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LINEAR TRANSFORMS SUPPORTING CIRCULAR
CONVOLUTION ON RESIDUE CLASS RINGS

LADISLAV SKULA
0. Introduction

The aim of this paper is to describe all the linear transforms supporting
circular convolution on a residue class ring Z/mZ for any integer m = 2. This
question was raised in [4] (5.5). According to the results of [4] (2.9) the investiga-
tions of such transforms lead to those of the matrices supporting circular con-
volution — SCC-matrices (1.1). It is shown that this general case leads to the case
of m being a prime power m = p".

We describe all the SCC-matrices in the re51due class ring Z/p”Z in the Main
Theorem 1.5 by means of p-adic integers discovered by Kurt Hensel at
the beginning of this century.

Linear transforms over a commutative ring with an identity element sup-
porting circular convolution are exactly defined in [4] (2.3). The beginning of
investigations of these questions is due to R. C. Agarwal and Ch. S. Bur-
rus [1].

The basic property of p-adic integers can be found in [2] or [3].

1. Introductory Paragraph

Throughout the whole paper we shall denote by

N a positive integer

a prime

a positive integer

the ring of rational integers

the ring of p-adic integers, hence each element aeZ, has the form

a=ay+ap+ap’+ ..

whee0Zaq,<p—-1(=0,1,2,..)

are rational integers,

@, the canonical homomorphism from the ring Z, onto the quotient ring
Z,/p"Z, = Z[p"Z (canonically), i.e. for zeZ, we have ze @,(2)e Z,/p"Z,.

NN
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IfX=(x)0=i< K—1,0<;< L — 1)isamatrix over the ring Z, of size
K/L, we denote by &,(X) the matrix (@,(x,;))0<i<SK—1,0<<L-1)
over the ring Z,/p"Z,, of size K/L.

1.1. Let R be a commutative ring with an identity element 1, different from
the zero element 0, of R. In the paper [4] (2.8) the notion of matrices supporting
circular convolution was introduced in the following way:

Let A =(a;), B=(b;), C=(c;)(0=i, j< N — 1) be square matrices of
order N over R (ay, b;, c;€ R). We say that the matrices A, B, C support circular
convolution or briefly they are SSC-matices if for each 0 < u, v, w < N — 1 the
following relation holds:

N=1 1z foru+ v+ w=0 (mod N)
Z akubkvckw = .
K=o Og otherwise .

This notion is justified by that of linear transforms supporting circular con-
volution (or having the circular convolution property) as explained in [4] (Para-
graph 2) and it is connected with the notions of Circular Convolution and
Discrete Fourier Transform.

1.2. For the case R being a (commutative) field the following theorem was
derived [4] (3.6):

Theorem. Let F be a commutative field and A = (a;), B = (b;), C = (c;)
(0 =i, j< N — 1) square matrices of order N over F. Then the following state-
ments are equivalent:

(a) The matrices A, B, C support circular convolution.

(b) For each 0 < k < N — 1 there exist a,, by, ¢, g.€F such that

(@) g =1,

(B) Naybie, = 1p,

(Y) the elements g, (0 < k < N — 1) are different,

(®) aw, = giay, by = giby, ¢y = gici for eachO <h< N — 1.

It was also shown in [4] (4.1) that the Theorem holds even if the field F is
replaced by an integral domain D.

1.3. From the definition of SCC-matrices it follows that the study of SCC-
matrices over the direct sum of rings leads to the study of SCC-matrices over
single components. Thus the investigation of SCC-matrices over a residue class
ring Z/mZ (m a rational integer 2 2) is reduced to the case of m being a prime
power. Our main result gives a description of the SCC-matrices over such a ring
by means of p-adic integers.

From the definition of SCC-matrices we immediately obtain.

1.4. Theorem. Let A, B, C be SCC-matrices over the ring Z,. Then the
matrices @,(A), @,(B), @,(C) over the ring Z/p"Z (Z,/p"Z,) support circular
convolution.
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We shall give a proof of the main result of this paper — the converse of 1.4
— in Paragraph 3:

1.5. Main Theorem. Let oZ, B, € be SCC-matrices over the ring Z/p"Z. Then
there exist SCC-matrices A, B, C over the ring Z, such that o = @,(A),
% =,B), € =,C).

