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SEMIGROUPS CONTAINING COYERED 
ONE-SIDED IDEALS 

IMRICH FABRICI 

In [3] a notion of a covered ideal was introduced. The aim of the present paper is 
to show some other properties and the mutual relation betwen covered ideals and 
bases of semigroups. 

Definition 1. A proper left ideal L of S is called a covered left ideal (briefly 
a CL-ideal) if LczS(S-L). Analogously a covered right ideal (CR-ideal) is 
defined. The case of two-sided ideals will be treated later. 

Clearly if S contains a zero element 0 and card | S | ^ 2 , then 0 is a CL-ideal. 
Note that by definition S itself is not a CL-ideal. 

Lemma 1. If S contains two different left ideals Lx and L2 such that L{\JL2 = 
S, then none of the ideals Lu L2 is a CL-ideal. 

Proof. If L tuL2 = S, then S-L2czL,, and S-L,c=L2. Now L,czS(S-L1) 
mplies LxczSL2czL2 and L2czS(S-L2) implies L2czSLxczLu hence Li = L2 a 
:ontradiction. 

Corollary. If S contains more than one maximal left ideal, then none of them is 
a CL-ideal of S. 

If L is a left ideal of S and L^Sa, then L is certainly a CL-ideal. (For, in this 
case we have a e S — L.) In particular if L = SanSb is a proper subset of Sa or Sb 
then L is a CL-ideal of S. 

A semigroup in which a is not contained in Sa (i.e. aeS-Sa) contains 
CL-ideals, since for the left ideal L = Sa we have L = Sacz S(S — L). 

In a semigroup which does not contain a CL-ideal, the ideal Sa cannot contain 
a proper left ideal of S, hence Sa is a minimal left ideal for every aeS. In such 
a semigroup for any a =£ b we have either Sa = Sb or SanSb = 0. Moreover, aeSa 
for every aeS. 

Lemma 2. A semigroup S with card | S | > 1 contains no Cl-ideals iff S is a union 
of (disjoint) minimal left ideals. 

Proof. 1. It has been just remarked that such a semigroup is necessarily of the 

form: S = {JSaiy where each summand is a minimal left ideal. 
1 6 / 
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2. Conversely, let be S = {jLt, where each L, is a minimal left ideal of S. Any left 
tel 

ideal of S is a union of some minimal left ideals. Write A = (J L,, B = | J Lt, then 
i eK tel K 

S = A u B . By Lemma 1 neither A nor B is a CL-ideal of S. 
If S is a union of its minimal left ideals, it is known that S is simple. 
In the following when speaking about CL-ideals we shall suppose that such 

ideals exist i.e. S is not a simple semigroup (without zero) containing a minimal left 
ideal. 

Lemma 3. IfLx andL2 are two CL-ideals ofS, then LxuL2isa CL-ideal ofS. 
Proof. We have to show that L 1 uL 2 czS[S- (L 1 uL 2 ) ] . Note that by Lemma 1, 

S - (LiuL2) 4^ 0. Let x be any element from Li. Lx cz S(S — Lx) implies that there is 
a eS — Lx such that x e Sa. 

1. If aeS-Lx-L2, then xeS(S-Lx-L2) 
2. If ae(S — Li)nL2 , we have a 6L2czS(S — L2). Hence there is k2eS — L2 

such that a e Sk2. The element k2 cannot be contained in Li since otherwise we 
would have a e Sk2 cz SLX cz Lx, a contradiction with aeS — Lx. Hence k2 e (S - Li 
n (S-L2) = S - ( L i u L 2 ) . Therefore, xeSaeSSk2 cz Sk2 cz S [ S - ( L , u L 2 ) ] . 

We have proved LxaS[S-(LxuL2)] and by the same argument L2cz 
S [ S - ( L i u L 2 ) ] , so that 

L ! u L 2 c z S [ S - ( L i u L 2 ) ] . 

Lemma 4. If Lx, L2 are two CL-ideals of S and LxnL2£0 then LxnL2 is 
a CL-ideal of S. 

