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ALGEBRAIC STRUCTURES GENERATED BY
ALMOST CONTINUOUS FUNCTIONS

ZBIGNIEW GRANDE

ABSTRACT. There are investigated the group, the lattice and the Baire system
generated by the family of almost continuous in the Husain sense functions.

I. Preliminaries

Let us establish some of the terminology to be used. R denotes the real
line. Let (X,7) be a topological space. A function f: X — R is said to be T
almost continuous (in the Husain sense) at a point zo € X iff for every € >0,

zo € Int (Cl(f"l (f(zo) — &, f(z0) + 6))) , where Cl denotes the closure oper-

ation (in the topology 7 ) and Int — the interior operation, respectively ([2]).
If R is a family of functions f: X — R, then
(i) G(R) denotes the group generated by £, i.m. the least family for which
A CG(R) and f + g € G(R) for any f, g € G(R);
(ii) B(R) denotes the collection of all pointwise limits of sequences taken
from R;
(iii) L(R) denotes the lattice generated by R, i.e. the least family for which
R C L(R) and max(f,g) € L(R) and min(f,g) € L(R) forany f, g €
L(R).
Let (wn)32, be an enumeration of all rationals.

Denote by €y the family of all T almost continuous (in the Husain sense)
functions f: X — R and by 9; the family of all M measurable functions,
where M is a o -field of subsets of X .

II. General theorems

Theorem 1. Suppose that the topological space (X,T) is such that
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(1) there is a sequence (An).., of pairwise disjoint sets from M with
ClA, = IntCl4, D X' for n = 1,2,..., where X' denotes the set of all

accumulation points of X .
Then for each M measurable function f: X — R there are two T almost
continuous, M measurable functions fi, f2: X - R such that f = fL + f2.

Proof. Let us put

fz) for s€X— ) An
fi(z) =

Wy for € Ay, n=1,2,...
f(z) —w, for T€ Ayp_1, n=1,2,...

and o
0 for z€X - | An
n=1
h(z) = f(z) —wp, for =€ Ay, n=1,2,...
Wwn for z€ Azp1, n=1,2,....

It is clear that f = f + f2 and fi, fo are M measurable. Fix zo € X and

€>0.If zo ¢ X', then the functions f;, fo are T continuous at o, hence
o0

also 7 almost continuous. If zo € X' — |J An, then there is w,, such that
n=1

|f(z0) — wn,| < €. Since zo € Int Cl Az, , the function f; is 7 almost contin-

uous at zo. There is also n; such that |ws,| < €. Since z¢ € Int ClA;,, -1,

(o <}
f2 is T almost continuous at zo. If 29 € X' N |J An, then there is n, such

n=1
that zo € A,,. The function fi|A,, (f2|An,) is constant for even (odd) n,

and zo € Int ClA,,, so in this case fi (f2) is 7 almost continuous at zg.
If fi(zo) = f(z0) — wny (f2(z0) = f(x0) — Wn, ), then there is ny such that
|f(z0) — wn, — wn,| < €. Because z¢9 € Int Cl Az, (zo € Int ClA2,,—;) and

If(zo)—w,,a—wml = lf,‘(l‘o)—f,’(:r)l <€ (l = 1,2) for z € A2n4 (:IJ € A2n4_1 ),
so f1 (f2)is T almost continuous at zg . m]

Theorem 2. Assume the hypothesis (1) from Theorem 1. For each M mea-
surable function f: X — R there are four T almost continuous and M mea-

surable functions fi, fa, f3, fa: X — R such that
(2)  f = min(max(f1, f2), max(fs, f1)) .
Proof. For :=1,2,3,4, let us put
w, for z € Agnyi, n=0,1,...
@) =3 f@) for =¢ ['jOA4n+,~.
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Likewise as in the proof of Theorem 1 we prove that the function f;
(1=1,2,3,4) are T almost continuous and M measurable.

oo 4 oo
Now we will prove that (2) holds. Fix z € X . If z ¢ U Apn=U U Aan+i,
l—l N=0

then fi(z) = f2(z) = fas(z) = fa(z) = f(z) and (2) holds. If z € U Ay, then
there are 79 < 4 and ng such that z € A4no+,o and ¢ ¢ A, forn 7é 4n0+zo So
we have fi (z) = wn, and fi(z) = f(z) for i # i9 (i =1,2,3,4). Consequently,
max(f1(z), f2(z)) 2 f(z), max(fs(z), fa(z)) > f(z) and max(fl(z),fz(x)) =
= f(z) or max(f3(z), fa(z)) = f(z). Thus (2) holds. a

Corollary 1. If the space (X,T) and the o -field M fulfil the condition (1)
from Theorem 1, then

G(Cy N M) = L(Cy NMy) = M, .