1.6. Remark. For order N=1 or N =2 of the matrices &/, 24, € the
proof was given in [4] (5.4).

1.7. The question of SCC-matrices over the residue class ring Z/p,Z is
transferred in this way to the question of SCC-matrices over the ring Z, of p-adic
integers. The existence of these matrices is solved by theorem [4] (5.1):

Theorem. Ther exist SSC-matrices A, B, C of order N over the ring Z, if and
only if N divides p — 1.

The description of these matrices is then given by Theorem 1.2 for the integral
domain D = Z,.

2. The Rank of Special Matrix A

We shall suppose in this paragraph that
N=2,Np-1

and g will mean a rational integer of order N mod p.

The congruence mod N on Z will be denoted only by =.

The Galois field GF (p) = Z/pZ will be denoted by P and the rational integers
will often be considered as the eements of the field P as well as the number g~'.

In this paragraph a special matrix N of size N*/3N? over P is defined and it
is shown (2.9) that the rank of U (over P) is equal to 3N2 — 2N.

2.1. Notation. For u, v, w, teZ, u#0, v#0 let ¢ = c([u, v, w], £)e P be
defined in the following way:
a) foru#v,u# —v

1 fort=w,
-1 fort=v+w,
c=¢—1 fort=u+w,

1 fort=u+v+w,
0 otherwise,

2 for t = w,
—1 fort=v+w= —u4w,
fort=u+w,
0 otherwise,
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¢) foru=v,u#® —v
1 fort=w,
-2 fort=w+u,

‘T 1 for t = w + 2u,
0  otherwise,
d) forNeven,ustg
2 for t = w,
c=<—2 for t = —]!’
2

0 otherwise.
Put foru, v, A, te Z, u£0,v#0
cD([u, v), 1) = c([u, v, L — (u + v)], 1)
and for 0 £ 1 < N — 1 denote by €(4) the matrix
CAH=("(u,v], A1 =u,vr<N—-1,05t<N-1)

of size (N — 1)*/N over P, where [u, V] is an index for the row and t means a column
index.

2.2. Lemma. The rank of the matrix €(0) (over P) is N — 1.

Proof. I. For 1 £ v< N —1 let r, be the row of matrix €(0) with index
[N—v, N—1]. Put

1
S, z'&(rl + .o+ rv_y),

s,=(v—N)s;+ry_,+..+r, for2<vsN-1
and
S, = (S105 Sp1s -oos Sun 1) forl £ vEN-1.

Then for0 <j<N—land 1 £ v<N—1 we have

1 for j=0,
s, =< —1 forj=v,
' 0 otherwise.

It follows that the vectors s, ..., sy_, are linearly independent (over P) and
are elements of the vector space generated by the rows of the matrix €(0).

II. It is enough to show that each row of the matrix € (0) is a linear combina-
tion of th vectors s, ..., Sy -

Let 1 £u, v £ N — 1 and consider the row r= (ry, ry, ..., ry_,) With index
[u,v] and let 0 <t < N — 1.
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a) Let us p, u# —v. Then
1 fort= — (u+v),

-1 for t = —u,
r=«¢-—1 fort = —v,
1 fort=0,
0 otherwise.
Hence r=3s, ,+sy_,—s,where 1SISN—1,l= —(u+v).
b) Let u= —v, u #v. Then
for t =0,
;= -1 fort=v,
! —1 fort=u,
otherwise.

Hence r=s, + s,.
C) Let u=yp, u# —v. Then

1 for t = —2u,
-2 fort= —u,

1 fort=0,

0 otherwise.

Hence r=2s,_,—s,where 1 SIS N—-1,/l= -2u.

d) Let Nbeevenand u =v = g Then

2 fort=0,
r,={—2 fort=§,
0 otherwise.

