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SEMIGROUPS CONTAINING COVERED
ONE-SIDED IDEALS

IMRICH FABRICI

In [3] a notion of a covered ideal was introduced. The aim of the present paper is
to show some other properties and the mutual relation betwen covered ideals and
bases of semigroups.

Definition 1. A proper left ideal L of S is called a covered left ideal (briefly
a CL-ideal) if LcS(S—L). Analogously a covered right ideal (CR-ideal) is
defined. The case of two-sided ideals will be treated later.

Clearly if S contains a zero element 0 and card |S|=2, then 0 is a CL-ideal.
Note that by definition S itself is not a CL-ideal.

Lemma 1. If S contains two different left ideals L, and L, such that L,uL,=
S, then none of the ideals L,, L, is a CL-ideal.
Proof. If L,uL,=S, then S—L,cL,, and S—L,cL,. Now L,=S(S—L,)
mplies L,cSL,c L, and L,c S(S —L,) implies L,cSL,cL,, hence L,=L, a
contradiction.

Corollary. If S contains more than one maximal left ideal, then none of them is
a CL-ideal of S.

If L is a left ideal of S and L& Sa, then L is certainly a CL-ideal. (For, in this
case we have ae S — L.) In particular if L =SanSb is a proper subset of Sa or Sb
then L is a CL-ideal of S.

A semigroup in which a is not contained in Sa (i.e. a€S —Sa) contains
CL-ideals, since for the left ideal L =Sa we have L=Sac S(S—L).

In a semigroup which does not contain a CL-ideal, the ideal Sa cannot contain
a proper left ideal of S, hence Sa is a minimal left ideal for every a€S. In such
a semigroup for any a# b we have either Sa = Sb or SanSb ={. Moreover, a € Sa
for every a€S.

Lemma 2. A semigroup S with card |S|>1 contains no Cl-ideals iff S is a union
of (disjoint) minimal left ideals.
Proof. 1. It has been just remarked that such a semigroup is necessarily of the

form: S=|JSa;, where each summand is a minimal left ideal.

iel
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2. Conversely, let be S =(_J L., wherc each L, is a minimal left ideal of S. Any left

rel

ideal of S is a union of some minimal left ideals. Write A=J L, B= (J L., then

1ek el K
S=AuUB. By Lemma 1 ncither A nor B is a CL-ideal of S.
If S is a union of its minimal left ideals, it is known that S is simple.
In the following when speaking about CL-ideals we shall suppose that such
ideals exist i.e. S is not a simple semigroup (without zero) containing a minimal left
ideal.

Lemma 3. IfL, and L, are two CL-ideals of S, then L,UL, is a CL-ideal of S.

Proof. We have to show that L,uL, = S[S —(L,UL,)]. Note that by Lemma 1,
S —(L,uL,)#0. Let x be any element from L,. L, = S(S — L,) implies that there is
a€S—L, such that x € Sa.

1. If aeS—L,—L,, then xe S(S—L,—L,)

2. If ae(S—L,)nL,, we have aeL,=S(S—L,). Hence there is k,eS—L,
such that a € Sk,. The element k, cannot be contained in L, since otherwise we
would have a € Sk, SL,c L,, a contradiction with ae S~ L,. Hence k,e(S—L,
N (§—L,) = S—(L\uL,). Therefore, x € Sa € SSk, = Sk, = S[S—(L,uL,)].

We have proved L,cS[S—(L,UL,)] and by the same argument L,c
S[S —(L,uL,)], so that

LluLz (= S[s - (L]ULz)] .

Lemmad. If L,, L, are two CL-ideals of S and LinL,#® then L,nL, is

a CL-ideal of S.
Proof. L,cS(S—L,) implies L,nL,cS(S—L,) = S[S—(L.nLy)].
If we consider the empty set () as a CL-ideal, we may state:

Theorem 1. The set of all CL-ideals of S (including @) is a sublattice of the
lattice of all left ideals of S (including §}).
Example 1. Let S={a, b, ¢, d} with the multiplication table:

,abcd

al a a a a
bl a b b
cla b ¢ d
d{ a b ¢ d

S has the lattice of all left ideals given in fig. 1, while fig. 2 gives the lattice of all
CL-ideals.
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Definition 2. A left ideal L of S and L# S is called the greatest left ideal of S if
L contains any proper left ideal of S.