Theorem 3. If (X,T) and M fulfil the condition (1) from Theorem 1, then
for each M measurable function f: X — R there is a sequence of T almost
continuous and M measurable functions fr: X — R such that f = klim Sfr.

Proof. Let us define the functions fi (kK =1,2,...) in the following way:

f(z) for z€eX - | An.

Wy for €A, n>k
fi() {
n>k

Similarly as in the proof of Theorem 1 we can prove that the functions fr (k =
1,2,...) are T almost continuous and M measurable. For every = € X there
is ko such that z ¢ A, for n > ko. So for k > ko we have fi(z) = f(z) and
consequently f(z) = klim fi(z). O
Corollary 2. If (X,7) and M fulfil (1), then B(9; NCx) =M, .
Examplel. Let X = {a,b,c} and T = {0, X, {a},{a,d},{a,c}}. Then
f € €y iff f is constant. Consequently, if M = 2X | then

€n =G(Cy) = L(Cy) = B(Cy) # My =

III. The case of the Euclidean topology

If X =R, T is the FEuclidean topology in R and M is a o -field containing
all denumerable sets, then evidently Theorems 1, 2, 3 hold. In the considered
case we can prove some more special versions of these theorems.
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A function f: R — R is said to be almost continuous in the Stallings sense
(Ak almost continuous) iff for every open set V C R? containing the graph
G(f) of the function f there exists a continuous function g: R — R such
that G(g) C V ([3]). A set W C R? is said to be a blocking set for a function
fiff W ois closed, G(f)NW =0 and W N G(g) # @ for every continuous
function g: R — R. A blocking set W is a minimal blocking set for f iff for
every blocking set V for f we have W C V. A minimal blocking set W for
a function f: R — R is closed and its projection PrW on the axis OX is a
closed nondegenerate interval. A function f: R — R is Ag almost continuous
iff there is not any blocking set for f ([3]).

Denote by 2k the family of all Ax almost continuous functions f: R — R.
Every function f € g has the Darboux property, but there are Darboux
functions f: R — R which are not in Ak ([3]).

In the following theorems 4, 5,6 we suppose that

(3) X =R, T is the Euclidean topology in R and M is a o -field of subsets
of R such that all denumerable sets are in M and there exists a set B C R
with CI(R - B) =R, 22 ¢ M and BN1I is of the continuum power for every
open interval I C R.

Theorem 4. If the condition (3) holds, then every M measurable function
f: R — R is the sum of two M measurable functions fi,fo € €y N Ay .

Proof Let Wi,...,W,,... , (& < w; and w; denotes the first ordinal
number of the continuum power) be a transfinite sequence of all minimal blocking
sets in R2.

Let us fix two distinct points 11,212 € BN PrW;. If 1 < a <w; then we
choose two distinct points z4,1,%a,2 € BN PrW, such that

Ta,1yTa,2 # zg1,282 for B < a.

For each point z4,i, o < w1, ¢ = 1,2, we choose some y,,; such that
(Ta,isYa,i) € Wqo. Let (An):o=l be a sequence of pairwise disjoint denumer-
able dense sets contained in R — B. Define

Whn for z € A2, n=1,2,...
f(z) —wn for z€ Azn_y, n=1,2,...
fl(l') = Ya,1 for z= Ta,1, @ < wjp

f(&) = Yoz for z=1z42, a <w

f(z) in the remaining cases,
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and
f(z) —wn, for z € Azn, n=1,2,...

Wy for z€ Azp—1, n=1,2,...
fa(z) = f(2) —Yan for =141, @ <w;
Ya,2 for =242, @ <w;
0 in the remaining cases.

Evidently f = fi + f2. We can also prove likewise as in the proof of Theorem
1 that fi,f; € €4 and are M measurable. Since the graphs G(f;), G(f2)
intersect every blocking set W, (a <w; ), so fi, f2 € Uk . 0

Corollary 3. If (3) holds, then G(MM; NCy N™AK) =M, .

Theorem 5. Suppose that (3) holds. Then for every M measurable function
f: R — R there exist M measurable functions fi, f2,fa, fa € €y N Ax such
that f = min(max(fl, fg),max(f;;, f4 )) .

Proof. Asin the proof of Theorem 4 we choose points (Za,i,Ya,i) € Wo N
(BxR) (a <wy;t=1,23,4) such that zq,,i, # Tay,i, if (a1,%1) # (az,12)
(a1,a2 < wy and 4y,ip = 1,2,3,4). Let (An):i1 be the same as in the proof
of Theorem 4. Define, for : = 1,2,3,4,

wp, for z € Agnyi, n=0,1,...
fi(z) =< Ya,i for z=2q,i, a<w;

f(z) in the remaining case .