Hence r = 2sy.
2
We get from 2.1 immediately:

2.3. Lemma. We have for u, v, w, t, xeZ, u# 0, v # 0:
c(u, v, w+ x], t + x) = c([u, v, wl, ).

2.4. Proposition. There exist rational integers 1 Su;,, S N—1 (1=2i=
< N — 1) such that for each 0 £ A < N — 1 the rows of the matrix €(A) with
indices [u;, v;] (1 £ i< N — 1) form a maximal linearly independent system of
rows of the matrix €(A) (over P). The pairs [u;, v;] are mutually different.

Proof. The Proposition follows from 2.2, because according to 2.3 we
have
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¢y, v), ) = c(u, v], 7)

forlsu,vs=N-1,0sA,t,t€N—-land =1+ A

2.5. Notation. Put

d=d([u, v, w), [k, £]) = c([u, v, w), 1).g“**+"~YePp

foru,v,w,k,teZ, u#0,p#0.

Further let
D=@(u, v, W), [k, DA LU, v SN-1,0SwsSN-1,0=k tSN-1)
be a matrix of size N(N — 1)’/ N2 over P, where the triples [u, v, w] denote row
indices and the pairs [k, 7] column indices.

Then we have:

2.6. Proposition. There holds
a) foruov,u# —v

gtk fort=w,

—gu fort=v+ w,
d={ —g% fort=u+w,
1 fort=u+v+w,
0 otherwise,
b) foru= —v,u#v
2 fort=w,
d= —g* fort=v+w=—u+w,
—g™%  fort=u+w,
0 otherwise,

c) foru=v,u# —v
for t = w,
fort=w+u,

g2uk
d _ _zguk
- 1 fort=w+ 2u,
0
N
2

otherwise,
d) for Nevenandu=v =
2 fort=w,
L
d=< —2g* =(=1}*"2 fort5w+§

0 otherwise.

~ 2.7. Proposition. The rank of the matrix D (over P) is equal to N(N — 1).
Proof. According to 2.4 there exist mutually different pairs [u;, v;]
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(QA<LiEN—-1,1Zu,v,£N—1)such that foreach0 < 1 < N — 1 the rows
of the matrix €(4) with indices [u;, v;]] form a maximal linearly independent
system of rows of €(1).
We show that the rows with indices [u,, v, ] (1 S i SN—-1,0Zs<N-1)
of the matrix D form a maximal linearly independent system of rows of ®.
a) Let lfsu, vEN-1,0ZwsN-—-landlet0=SAEN-1,A=u+
+ v + w. There exist c,;e P (1 £i £ N — 1) such that

N-1
CM)([“’ U], = Z cic(l)([ui’ vi]’ t)
i=1
for each 0<t<,. Let 0w, < N—-1, w,=42—(y;+v,) for each 1 £i<
<N-1.
We have foreach0 <k, t<N-—1:

N-1 N—-1

Z cid(u;, v, wl, [k, 1]) = Z cic(lu, vy A — (u; + )], 1) g =

i=1 i=1

N-—1
—_ g(/l—l)k Z C‘_c(l)‘([ui’ vi]’ t) —_
i=1
— g().—r)kc(l)([u, U], t) —
c(u, v, wl, )g“+* "= = d([u, v, wl, [k, 1].

b) Let x(i, s)e Pfor | £ i< N—1,0 =5 < N — 1 such that we have for each
0k tEN—-1:

Il

N—-1N-1

Y Y xG, s)d(w, v, s, [k, 1) =0.

i=1s5=0

Put x(i, 0) = x(i, s) for 0, s€Z,0 £ s < N— 1, s = 0. Then

N—-1IN-1

Z Z X(i, A— (u‘. + vi)) C(l)([u’_, vi]’ t)g().—l)k =0.

i=1A=0

Hence
N-1 N-1
Z g Z x(i, A — Wi+ v))cP(u, v], =0
A=0 i=1

foreach 0 <k, t < N — 1. Since det(g”‘)(O <A, k< N-—1)is the Vander-
monde, it differs from 0 and we have

Y i A= G+ o) D, v, 1 =0

i=1.
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for each 0 < A4, t < N — 1. According to 2.4 we have
x({, A—(u;+0v))=0 foreach1 i< N—-1,0SASN_1.