Example 2. Let So=(0, 1) with the usual multiplication of real numbers and
S,={a,, 0}, ai=a, and 0 having the properties of a zero. Let S be the O-direct
union of S, and S,. Then S contains a unique maximal ideal, namely Ss. But S, is
not the greatest ideal of S, since S, does not contain the ideal {0, a,}.

If S contains the greatest left ideal of S, this ideal will be denotet by L*,

Clearly if S contains L*, then L* is a maximal left ideal of S.

}b,c,d) (a,b)
(a.b,c) (a,b,d) (a)
(a,b)
Fig. 2
(a)
s Fig. 1

Theorem 2. A maximal left ideal L of S is a CL-ideal of S iff S contains L* and
in this case L =L*.

Proof. 1. By Lemma 1 a maximal left ideal L of S can be CL-ideal only if for
any left ideal ! of S we have | = L (For otherwise Lu! would be equal to S). Since
L is maximal, necessarily L = L*.

2. Conversely, suppose that L* exists. We prove that L*c S(S — L*). Since
S(S—L*) is a left ideal of S we have either S(S—L*)=S, or S(S—L*)cL*. In
the first case L*¥< §=S(S—L*).

In the second case S(S—L*)cL* and L*<SL* imply S* = S[(S—L*) u
L*|cL*. 1fS—-8* = {a, b, c,...},thenanyset S—a, S—b, ... is a left ideal of S.
Hence, since L* exists we have card (S—S?)=1. Denote S—S*>={a}. Then
L*=S—a and S=L*uU{a}. Now auSa is a left ideal of S and since it is not
contained in L* we have auSa = S. The equalities aUL*=auSa =S (since a € L*
and a €Sa) imply L*=Sa, so that L*= S(S — L*). This proves our statement.

2.

We now treat the case that S contains more than one maximal left ideal.

Definition 3. A CL-ideal L is called a greatest covered left ideal of S if
L contains every covered left ideal of S.
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If S contains the greatest covered left ideal of S, this ideal will be denoted by L.
Suppose that S contains maximal left ideals and {L./a € I} is the totality of all
such ideals. Denote L =[] L. and suppose L#@ (i.e. S is not a simple semigroup

ael
containing a minimal left ideal).

If L* exists, we have necessarily L* c L. For if there is at least one L, such that
L? is not contained in L,, then L,uL?=S§ and by Lemma 1 L? cannot be
a CL-ideal.

Unfortunately L need not be a covered left ideal.

Example 3. Let S, be the multiplicative semigroup of real numbers from the
half-open interval (0, 1) and S, ={0, a,} S,={0, a;}, ai = ai, a5= a,, the element
0 having the usual properties of multiplicative zero. The 0-direct union S=
S,uUS,US,; contains two maximal ideals, namely L,=S —{a,}, L,=S — {a,}. The
ideal S,uS, is not contained in a maximal ideal of S. [. = S, S(S—- L) = {0, a,, a.}
so L& S(S—L).

Example 4. Modify the foregoing example by taking for S, the closed interval
(0,1). Then S contains a further maximal ideal, namely L,=S- {1}, and
L=(0,1). In this case S—L={a, a1} and S{al, a, 1}=8, so that Lc
S(S—L). Hence L is a covered left ideal.

An Z-class (the set of all elements of S generating the same principal left ideal)
containing a given element a will be denoted by L°.

An F-class L* is a maximal one, if (a), is not a proper subset of any principal left
ideal of S.

In[1]itis proved that a complement of a maximal left ideal is a maximal £-class.