As in the proof of Theorem 2 we verify that fi,f2,fs,fs € MM N €y and
f = min(max(fi, f2), max(fs, fs)) . Since the graphs G(f;) (¢ = 1,2,3,4) in-
tersect all the blocking sets Wy (a <wy ), so fi, f2, f3,f4 € Uk . a

Corollary 4. If (3) holds, then L(OM; NCy N Ax) = M, .

Theorem 6. If (3) holds, then for every M measurable function f: R - R
there exzists a sequence of functions fr € M NEyNAx such that f = klim fr.

Proof. Asin the proof of Theorem 4 we choose points (Za,i,Ya,i) € Wa N
(BxR) (a <wy; 1=1,2,... ) such that 24, # Tay,i, for (a1,%1) # (az,%2)
(a1,02 < wy and 13,1, = 1,2,... ). Let (A"):o=1 be the same as in the proof
of the Theorem 4. Define, for k =1,2,...,

Wi for z€ A, n<k
fa(z) =Q Yok for z=zak, n<k and a<w

f(z) in the remaining case .
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Since

fjl( U (A"U U {ifa,k})> .y

k>n a<lwy
thereis f = hm fr(z). Likewise as in the proofs of the Theorems 4, 5 we show
that all fx € 9.711 NCyNAg. O

IV. The case of the density topology

Let X = R. Recall that a point z is an outer density point of ¢ set ACR
iff
hhm m*(AN(z - h,z+h))/2h=1
—0+

(m* denotes the outer Lebesgue measure in R). If A is measurable (in the
Lebesgue sense) then z is called a density point of A. The family of all mea-
surable (L) sets A C R for which every z € A is a density point of A forms a
topology. This topology is said to be a density topology in R ([1]). We denote
it by 73.

In the paper [4] Sierpinski introduced a property (P). A function
f: R — R has the property (P) at a point ¢ € R iff there exists aset EC R
such that = € E, z is an outer density point of E and the function f|FE is con-
tinuous at z. He proved also that every function f: R — R has the property
(P) at almost all points z € R..

Remark 1. A function f: R — R has the property (P) at a point z € R
iff f 13 almost continuous in the Husain sense at = with respect to the topology
Ty.

Proof. If f has the property (P) at z, then there is a set E 3 z hav-
ing the outer density 1 at x such that f|E is continuous at z. Fix ¢ > 0.

Since f~! ((f(z:) - & f(z) + 6)) D E NI for some open interval I 3 z, so

z € Intg, (Cle (f-—l (f(z) — &, f(z) + e))) . The proof that the (7&)}1 almost

continuity (i.m. the Husain almost continuity with respect to 73) of f at z
implies the property (P) of f at z is the same as the proof of the Theorem 5.6

in [1]. O
o0
Since R = |J An, where A, are disjoint pairwise and of plenty outer

n=1
Lebesgue measure ([5]), then Theorems 1, 2, 3 hold for the topology 73 in the
case where the o-field M contains nonmeasurable (L) sets. From Remark 2 it
results that if f: R — R is Lebesgue measurable and 73 almost continuous in
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the Husain sense, then it is approximately continuous, i.e. 7q continuous ([1]), so
Theorems 1, 2, 3 do not hold for the 73 topology and the o -field M of Lebesgue
measurable sets."We have in this case G(€y N M) = L(Cx NM;) = g NN,

(1]) and B(€yx N 9My) = B,, where B, denotes the family of all Baire 2
functions ([6]).

V. The maximal additive, multiplicative and
lattice families for the class €y

Define:

A(Cy)={f: X - R; forevery g€ €y thesum f+ge€ €y},
P(€y)={f: X > R; forevery g€ €y theproduct fge Cyu},
Smax(Cu)={f: X > R; forevery g€ €y max(f,g)€ €y},
Smin(€y)={f: X - R; forevery g€ €y min(f,g)€Cy}.

Remark 2. €y D A(CH) U P(CH) U Smax(Q:H) U Smin(Q:H) .

Proof. As g=0€ Cq,so A(€y) C €. Similarly ¢ =1 € €y implies
P(Cy) Cc Cy. If f ¢ €y, then there exists a point € X and a positive
number € such that z ¢ Int Cl(f_l (f(z) — ¢, f(z) + 6)) If g=f(z)—c¢,

then ¢ € €y and z ¢ IntCl({t € X : |max(f,g)(t) — max(f,g)(z)| <e}) C
CIntCl({t € X : |f(t) — f(z)| <e}) and max(f,g) is not in Cp. So
Smax(€x) C €y . Analogously we can prove that Spin(€y) C €. O

Remark 3. Let € denote the family of all T continuous functions
f: X > R. We have € C A(CH) n P(Q:H) n Smax(Q:H)ﬂ Smin(CH)-

Proof Fix fe €, g€ €y, z€ X and € > 0. Since z € Int({t € X:
F®) - f@)] < ¢/2)) N It CL({t: lo(t) — g(a)| < /2}) C IntCl({t:
|f(t) + g(t) — f(z) — g(z)| < €}), f+g is T almost continuous (in the Husain
sense) at = . This proves that € C A(Cp).

