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SUFFICIENT FAMILIES AND 
ENTROPY OF INVERSE LIMIT 

M O N A K H A R E 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. T h e purpose of the present paper is to study the metric entropy 
h((j),J\r) of an F-measure preserving transformation <j> relative to a cr-algebra 
M of an F-dynamical system. Concepts of sufficient families and generators are 
introduced and a few results are proved. Finally, the entropy of the inverse limit 
of an inverse spectrum of F-dynamical systems is obtained. 

1. Introduction 

Subsequent to the introduction of a new mathematical model of the statistical 
quantum theory, called F-quantum space, by R i e c a n and D v u r e c e n s k i j 
[14], [15], several studies in this direction have been made by different workers 
[2], [4], [8]-[13]. An F-quantum space is a couple (X,M) where M (C [0, l]x ) 
is a cr-algebra of fuzzy events on a nonempty set X. A probability (normalized) 
measure, called an F-state m: M -» [0,1] is then defined on M. Different 
sets of axioms for these basic notions of fuzzy a -algebra and of F-state were 
proposed in [2], [4], [8] -[13]. 

Following P i a s e c k i [13], M a r k e c h o v a studied entropy of complete par­
titions, and entropy of an F-dynamical system in [10], [11]. At the same time, 
D u m i t r e s c u [4] developed fuzzy partition theory in a different way using tri­
angular norms (see also B u t n a r iu [2]). The major difficulty in defining fuzzy 
partition relates to "the disjointness of fuzzy sets"; to overcome this difficulty dif­
ferent methods have been chosen. In what follows some crucial tools and results 
are missing in each of the respective theories. We ([7], [17]-[21]) have adopted 
the basic definition of fuzzy cr-algebra and F-measure due to K l e m e n t [8], 
and have developed a theory of F-dynamical systems and entropy using the 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 28E10, 28D05; Secondary 47A35. 
K e y w o r d s : F-probability measure space, F-dynamical system, atom, entropy, generator, 
inverse spectrum of F-dynamical systems. 
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concept of an atom in a fuzzy a -algebra which we introduce to circumvent la­
cunae in other approaches to such a theory. Appropriate generalizations of the 
definitions lead to a very satisfactory theory which contains the corresponding 
classical theory as a particular case. 

The present paper is devoted to the study of metric entropy and the entropy 
of the inverse spectrum. In Section 2, prerequisites are collected. In Section 3, 
the concepts of the conditional entropy and metric entropy are studied and some 
new results are obtained which include the corresponding classical results as a 
particular case (cf. [1], [5], [6]). In Section 5, the entropy of the inverse limit of an 
inverse spectrum { $ a : a G J } of F-dynamical systems is investigated using 
the concepts of sufficient families and generators in an F-dynamical system, 
introduced in Section 4. It is proved that if C G F(Ma) has a generator then 
the entropy / i ($ , [C]) of the inverse limit 4 on [C] is the limit of the entropies 
of $a on [C]. 

2. Prerequisites 

2 .1 . A fuzzy set in a nonempty set X is an element of Ix where J = [0,1] is 
the closed unit interval of the real line R. A fuzzy set which assigns to each x 
in X the constant value £, t G i", is denoted by t. If a sequence {Xi(x)}c*=1 is 
monotonic increasing and converges to X(x) for each x G X , then we say that 
{^i )£i increases to A, A G Ix; we then write Â  t A. 

The set of all positive integers is denoted by N and Z denotes the set of 
integers. 

2.2. ([8]) A fuzzy a-algebra on a set X is a subfamily of Ix which satisfies the 
following conditions: 

(i) l e x , 
(ii) XeM => l-XeM, 

oo 

(iii) if { A J g x is a sequence in M, then V Â  = supX{ e M. 
i=l i 

If JVj, i = 1,2, are fuzzy sub- a -algebras on X , then Ml VJV2 is the smallest 
fuzzy o -algebra on X containing Af1 UJV2. 

2 .3 . ([8]) An F-probability measure m on M is a function m: M —r / which 
satisfies: 

(i) m ( l ) = l , 
(ii) m ( l - A ) = l - m ( A ) , XeM, 

(iii) for A, /i G M, m(A V /i) + m(A A /i) = m(A) + m(/i), 
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(iv) if { A J ^ j is a sequence in M such that Ai t A, then m(A) = supm(AJ . 
i 

The triple (X,M,m) is called an F-probability measure space. 

2.4. If m and n are F-probability measures on a fuzzy a-algebra M, then, for 
p G [0,1], pm + (1 — p)n is also an F-probability measure on M . 