We shall denote maximal left ideals by L, and corresponding maximal Z-classes
bv L.

Now we. introduce a partial ordering < between ¥-classes namely: L* <L" if
(a). =(b)..

A non-empty subset A of S is a right base of S if

(1) AUSA=S

{Z} there is no proper subset B&A such that BUSb=S§

Consider a quasi-ordering in S, namely: a<b means (a). < (b)..

Lemma 4 [6]. A non-empty subset A of S is a right base of S iff

{1) for any x € S there is a € A such that x<a,

(2) for any two distinct elements a,, a, € A neither a,<a,, nor a;<a,.

Remark. Lemma 4 implies that a right base A consists of elements from all
maximal £-classes.

Lemma § [S5]. Let S contain maximal left ideals. Then the intersection of all

maximal left ideals () L. =@ iff S is a simple semigroup (without zero) containing

uer

a minimal iett ideal.
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Theorem 3. A semigroup S contains L* iff

(1) S is not a simple semigroup, containing a minimal left ideal,
(2) S contains a right base A.

Prof. (a) Suppose that S satisfies (1), (2). Then (see [3], Theorem 1) S contains

maximal left ideals. Denote by L = [ L. the intersection of all maximal left ideals.

aeli

L#0by (1). As we know from [4] L, =S — L*(a € 1) and L* is a maximal #-class
of S. Then L = (L. = (J(S—L*) = S—|JL". So, S—|JL*=L. This

aeh aekr ael axer

implies that no element from L*(axeX) and therefore from the right base A
belongs to L.

Let x € L by any element. By (1) of Lemma 4 there is a € A such that x <a, i.e
(x)L =(a)., or in another form:

U [xuSx]e U [auSa]=S.

Xel aeA

Hence, we have LcSA<cS(S—L), so L isa CL-ideal of S. It remains to show
that any CL-ideal is contained in L. Let L be any left ideal of S, which is not

contained in L, so LN(|JL®)#9, i.e. L*< L at least for one aeA. Let L cL

aeh
(L*? is a maximal Zclass of S). We shall show that L is not a CL-ideal of S. Let
beL’cL, so (b).cL. In S—L are -classes either from L, or from S—L,
except L?. Therefore, there is no $-~class L* in S — L such that L’ <L". So we
have proved that any left ideal which is not contained in L cannot be a CL-ideal
of S. Since L is a CL-ideal, we conclude that L? exists and L =L".

(b) Now suppose that S contains L?. We show that (1) and (2) are satisfied.

_ It is known that any left ideal of S is a union of certain $-classes of S, so its
complement must be a union of the remaining £-classes. Let us construct a subset
A in the following way : exactly one element is chosen into A from each #-class in
S—L°. We show that A satisfies (1) and (2) of Lemma 4.

Let xe S be any element. Then either xeL?, or xeS—L?. If xeL?, then
L? = S(S—L*) implies that there is a € S— L? such that x e Sb and b e L. From
x € Sb we have (x).c(b).=(a), so x<a.If xeS—L?, then xeL" and x<b.
Therefore, (1) is satisfied in both cases.

Let a, be A, a¥ b. We shall show that neither a<<b nor b<a holds. If a<b,
then auSa c buSh. Since a# b, we have a € Sb. This implies (a). = Sh (b €(a).),
therefore (a). is a CL-ideal of S. Then L?u(a). is a CL-ideal of S, properly
containing L?, which is a contradiction. Similarly we can prove that b <a does not

hold. Hence A satisfies the condition (2) of Lemma 4. We have proved that S
contains a right base.
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It remains to show that S is not simple, containing a minimal left ideal.
According to Lemma 5 it suffices to show that the intersection of all maximal left
ideals is non-cmpty. This follows from our assumption that S contains L? and from
the fact that we always have LYc L.

Corollary. If S contains L*, then L* is of the form: L?=(]L. ie. LY is the

aei

intersection of all maximal left ideals of S.

