xm||oo -* oo, \\xm\\^xm -> 
^2 djU(-)xj for some ( d 1 ? . . . , dn) E Rn , there exists j E { 1 , . . . , n} such that 

limsupd J-(i; j(0), .D(xm)) < 0, 
m—>-oo 

where 
l 

£>(*) = -B2£/(l) / t^"1 W/(«, *(5)) d* + ^3 W • 
0 

From the above arguments, this condition (referred to as the L-L condition) 
implies that the assumption of Lemma 2 holds. We have proved 

THEOREM 1. Under the assumptions of Sections 2 .3 . if the L-L condition is 
satisfied, then boundary value problem (2.1)-(2.2) has a solution. 

If there exist limits D(d\,..., dn) = lim D(xm) independently of (xm) such 
m—+oo 

that H^Hoo —> oo, llx771!!^1^771 —* YldjU(-)xj, then the L-L condition has the 
form: for each ( d i , . . . , dn) E Kn \ {0}, there exists j such that 

dj(vj(0),D(du...,dn))<0. 
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5. T h e non l inearity w i th linear grow th 

Keep all the assumptions and notations of Sections 2 and 3 in mind, except 
(3.2), which we replace by 

/?(*):= l i m s u p | | / ( S , x ) | | / H < o o , (5.1) 
||x||->oo 

72 := limsup H-SsC^)||/||^||oo < oo. (5.2) 
\X oo—>00 

Let 

$ := }(3(s)\\U-i(s)\\ds, 
0 

7i := \\B2U(1)\\P, 

7 := 7i + 72 , 

(5.3) 

and suppose that 
(3sup\\U(t)\\<l. (5.4) 

t 

THEOREM 2. Assume that there exist o\ > 0 and r > 0 such that, for any 
je{l,...,n}, 

supdj(vj(0),C(0,N(x))+B3(x)) < 0 (5.5) 

over the set of all x(t) = U(t)(x0 + VJ^Xj + y(t)) with \dj\ > r, x0 € E0, 

\di\ < \dj\, \\x0\\ < o-i\\J2diXi\\, ||y||oo < /3o-2||x0 + E ^ ^ H > v(°) = °> where 

a2 = s u p | | C / ( t ) | | ( l - / 3 s u p | | r j ( t ) | | ) _ 1 . (5.6) 

If 
7 | | R ( 0 ) | M l + < 7 1 ) a r 1 < l , (5.7) 

then BVP (2.1)-(2.2) has a solution. 

P r o o f . Define a homotopy H = (H0,HX): E x O((0,1),E) x (0,1) - • 
E x O((0,1), E) by the formulae 

H0(x0,x,a) = (l- a)R(aXx)(c(aXuN(x)) + B3(x)) 

+ J2cj(aX1)(vj(aX1), C(a\x,N(x)) + B3(x))Xj , 

3 
t 

Hi(x0,x,a) = VaXl(t)H0(x0,x,a) + VaXl(t) / V-x\(s)N(x)(s) d s , 

o 

where Ai is a positive number sufficiently close to 0. We shall show that the 
homotopy H has fixed points (if they exist) in a bounded set. 
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First of all, notice that (5.5) is satisfied for 0 replaced by A E (0, Ai), and 
x(t) = V\(t)(x0 + J2diXi + y(t)) with x 0 , cLj, y as above (in definition (5.6) of 
CT2, U is replaced by V\), but cYi and cr2 satisfying 

7||B(A)||a2(l + c71)ar1<l. 

If x = H\(x0,x,a), x0 = Ho(£o,2:,a), then 

||x||oo < ( l - / 3 sup | |V a A l ( f ) | | ) _ 1 sup | |F a A l ( t ) | | | | xo | | (5.8) 

and 

||xo|| = \\(1 - a)R(a\1)(C(a\1,N(x)) + B3(x))\\ 
1 

< \\R(a\1)\\(\\B2VaXl(l)\\ J \\V~x\(s)\\\\N(x)(s)\\ ds + \\B3(x)\\) . 
0 

Enlarging 71, 72 with (5.7) kept, we can estimate this norm for large ||x||oo-

||*o|| < 7ll-R(0)||||x||oo < 7| |-B(0)| |<T2 | |XO|| ^ 7l l^(0) | |a 2 ( | |x 0 | | + | | ] T < t e | ) , 

thus 

ll^oll < ^||J^(0)||or2(l — - / | |J?(0)| |cx2)_ :L | |2Z^^z| | < ^ i | 5 ^ * a 

For such fixed points, we have 

sup 
t 

t 

Jv-x\(s)N(x)(s)ds < /^Iklloo < /5cr2||x0| 

and dj with the maximal 
which is needed to apply (5.5). 