2.5. ([19]) For A, \i G M, define an equivalence relation on M as follows: 

A = // (mod m) <=> m(\) = m(fi) = m(\ V fi). 

Denote by M the set of all equivalence classes induced by this relation; ft stands 
for the equivalence class containing fi. Elements A, \i of M are called m -disjoint 
if m(A A /i) = 0, i.e. A A /i -= 0 (mod m) . 

2.6. ([19]) Let (X, M,m) be an F-probability measure space, and let AT be 
a fuzzy sub- a -algebra of M. An element fi G M is called an oiom of A/* if 
m(fi) > 0, and for A G A/*, 

m(A A /JL) = m(\) ^ m(/i) = ^ m(A) == 0 . 

The set of all atoms of M is denoted by A/* and F(M) stands for the family of 
all fuzzy sub- a -algebras of M having finitely many atoms. 

2.7. For an F-measure preserving transformation (j>: (X,M,m) - r (X,M,m) 
(i.e. (j)~l(M) C M and m(0 _ 1 ( / i ) ) = m(ji) for all JA e M), the quadruple 
$ = (X,M,m,(j)) is known as an F-dynamical system. The transformation 0 
is called an invertible measure preserving transformation if it is bijective and 
(j)~1 is also measure preserving. If (f) is invertible then $ is called an invertible 
F-dynamical system. 

2.8. ([19]) If (f) is F-measure preserving and M is a fuzzy sub-a -algebra of M , 

then (j)-1 (M) = (j)-lQJ). 

2.9. ([19]) Let (X,M,m) be an jF-probability measure space and Af1, M2 be 
fuzzy sub- a -algebras of M. Then Af2 is called an m-refinement of J\fY (or Af1 

is subordinate to A/"2), written as Af1 <m M2, if for [i G AT2, there exists A G A/\ 
such that m(A A \i) = m(Lt). 

The fuzzy sub-a-algebras A^ and M2 are called m-equivalent, written as 

Nl«mN2.i-

and 

m^A A (Vj /^ : A* € ^ 2 } ) ) = m ( ^ ) f o r e a c n A G A/^ 

m(fiA\\/{\: A G A T T } ) ) ---m(li) for each L£ G A/^ . 

The relation of "m-equivalence" is an equivalence relation on F(M). We 
denote by [JV] the set of all m-equivalent fuzzy sub- a -algebra in F(M). 
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3. The metric entropy hm(<f>,M) 

3.1. Let (X,M,m) be an F-probability measure space. For AT G T(M), the 
entropy H(M) of M is given by [19] 

Hm(Ar) = H(Ar) = -^2g(m(fx)), 

where the convex function g: [0, oo) -> R is Shannon's function, defined by 

, . f xlogrr, x > 0 
L 0, otherwise. 

For .A/i,-rV2 G .^(M) with AT1 = {\.: 1 < i < r} and y\T2 = {^ : 1 < 
j < s}, we define the conditional entropy H(AT1 \ N2) by 

Hm(K I N2) = ^(Nx I N2) = - E E m O ^ s M A * I /-,-)) > 

where m ( \ | /I,) = - - $ $ - - ([7]). 

3.2. Let (X,M,m) be an F-probability measure space. Then, for N^N^N^ G 
[M], the following hold: 

(i) Nx<mN2 = > H(M,)<H(M2) ([19]). 
(ii) H(M, V N2) = H{NX) + tf(N2 | N) ([17]). 

(iii) H(N, V N2 | N3) = iJ(N, | N3) + F(N2 | Nx V N3) ([7]). 
(iv) If (j> is an F-measure preserving transformation on X, then 

H((/)-k+1(N))=H(Ar), keN. 

(v) dR(Mx | JV2) = H(MX I jV2) + H(M2 | Nx) defines a pseudo metric 
on [AT]. 

For the relation ~ of equivalence modulo 0 (JV̂  ~ M2 <=> ATX <m JV2 and 
M2 <mM1), dR defines a metric on [N]/~ ([17]). 

3.3. ([19]) Let $ = (X,JVf,ra,</>) be an F-dynamical system. For M G T(M) 
define the metric entropy h((j),N) of <f> relative to M by 

hm(<t>,M) = h{4>,Af) = lim | i f ( N f c ' 0 ) , 
k—>oo AC 

where Nfc^ = N V 0 - 1 (N) V • • • V <j>-k+l (N), fee N. 
For £ e ^(JW), the entropy /i($, [£]) of $ on £ is given by 

h(4>, [£]) = fc(*, [£]) = sup{M&N) : N € [£]} • 
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3.4. {[19]) For M^e [AT], 

K<m^2 = » K4>,M_)<K<t>M2)-

3.5 PROPOSITION. Let (X,M,m,4>) and (X,M,n,(j>) be F-dynamical sys­
tems. Then, for every fuzzy sub-a -algebra M G F(M) and for p € I, we have 

(i) PHm(Af) + (1 - p)Hn(N) < Hpm+{1_p)n(Af); 
(ii) phm(4>,Af) + (l-p)hn(4,,N) < hpm+{1_p)n(d>,N). 