Proof. L i c z S ( S - L ! ) implies L , n L 2 c z S ( S - L i ) cz S [ S - ( L i n L 2 ) ] . 
If we consider the empty set 0 as a CL-ideal, we may state: 

Theorem 1. The set of all CL-ideals of S (including 0) is a sublattice of the 
lattice of all left ideals of S (including 0). 

E x a m p l e 1. Let S = {a, b, c, d] with the multiplication table: 

a b c d 

a a a a a 
b a b b b 
c a b c d 
d a ' b c d 

S has the lattice of all left ideals given in fig. 1, while fig. 2 gives the lattice of all 
CL-ideals. 
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Definition 2. A left ideal LofSandL^S is called the greatest left ideal of S if 
L contains any proper left ideal of S. 

E x a m p l e 2. Let S0= (0, 1) with the usual multiplication of real numbers and 
Si = {ai, 0}, a2 = a, and 0 having the properties of a zero. Let S be the 0-direct 
union of S0 and Si. Then S contains a unique maximal ideal, namely So. But S() is 
not the greatest ideal of S, since S0 does not contain the ideal {0, ax}. 

If S contains the greatest left ideal of S, this ideal will be denotet by L*. 
Clearly if S contains L*, then L* is a maximal left ideal of S. 

( a , b , 

( a , b , c ) 

a , b 

: a ) 

# 

: a , b) 

a . b , d : 

Fig.2 

Fig. 

Theorem 2. A maximal left ideal Lof S is a CL-ideal of S iff S contains L* and 
in this case L = L*. 

Proof. 1. By Lemma 1 a maximal left ideal L of S can be CL-ideal only if for 
any left ideal / of S we have / cz L (For otherwise L u / would be equal to S). Since 
L is maximal, necessarily L = L*. 

2. Conversely, suppose that L* exists. We prove that L*czS(S —L*). Since 
S(S - L*) is a left ideal of S we have either S(S - L*) = S, or S(S - L*) cz L*. In 
the first case L*czS = S ( S - L * ) . 

In the second case S ( S - L * ) c z L * and L*czSL* imply S2 = S[(S-L*) u 
L*] cz L*. If S - S 2 = {a, b, c, . . . } , then any set S - a, S-b, ... is a left ideal of S. 
Hence, since L* exists we have card ( S - S 2 ) = 1. Denote S-S2 = {a}. Then 
L* = S-a and S = L*u{a} . Now auSa is a left ideal of S and since it is not 
contained in L* we have auSa = S. The equalities a u L * = auSa = S (since aeL* 
and aeSa) imply L* = Sa, so that L * c z S ( S - L * ) . This proves our statement. 

We now treat the case that S contains more than one maximal left ideal. 

Definition 3. A CL-ideal L is called a greatest covered left ideal of S if 
L contains every covered left ideal of S. 
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If S contains the greatest covered left ideal of S, this ideal will be denoted by La. 
Suppose that S contains maximal left ideals and {LJael} is the totality of all 

such ideals. Denote L = f] La and suppose L£0 (i.e. S is not a simple semigroup 
ael 

containing a minimal left ideal). 
If Lg exists, we have necessarily L" c L . For if there is at least one L„ such that 

La is not contained in La, then LauLg = S and by Lemma 1 Lg cannot be 
a CL-ideal. 

Unfortunately L need not be a covered left ideal. 
Example 3. Let S0 be the multiplicative semigroup of real numbers from the 

half-open interval (0, 1) and Si = {0, ai} S2= {0, a2}, a\ = au a\ = a2, the element 
0 having the usual properties of multiplicative zero. The 0-direct union S = 
S0uSiuS2 contains two maximal ideals, namely Li = S —{ai}, L2 = S — {a2}. The 
ideal SiuS2 is not contained in a maximal ideal of S. L = S0, S(S — L) = {0, au a2} 
so LdiS(S-L). 

Example 4. Modify the foregoing example by taking for S0 the closed interval 
(0,1). Then S contains a further maximal ideal, namely L3 = S-{1} , and 
L = (0, 1). In this case S — L = {au a2, 1} and S{au a2, \} = S> so that La 
S(S - L). Hence L is a covered left ideal. 