Take any solution x0 = x0 + Yl ^ixi ? d £ } 
modulus. Obviously, |rfj| < r by (5.5) (with aAi instead of 0). So, | |Xl^ ix i | | 
is bounded, which gives an estimate on | |x0 | | , then on ||x0 | | and, at last, on 
II2/II00 • D u e to (5.8), we have an upper bound for the norms of solutions x. 
Denote by QQ (resp. tfti) a ball containing fixed points of iIo (resp. i I i ) . The 
Leray-Schauder degree 

d e g L S ( ( I - H o ) x ( J - H i ) , f 2 0 x f i i , 0 ) (5-9) 

does not depend on a E (0,1). We can deform H(-, 1) by H(XQ,X,IJL) = 
^LH(XQ,X,1) which is fixed point free on the boundary of QQ X Jli by simi­
lar (but simpler) arguments. For /i = 1, we have degree (5.9) and, for /i = 0, 
degL 5 (7 , Q0 x fii, 0). Therefore, H has a fixed point in fio x Q± for any a > 0. 
Repeating the arguments from the proof of Lemma 2 with a slight change, we 
get the assertion. • 
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6. Examples 

Let us consider the BVP: 

x' = f(t,x), (6.1) 

x(l) = Bx(0) (6.2) 

in a Hilbert space E with B being a linear self-adjoint completely continuous 
operator in E and / satisfying the continuity assumptions from Section 3. Since 
we are interested in resonance problems, 1 G S p B , and we can take AQ = 7, 
B(X) = B — exI. Obviously, E\ = ker(F? — I) is finite dimensional. Take any 
orthonormal set {x i , . . . ,x n } spanning ker(F? — / ) . We have hj = —Xj for 
A —» 0 + , j = 1 , . . . , n, and 

(VJ(0),X) = -(XJ,X). 

The L-L condition, in the sublinear case, has the form: 

for any sequence (xm) such that | |xm | |oo —• °°> ll^ll^o1^7 7 1 ^ X ^ i x i > there 

exists j G { 1 , . . . , n} such that 

liminfdjlxj, f f(s,xm(s)) ds) > 0 . (6.3) 

^ o ' 

One can use the weaker condition summing up (6.3) over the numbers j : 

l 

liminf f(xm(s)j(s,xm(s))) ds > 0 (6.4) 
m—>-oo J v 

or even 

liminf / (x,f(s,x)) ds > 0, 
INHoo.J 

xЄG 0 

where G = {Xx : A e R, x G W} and W is a nhbd of {x € ker(B - I) : 

11*11 = 1}. 

One can examine a more general boundary condition 

x(l) = Bx(0) + B3(x) (6.5) 

with F?3 sublinear. Assumption (6.4) should be replaced by 

l 

liminf / ( x m ( s ) j ( s , x m ( s ) ) + B3(x
m)^j ds > 0 
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or 
i 

liminf (x, f(s,x) + B3(x)) ds > 0 , 
\\x\\-+ooJ V JJ 

xeG o 

where B3(x) means the value of B3 on the constant function equal to x. If 

l 

B3(x) = J \\x(t)\\e dt • x0 , 

o 
where p G (0,1) and £n is a fixed vector orthogonal to ker(F? — / ) , then (6.4) 
is still a sufficient condition for the solvability of (6.1), (6.5). 

Now, we consider BVP (6.1), (6.2) with the nonlinearity / of a linear growth. 
In the notations of Section 5, 

l = li=ß = J ß{s) ås. 

Let fj(t, x) = (/(£, x), Xj), j = 1 , . . . , n , and let /n be the orthogonal projection 
of / onto E0 = Im(.B — I). We shall assume that 

l l 

limsup / fj (s , XQ+ y^ diXi) ds < 0 < liminf / fj\ s, XQ+ y^ diXi) ds (6.6) 
dj-^-ooJ ^ -*—' / dj^+ooj V -*—' / 

0 0 

for any j £ { 1 , . . . , n } , d = ( d i , . . . , d n ) G ]Rn and Xo Ef io , and that the limits 
are separated from 0 uniformly on bounded sets. Moreover, let 

/ 3 < ( v ^ + l ) _ 1 (6.7) 

and 

— max II — A| —^ < 1 (6.8) 
l-(^~+l)p\eSpB,] 

(the maximum in this inequality equals ||i?(0)||). It is easy to calculate that 

there exists G\ > 0 satisfying inequality (5.7) (&2 — (1 _ fl)~1) and such that 

l - ( V n + l),5 
CYi < 7. . 