2.8. Notation. For u, v, w, k, teZ and we{x, y, z} (x, y, z are any different
symbols) we define an element from P:

0 foro=x,t#u,
(v+ w)k for O=xt=u,
foro=y t#£0,
foro=y t=0,
foro=z t#w,
foro=zt=w.

a([u, v, w}, o, k, f]) =

(u+w)k

(u+v)k

0 OO0y OO0y

Further let

Q[ = (a([ua v, W], [(0, kg t])) (0 é u, v, w é N— 1, COE{X, Y, Z},
0k, t£N-1)

be the matrix of size N3/3N? over the field P, where [u, v, w] ar indices for rows
and [, k, t] are indices for columns.

2.9. Theorem. The rank of the matrix N (over P) is equal to 3N* — 2N.

Proof. Let 0 fu, w=N—-1, 1 vEN-1,0Za=N-1,a=w+w
We subtract from the row of U with index [u, v, w] the row with index [«, 0, a].
In this matrix we subtract from the row with index [u, v, w] the row with index
[0, v, B], where 1 Su, vrESN—1,0EwN—-1,0Zf=<N-1and =
=u+w.

Then we get the matrix B = (b([u, v, w], [@, k, 1]) 0= u, v, WS N—1,
we{x,y,z},0k,t<N—1).Let T=[x, k, 1,05k, t=N—1landlet0 =
Su,v,w< N—1. We have

wk fort=u,

b([u, 0, w], T) = a([u, 0, w], T) = {g for £ o u.
For v # 0, u = 0 we have
b((0, v, w], T) = a([0, v, w], T) — a([0, 0, v + w}, T) =0.
For v # 0, u # 0 we have |
b(u, v, w}, T) =a(u, v, wl, T) —a((u, 0, v+ wl, T) —
—a(0,v, u+w), T)+a(0,0, u+v+w], T)=0.

Hence we obtain for0 < u, v, wEN—-1,0<5k, t<N-—1
wk

= 4 fort = u, V= O’
(*) b([u, v, wl, [x, &, 1) = {0 otherwise -

384



Let T=[y,k, 1), 0k, t=N—-1,0=5u,v, w<N—1,v#0.Then

b([O’ v, W], T) = a([o! v, W], T) - a([O, 09 v+ W]’ T) =

—gvtk fort=0,

= g™ for t = v,

0 otherwise.

For u # 0 we get
b([u’ v, W], T) = a([u9 v, W], T) - a([u9 0, v+ W], T) -
—a([0,v,u+w], T)+a(0,0,u+v+w], T)=0,

soforO0Zu,v, wS<N—1,v#0and 0 <k, t < N — 1 there holds

—gt*k  foru=0,1=0,
(%) b(u, v, w), [y, k, 1]) = g foru=0,t=vo,
0 otherwise.

ForlZu,vEN-1,0Zw=sN-1,0Zkt<N—-1,T=|zk, 1] we get
b([u, v, wl, T) =a([u, v, w], T) —a(u, 0, v+ w], T) —
—a(0, v, u+wl, T)+a(0,0, u+v+w], T)=

[ gutok fort=w,u# —v,
gutk L 1=2 fort=w,u= —v,
—g* fort=v+w, u#no,
=<—g”"—g”"=—2g“" fort=v+w,u=v,
—g* ‘ fort=v+w,u#uv,
1 fort=u+v+w,u# —o,
\ © otherwise.

" Then we obtain accordingto 2.6 for 1 Su,v S N—1,0EwN-1,0Zk,
t<N-—1.

(#%%) b([u, v, wl, [z, k, t]) = d([u, v, wl, [k, 1]).