P r o o f . 
(i) By the convexity of g, we have 

pHm(M) + (1 - p)Hn(N) = -pJ2 9{m{li)) - (1 - P) Y_ »(»(/-)) 

= " J2 [P9(m{/J)) + (1 -p)g(n(fi))] 

< ~ Yl 9{pm(fi) + (1 - p)n{/j)) 
/iE/7 

= - _^9{{pm + (l-p)n){ii)) 

= ^ p m + ( l - p ) n ( ^ ) ' 

(ii) Follows from (i). • 

3.6. PROPOSITION. Let M be a fuzzy sub-a-algebra of an F-dynamical sys­
tem $ = (X, M,m, (j>) having finitely many atoms. Then 

h(c/>,jV) = hU, V0-*(J\O), peN. 
V 2 = 0 ' 

Furthermore, if $ is invertible, then 

h(cj>,N) = hL V ^(M)), p € N . 

P r o o f . Since, for p, k G N, 

p \ k,4> ( V \к,ф 

[)[Ф~ЧЮ) =лгр+к'ф, 

we get 

hU,\ir\ti)\ = lim \H(Nv+^) = lim _ 1 tf(.A/T+*>*) = h(<j>,N). 
V t=0 ' k-+oo K I k^-ooP + K K ' v ' 

447 



MONA KHARE 

If $ is invertible, then since 
k,(j> 

V W O = ( V ^KN*1*), 
=—v / \i=—p J . 2 = — V / \t=—p 

we have 

H(( V (̂AT)) ' ) = # ( ( V A{Ark>+))=H(Mk>+). 

Therefore 

/i(<£, V <j>i(M))=h(<j>,N). 
^ 2 = — P ' 

D 

3.7. PROPOSITION. Lei1 ( K , X , m , 0 ) fee an F-dynamical system. Then, for 
MeT{M) o n d p G N , 

h{^M)=ph{^M), 

and consequently / i(0p , [AT]) = ph{(f), [AT]). 

P r o o f . By Proposition 3.6, we have 

h{<ir,M) = h(<ir,\/<i>-i(Arj) 

v i=0 ' 

= &M( v ̂ w)") = £»>( v>-( vrw)) 
= lim W * v V W ) = I > l i m i//(Ar«)=p/.(*,Af). 

D 
3.8. PROPOSITION. Let (K, JVf,rn, 0) 6e an invertible F-dynamical system. 
For M G F(M), we have 

h(<j>,M) = h{ct)-\M). 

Consequently 

h(4>,W}) = h(<j>-1M). 

P r o o f . Since Nfc^ = cf>-k+1 (N f c^_ 1) , we get 

H(Mk'*) = H(<j>-k+1(Mk'i>~1)). 

Therefore, by 3.2 (iv), we get 

h(<f>,Af) = lim i t f ( r ^ 1 ^ ' 0 " 1 ) ) = lim j-2f( .At*0 = M*- \ .V) . 

D 
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3.9. PROPOSITION. Let (X,M,m,(f)) be an invertible F-dynamical system. 
For M G T(M) and p eZ, we have 

h(<t>v,[N]) = \p\h(<t>,[Af}). 

P r o o f . Follows from Proposition 3.7 and Proposition 3.8. • 

3.10. PROPOSITION. Let $ = (X, M,m,<f>) be an F-dynamical system. 
Then, for Nl,N2 6 [At], 

/.(^Ni)<M^N2) + fr(Ni|N2). 

Proof. By 3.2(i), (ii), and (iii), we get 

H(M^) < / f « ' * V ^ ) 
= i/(Nfe'*) + H(Mk'* | Af2

k'<") 

= H(Af£'+) + H(MX | < • * ) + H(<t>-1(M?-1'4') | (Ni VNfe'*)) 

< H(M*>*) + H(Af, | Af2) + H(r\Mx) | <j>~\H2)) 

+ H(<t>-2(Af1
h-2'*)\Af2

k'<l>) 

< H^'4") + kH(Aft | N2). 