Vn/3 

Hence, if we take x0 E E0, d e Rn, y G C ( ( 0 , 1 ) , E ) , such that | |5 0 | | < 

ctillX.^i^ll > IMIoo < /^c^H^o + z^£!^a:;i||> then if \dj\ = max|d; | and we have 

the worst case: "y takes values in L in{x i , . . . ,xn}"; then we obtain 

llj/lloo < ( l - e ) | d j | 
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for some positive e. Thus, we can make the coefficient standing with Xj in 
the projection of xQ + ~~diXi + y(t) onto L in{x i , . . . ,xn} arbitrarily large if 
\dj\ —» oo. By (6.6), this means that the assumption (5.5) of Theorem 2 holds 
and, therefore, BVP (6.1), (6.2) has a solution provided that the projections of 
/ onto L i n j ^ i , . . . , xn} satisfy (6.6), the constant /3 describing a linear growth 
of / satisfies (6.7), and /3(l - (y/n + l)/3)~ is less than the distance between 
1 and the nearest eigenvalue of B. 

R e m a r k . Since, for A —» 0~ , we have hj = Xj instead of — Xj, we can 
reverse inequalities (6.3) and (6.4) replacing "liminf" by "l imsup". Moreover, 
we can change mutually ±oo in (6.6) and the solvability does not fail. 

Now, we shall study a BVP for second order differential equations in the 
Banach space 1°° of bounded sequences: 

x" + m2x = f(t,x,x'), (6.9) 

where x = (XJ)J£^, f = (fj)jeN and m is an odd integer. The boundary 
condition is partially periodic and partially antiperiodic: 

XJ(°) = xj{^), * / ( 0 ) = - * / M > 3 < n, (6 1Qx 
Xj(0) = XJ(TT) , Xj'(0) = X/(TT) , j > n. 

It is easily seen that the corresponding homogeneous linear problem has non-
n 

trivial solutions sin rat ~~ ciei, where ê  are elements of the standard basis in 
2 = 1 

1°°. Consider the equivalent first order system and perturb it by XI: 

x = y + Ax, y = —m2x + Xy . 

We can put E = 1°° 0 1°° , U(t) = cos mt I + — sin mt A, where 
m 

0 1 
-m2 0 

Xj = (0,ej) , j = l , . . . , n . Then hj = —Xj if A —+ 0 + , and — (VJ(0),Z) is the 
j t h coordinate in the second summand of z G E = 1°° 0 1°°. 

The nonlinearity has the form (0, / ) , where / should satisfy the following 
conditions (see Section 3): fj are equi-uniformly continuous on bounded sets 
and, for any e > 0 and M > 0, there exists k G N such that 

| / i ( i , x , y ) | < e , for | | x | | , | | y | | < M , £G(0,7r) , j>k. 

There are conditions less restrictive than the last one, but very complicated 
guaranteeing the compactness of /(£, •). Moreover, let / be sublinear. It is easy 
to calculate the L-L condition for BVP (6.9), (6.10): 
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for (xk) C X , ak = max(||xfc||oo5 \\xk ||oo) ~> oo, a^xk(t) => s inmt (d i , 
. . . , d n , 0 ) , a^x^^) =3 mcosmt(d1,... , d n , 0 ) , there exists j <E { l , . . . , n } 
such that 

7T 

liminf dj / cos msfj (s,x fc(s), xk (s)) ds > 0 , 
k—>oo J 

0 

where 0's stand for the j t h coordinates of x and y with j > n. The inequality 
can be reversed (A —•> 0") with replacing "liminf" by " l imsup". If / does not 
depend on derivative x', n = 1, and if there exist uniform limits 

lim / i ( s , d , x ) = f*(s) 
a—>±oo 

independent of x = (#2, £ 3 , . . . ) , we can simplify this condition, as the numbers 

/ > W « » m . d . + / / f W c o . m . d . , 
s inmt>0 s inmt<0 

/ / i^ (5) cosms ds + / /-~ (s) cos ras ds , 

sin7nt<0 s inmt>0 

have opposite signs. 
It is interesting that the last condition differs from the classical Landesman-

Lazer condition only by the kernel function cos ms. This is a consequence of the 
fact that the BVP is not self-adjoint as 

x" + m2x = 0, x(0) = X(TT) = 0 

is. Similarly, one can introduce a nonlinearity B% to boundary condition (6.10) 
and study BVP (6.9), (6.10) with nonlinearities having linear growth. 
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