Similarly, z € Int({t € X: |f(t) — f(2)| < ¢/2max(|g(z)|,1)}) N Int CI({t:
19() — 9(2)| < /2max(L, |f(2)] +¢/2)}) C Int CI({¢: |fg(z) — Fa(t)] < e}, so
P(Cy)D C.

Now if f(z) < g(z), then for 0 < & < (g(z) — f(z))/2 there exists an open
neighbourhood U of z such that

UN{t e X:|max(f,g)(z) —max(f,g)t)| <e}n{t:|f(z) - f(t)| <e} =UnN
N{t: |g(t) — g(z)| < €}. Thus =z € Int C1({t:| max(f, g)(t)—max(f,g)(z)| < €})
and max(f,g) is 7 almost continuous in the Husain sense at z. If f(z) >

> g(z), then also z € Int Cl({t: lmax(f(t),g(t)) - max(f(x),g(x))‘ < 6})
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So € C Smax(€x). Similarly we can show that min(f,g) isin €y. So € C
C Smin((EH)- a

Theorem 7. Smin(e:ll) = Smax(cH) = P(Q:H) = A(Q:[{) = C,

Proof. It suffices to prove that Smin(€x), Smax(€H), P(€x), A(Cy) C €.
If fe€y (f: X - R) is not continuous at = € X, then there is ¢ > 0 such
that for every open neighbourhood U of z there is some point t € U with
[f(t)— f(t)] > € (e < |f(z)|/2 whenever f(z)#0). Let V C X be an open set

such that £ € V and V C Int Cl(f_1 (f(z)—e, f(z)+¢€) | - There is some point

u € V such that |f(u)— f(z)| > €. As f € €y, there is an open neighbourhood
W C V of u such that W C IntCl({t € V: |f(t) — f(u)| < n}), where 2p
is a positive number < [f(u) — f(z)| — ¢ (n < |f(u)|/2 whenever f(u) # 0).
Remark that

W C IntCl({t € W: |f(t) — f(z)| < e}) NInt C1({¢t: |f(t) — f(u)| < n}) and
{t €W 1£(8) — F(@)] <1} N {2 15(2)  f(2)] < e} = 0. Define

2n if teW, t#u and |[f(t)— f(u)]<n
9(t) = . i

0 in the remaining case.
Since Int(¢~!(2n)) =0, g is 7 almost continuous in the Husain sense at each
point t € X with g¢(¢) = 0. The almost continuity in the Husain sense of g at
every point ¢t € X with ¢(¢) = 25 results from the inclusion

W CIntCl({t € W: |£(t) — f(u)| < n}).

So g € €y.But f+ g is not 7 almost continuous in the Husain sense at u,
because (f +9)(u) = f(u), F(t)+(t) = f(t) for t € W with |£(t)— f(u)| >
and [f(t) +g(t) — f(w)] = |g()] — [f(t) = f(w)| 2 2n —n =7 for t € W with
t#u and [f(u) — f(t)] <n. Thus f ¢ A(Cx) and A(€y) C €. For the proof
of the inclusion P(€y) C € we fix a point w € W such that |f(w) — f(u)| <7
whenever f(u) # 0 or [f(w) — f(z)| < € in the other case. If f(u) # 0, we
define
” _{c if teW,t#w and |f(t)— f(u)|<n

(&)= 1 in the remaining case,

where ¢ is such that |cy| > |f(w)|+1 for each y € (f(u) —n, f(u) + 7). Anal-
ogously to the case of the function g we prove that h € €y . Since f(w)h(w) =
Fw) £0, F(B)h(t) = cf(t) for t € W with |f(t) — f(u)] < n and f(Dh(t) =
f(t) for t € W with |[f(t) — f(u)| > n, so the function fh is not 7 almost
continuous in the Husain sense at w.
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If f(u) =0, then we define

h(t)={° if teW,t£z and |f(t)— f(z)| <e

1 in the remaining case,

where ¢ is such that |cy| > |[f(w)| +1 for each y € (f(z) —¢, f(z) +€) and
analogously as above we prove that h € €y and that the function fh is not T
almost continuous in the Husain sense at w. Thus f ¢ P(€y) and P(Cy) C C.

For the proof of the inclusion Smax(€n) C € we define

k(z)={f(")+” if teW,t#u and |f(t)-f(u)l<n

f(u) —n in the remaining case

and analogously to the case of the function g we prove that £ € €y . Since

max(f(u),k(u)) = f(u) and max(f(t),g(t)) ¢ (f(u) -, f(u) +n) for te W
with ¢t # u, we have f ¢ Smax(€x) and Smax(€x) C €. Analogously we can
prove that Syin(Cx) C €. O
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