Hence 

M0,Ni) < Hm \:H(N2
k',t') + H(Af. | N2) = h(<f>,Af2) + H(AT, \ M2). 

k—>oo rZ 

D 

4. Sufficient families and generators 

4.1. DEFINITION. Let $ = (X,M,m, <f>) be an F-dynamical system, and let 
C G F(.M). A subfamily G of [C] is called sufficient for [£] with respect to 0 
if 

(i) </> is noninvertible and fuzzy sub- a -algebras in [C] subordinate to 
P 
V 4>~l(N), N G 9 , p G N, forms a dense set in the space [C]. 

i=0 

(ii) 0 is invertible and fuzzy sub- a -algebras in [C] subordinate to V ^O^O > 
i=—p 

JV G 0 , ;? G N, forms a dense subset in the space [£]. 
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4.2. PROPOSITION. Let $ = (X,M,m,(j)) be an F-dynamical system, and 
let C E F(M). For an arbitrary sufficient family 0 for [C] with respect to (j>, 
we have 

/i(0,[£])=sup{/i(0,.A/'): y V e e } . 

P r o o f . Let S E [C], and e > 0. Choose M E 6 and k E N such that 

dR(S, K) = H(S | K) + H(/C | S) < e , 

for some Ke[C], /C < m V ^(-AO if 0 i s noninvertible, and K <m \/ ^(N) 
z=0 i= — p 

if 0 is invertible. Hence by Proposition 3.10, 3.4, and Proposition 3.6, we obtain 

H{<j>,S) = h(<l>,K) + H{S\K) 

< h(<j>,K) +e 

< < 

Thus 

and so 

h((j),\J $ *(JV)j +£ if <t> is noninvertible, 

^ (^ , V ^(-AO) + £ if 0 is invertible 
^ i=—p ' 

= h(cP,Af) + e. 

h(4>,S) < h(<j),N) < sup{/i((/>,N) : M £ 6 } , 

M</>, [£]) < sup{/if>,N) : NG6}. Also, since 0 C [£], ft(</>, [£]) > sup{/i(0,JV) : A/" E 0 } , and hence the result 
follows. • 

4.3. DEFINITION. A fuzzy sub- a -algebra JV E [C] of an F-dynamical system 
(X, .M,m,0) is called a generator for [C] with respect to 0 if 0 = {./V} is a 
sufficient family for [C] with respect to 0. 

5. Entropy of the inverse limit 

5.1. DEFINITION. ([20]) Let J be a directed set (cf. [3]), and {$ a : a E J} 
be a family of F-dynamical systems. Then the triple (J, 3>Q, ^ a / 3) is called an 
inverse spectrum if, for each a, (3 E J with a < (3, there is an F-measure 
preserving transformation ip* : $^ -» $ a satisfying: 

a < /3 < 7 = > ^ + ^ / ^ . 
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An upper bound for an inverse spectrum (J, $ a , V>/3a) is an F-dynamical 
system with a set of homomorphisms xpa: $ —J> $ a , a e J , such that, whenever 
a<(3, (3eJ, t/jpaoil;p = iPoc. 

An inverse limit $ of the inverse spectrum (J, $ a , ^«a) is an upper bound for 

the spectrum with homomorphism \j)a : <£ —> $ a , a e J, such that for any upper 
bound $ with homomorphism i\)a: $ —> 4>a, there exists a homomorphism 
p: $ —> <i> such that ^ a op -=: - 0 , for each a e J. We then write 6 = inv lim$ . 

a £ J 

The inverse limit $ of the inverse spectrum can be identified with (X, M, m, 0) 
where yVf is the fuzzy a -algebra generated by [JMa. 

a 

5.2. THEOREM. Let {$ a : a e J} be an inverse spectrum of F-dynamical 
system indexed by a directed set J; $a = (K, Ma, m, </>). Let M = (J JMa . and 
C e Jr(Ma) for some a e J. / / £ lias a generator with respect to (j), then 

h{$,[£]) = limh($a,[£]). 

P r o o f . Since /i($a,[£]) is a monotone net l im/i($ a , [C]) exists and is 

equal to sup h($a) [C]). Moreover, 

QGJ 

h(t>a,[£])<h(4>,[£]), 

for all a e J and so 
h@,[£])>]imh{*a,[£]). (4.5.1) 

Also, if JV is a generator for [C] with respect to </>, then 

M&N") < M*a> W) = sup{M^,N) : N € [£]} . 

Hence, 

/.(*,[£]) = / .(^N) < sup/»($«.[£]) = lim/»($«,[£]) . (4.5.2) 
aEJ a G J 

Combining (4.5.1) and (4.5.2) we get the result. • 
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