An i£-class (the set of all elements of S generating the same principal left ideal) 
containing a given element a will be denoted by La. 

An Sf-class La is a maximal one, if (a)L is not a proper subset of any principal left 
ideal of S. 

In [1] it is proved that a complement of a maximal left ideal is a maximal i£-class. 
We shall denote maximal left ideals by La and corresponding maximal ^-classes 

by La. 
Now we. introduce a partial ordering < between ^-classes namely: La<Lh if 

(a)Lcz(b)L. 
A non-empty subset A of S is a right base of S if 
(1) AuSA = S 
(2) there is no proper subset B^A such that BuSb = S 
Consider a quasi-ordering in S, namely: a^b means (a)Lcz(b)L. 

Lemma 4 [6]. A non-empty subset A of S is a right base of S iff 
{1) for any xeS there is aeA such that x^a, 
(2) for any two distinct elements au a2eA neither ai^a2, nor a2^ch. 
Remark. Lemma 4 implies that a right base A consists of elements from all 

maximal 5?-classes. 

Lemma 5 [5]. Let S contain maximal left ideals. Then the intersection of a\\ 

maximal left ideals f] Lu = 0 iff S is a simple semigroup (without zero) containing 

a minimal left ideal. 



Theorem 3. A semigroup S contains Lq iff 
(1) S is not a simple semigroup, containing a minimal left ideal, 
(2) S contains a right base A. 

Prof, (a) Suppose that S satisfies (1), (2). Then (see [3], Theorem 1) S contains 

maximal left ideals. Denote by L = p | L„ the intersection of all maximal left ideals. 
aeA. 

L4= 0 by (1). As we know from [4] La = S — La(aeX) and L" is a maximal ^-class 

o f S . Then L = (~)La = f](S-L") = S - U L". So, S- | J L" = L. This 
aeA. aeA. aeA. aeA. 

implies that no element from La(aeX) and therefore from the right base A 
belongs to L. 

Let JC e L by any element. By (1) of Lemma 4 there is aeA such that JC ^ a, i.e 
(jc)Lcz(a)L, or in another form: 

U[*uSx ] cz U [ « ^ S a ] = S. 
X e L aeA 

Hence, we have LczSA cz S(S — L), so L is a CL-ideal of S. It remains to show 
that any CL-ideal is contained in L. Let L be any left ideal of S, which is not 

contained in L, so Ln([J La)£$, i. e. La czL at least for one aeX. Let Lft czL 
aeA. 

(Lp is a maximal i^class of S). We shall show that L is not a CL-ideal of S. Let 
beLPaL, so (b)LczL. In S — L are if-classes either from L, or from S — L, 
except Lft. Therefore, there is no if-class L" in S — L such that LP<LU. So we 
have proved that any left ideal which is not contained in L cannot be a CL-ideal 
of S. Since L is a CL-ideal, we conclude that Lq exists and L = Lq. 

(b) Now suppose that S contains L9. We show that (1) and (2) are satisfied. 
It is known that any left ideal of S is a union of certain i£-classes of S, so its 

complement must be a union of the remaining i?-classes. Let us construct a subset 
A in the following way: exactly one element is chosen into A from each i£-class in 
S — Lq. We show that A satisfies (1) and (2) of Lemma 4. 

Let JCGS be any element. Then either jceL f l , or xeS — L9. If JCGL", then 
Lq cz S(S - L°) implies that there is a e S - L9 such that xeSb and beLa. From 
xeSb we have (JC)L cz (b)L = (a)L, so x^a. If xeS — Lq, then xeLb and x ^ b. 
Therefore, (1) is satisfied in both cases. 

Let a, b eA, a£b. We shall show that neither a^b nor b ^ a holds. If a ^ b , 
then auSaczbuSb. Sincea± b, we have a eSb. This implies (a)LczSb (b e(a)L), 
therefore (a)L is a CL-ideal of S. Then L*u(a) L is a CL-ideal of S, properly 
containing Lq, which is a contradiction. Similarly we can prove that b ^ a does not 
hold. Hence A satisfies the condition (2) of Lemma 4. We have proved that S 
contains a right base. 
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It remains to show that S is not simple, containing a minimal left ideal. 
According to Lemma 5 it suffices to show that the intersection of all maximal left 
ideals is non-empty. This follows from our assumption that S contains Lq and from 
the fact that we always have Lq czL. 