Theorem 4. Every left ideal of a semigroup S is covered iff either there is a chain
of principal left ideals such that the union of its elements is S,, or S contains L™.
Proof. (a) Let every left ideal of S be covered. Let L be any left ideal of S, and

aeL. Since every left ideal is covered, we have (a). = S[S—(a).]. It implies
aeSh,forbeS—(a).,hence (a). =(b).. So, we can construct a chain of principal
left ideals. By Hausdorff Theorem any chain is contained in a maximal one. Denote
by U{(a).} (iel) a maximal chain of proper principal left ideals of S and

U(u,-)L =L,.If L, =S there is nothing to prove more. L,§&S we shall show that S
rel

contains L*. If L, &S holds, then S— L, #0. L, is a left ideal of S and therefore (by
supposition) a covered one, so L,=S(S—L,). For every iel (a).=S(S—L,).
there is an element ¢ €S — L, such that g € Sc, therefore (a,). =(c).. We shall
show that (c). = S. If this were not true, then (¢).& S and since (a,). =(c)., then
(¢). would belong to the chain U. But it is a contradiction with our assumption that
U is a maximal chain. Hence cuSc = S. The ¥-class containing c is a maximal one.
Denote it by L?. Then S — L* = L, is a maximal left ideal. Every left ideal T which
is not contained in L, meets L?, hence TnL"#, so that T=S. It means that L; 1s
such a maximal left ideal that every proper left ideal of S is contained in L ., hence
L,=L*

(b) If S contains L*, then L* is a CL-ideal and for any proper left ideal L we
have:

LcL*cS(S—-L*)cS(S—L).
Hence L is a CL-ideal.

Let S contain a chain U of principal left ideals (¢;). je I, and | J(a,).=S. Let L
be any left ideal of S. Recall that every left ideal is a union of p’rsl;lcipal left ideals
generated by its elements. Let beS—L. Since | J(4;). =S, then there exists an
index i el such that be(a). and (b). =(a,).. I’;lhe element a,€ L, since a €L

would imply (a). =L and (b). =(a;). = L implies b € L, what is a contradiction
with a choice of b. Denote by K the set of indices of all elements of U that are
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contained in (a;).. Clearly |J (¢;). =S. All elements a;, j € I — K, belongto S— L
j K

jel—

and |J (quSq)=S.

jel-K

Now Lc |J (quSq). But qeS—L for jeI—K, hence Lc |J Sqc

jel-K jel-K

S(S—L), so that L is a CL-ideal of S. This proves Theorem 4.
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NMOJIYTPYIIIbl COOEPXKAHHUE 3AKPBITBIE OOHOCTOPOHHUE HIEAJIBI
Hmpux ®abpuum
Pesiome

Jlesbiit (npaBbiit) uaean L (R) Ha3bIBaeTCS 3aKpbITHIM, €CIHU

LcS(S—-L), (Rc(S—R)R).

B HacTosiweit paboTe QOKa3aHbl YTBEPXKAEHHsl, KACAIOLWIMECS CTPOCHHs MOJYrpPyNMN, HMEIOLMX
OHOCTOPOHHbBIE 3aKpbITble HAcanbl. ClieAylolHMe YTBEPXKICHHUS SBISIOTCS TNIAaBHbIMM ©

1. MHOXecTBO BCeX 3aKpbIThIX JieBbIX (NPaBbix) uaeanos (BKIIOYas () sBaseTcs MOACTPYKTYpOH
CTPYKTYpbI Bcex JieBbIX (NpaBbixX) HaeatoB (Bkmoyas ).

2. TMpuBeneHo HeOOGXOAUMOE M JOCTATOYHOE YCJIOBHE AJS TOTO, YTO Obl:

a) nonyrpynna cofepxaina camblii GONbLIOH 3aKpPbITHIA NEBblil (MpaBblit) uaean

6) BCSIKMiM neBblii (MpaBblit) Maean NONYrpynnbl GbUl 3aKPLITHIM.
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