Corollary. If S contains L\ then Lq is of the form: Lg = C]Ln, i.e. Lq is the 
aek 

intersection of all maximal left ideals of S. 

Theorem 4. Every left ideal of a semigroup S is covered iff either there is a chain 
of principal left ideals such that the union of its elements is S„ or S contains L". 

Proof, (a) Let every left ideal of S be covered. Let L be any left ideal of S, and 

aeL. Since every left ideal is covered, we have (a)LczS[S ~(a)L]. It implies 
a e Sb, for b e S — (a)L, hence (a)L cz (b)L. So, we can construct a chain of principal 
left ideals. By Hausdorff Theorem any chain is contained in a maximal one. Denote 
by U{(at)L} (iel) a maximal chain of proper principal left ideals of S and 

U ( a i V = L\. If LX = S there is nothing to prove more. L , ^ S we shall show that S 
iel 

contains L*. If L i g S holds, then S — Lx =£ 0. Lx is a left ideal of S and therefore (by 
supposition) a covered one, so LxczS(S — Lx). For every iel (a,)LczS(S — Lx), 
there is an element ceS — Lx such that a{eSc, therefore (a.)Lcz(c)L. We shall 
show that (c)L = S. If this were not true, then (c ) L g S and since (at)L cz (c)L, then 
(c)L would belong to the chain U. But it is a contradiction with our assumption that 
U is a maximal chain. Hence cuSc = S. The ^-class containing c is a maximal one. 
Denote it by Lp. Then S — Lp = L(i is a maximal left ideal. Every left ideal T which 
is not contained in L,, meets Lp, hence Tr\Lp¥=0, so that T= S. It means that L, is 
such a maximal left ideal that every proper left ideal of S is contained in L , hence 
L, = L*. 

(b) If S contains L*, then L* is a CL-ideal and for any proper left ideal L we 
have: 

L c z L * c z S ( S - L * ) c z S ( S - L ) . 

Hence L is a CL-ideal. 

Let S contain a chain U of principal left ideals (af)L j e I, and {J(a})L = S. Let L 

be any left ideal of S. Recall that every left ideal is a union of principal left ideals 

generated by its elements. Let beS — L. Since {J(dj)L = S, then there exists an 
,eI 

index iel such that be(at)L and (b)Lcz(at)L. The element ateL, since aeL 
would imply (a,)LczL and (b)Lcz(ai)L czL implies beL, what is a contradiction 
with a choice of b. Denote by K the set of indices of all elements of U that are 
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contained in (a,)L. Clearly (J (aj)L = S. All elements ai9 jel-K, belong to S - L 
jel-K 

and IJ (ayuSay) = S. 
y e / - K 

Now L cz | J (a. uSay). But qeS-L for y e / — i£, hence L cz (J Say cz 
jel-K jel-K 

S(S-L), so that L is a CL-ideal of S. This proves Theorem 4. 
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ПОЛУГРУППЫ СОДЕРЖАНИЕ ЗАКРЫТЫЕ ОДНОСТОРОННИЕ ИДЕАЛЫ 

Имрих Ф а б р и ц и 

Р е з ю м е 

Левый (правый) идеал ^ (К) называется закрытым, если 

^ с = 5 ( 5 - ^ ) , ( Я с ( 5 - Д ) Я ) . 

В настоящей работе доказаны утверждения, касающиеся строения полуфупп, имеющих 
односторонные закрытые идеалы. Следующие утверждения являются главными: 

1. Множество всех закрытых левых (правых) идеалов (включая 0) является подструктурой 
структуры всех левых (правых) идеалов (включая 0). 

2. Приведено необходимое и достаточное условие для того, что б ы : 
а) полуфуппа содержала самый большой закрытый левый (правый) идеал 
б) всякий левый (правый) идеал полуфуппы был закрытым. 
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