If we delete from the matrix B the rows with indices [u, 0, w] (0 < u,
w< N-=1)and [0, v,w] (0 = v,w £ N — 1, v # 0) and the columns with indices
[x,k,t)and [y, k, 1] (0 £ k, t £ N — 1), we get according to (+*x) the matri D.
If we denote by r(), r(B), r(D) the ranks of matrices A, B, D, then we get
according to (*), (**) and 2.7 th equality:

(W =rB)=r(D)+ N>+ N(N—1) =3N> - 2N.
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2.10. Remark. a) We can also define the matrix % for N = 1. Then
A=(1,1,1)

and the rank of A is 1, so Theorem 2.9 is valid also in the case of N = 1.
b) As a colleague of mine Mr. R. Kucera told me, it is aslso possible to
use here the following function § defined for ze Z:

~_J0 forz#0
6(“)_{1 forz=0.

Then for u, v, w, k, teZ, and we{x, y, z} we have
c=c(u, o], )=06w—t)—S(wH+v—1)—6w+u—1)+
+o(m+u+v—1)
(for u # 0, r # 0) and

S(u—t)ghtmk forw=x

a(fu, v, w). [o, k, 1)) =< (v —t)g“*"*  foro=y
Sow —r)ghtok forw=z.

Thus function 6 can be used in 2.2, 2.5 and 2.9.

3. Proof of the Main Theorem

3.1. Definition. LetX = (x;), Y = () 0<i= K- 1,0=<j=< L — 1) be ma-
trices of size K/L over thering Z, of p-adic integers and let m be a positive integer.

PutX =Y (modm)if x, = y;(modm)foreach0 < i< K- 1,0<;<L—1.
In the opposite case X # Y(modm). If T=(X, Y, Z), T'= (X", Y’, Z’) are
triples of matrices over Z,, put T = T’ (mod m) in the case of X = X’ (mod m),
Y =Y (modm), Z=2Z’ (modm). Otherwise put T # T’ (mod m).

3.2. Lemma. Let T = (a, f, y) be a matrix of size 1/3 ver Z, such that
NaBy = 1. Then there exist matrices T, T, ..., T,2 of size 1/3 over Z, with the
Sfollowing properties:

1° T. = T(mod p") for each 1 £ i < p?,

2° T, # T(modp"*') for each | £ i, j < p? i #J,

3° T =(a, B, YY) is a matrix of size 1/3
over Z, such that Na'f'y’ = 1 and T' = T (mod p"), then there exists 1 S i = p?
such that T = T,(mod p"*"),

4° for 1 i< p’ T = (a, B, y,) we have Na;f,v,) = 1.

Proof. For the integers 0 < x, y<p—1 put d=a+ xp", f= B+ yp"
Since Nafy=1 and & f are units in Z,, there ‘exists zeZ, such that
| — Nafy = Nzp"aP. Put 7 = y + zp". Then N@Py = 1. The matrix (4, f, 7) is
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denoted by T (x, y). The number of these matrices is equal to p* and obviously
they have properties 1°, 2° and 4°.

Let T’ = (a’, B’, ¥') be a matrix of size 1/3 over Z,such that Na’B’y’ = 1 and
T = T(modp”). Then there exist & n, {e€Z, such that o' =a+ &p”,
B =B+ nup", y' =y+ {p". Let x, yeZ, 0 < x, y < p — 1 with the property
x = &(mod p) and y = n(mod p). We have for the matrix T(x, y) = (&, B, 7)
obviously @=a’(modp”"*') and f=p (modp"*'). Hence Nafy =1
(modp"*') and Ny’ =ad'.f ' = Ny(modp"*'), thus 7=y (modp"*"). It
follows immediately T(x,y) = T’ (modp"*"). The Lemma is proved.

3.3. Proposition. Let T be a triple of SCC-matrices of order N over Z,. Then
there exist p* triples {T,:1 < i < p*"} of SCC-matrices of order N over Z, with
the following properties:

1° T = T(modp") for each 1 <i £ p*,

2° T, # T(modp"*") for each 1 < i, j < p*", i #J,

3 if T is a triple of SCC-matrices of order N over Z, such that
T = T(modp"), then there exists 1 <i<p®™ with the property T =T,
(modp"*).

Proof. Suppose T= (A, B, C), A=(a,), B=(b,), C=(c¢,) 0=k,
h < N — 1) isa triple of SCC-matrices of order N over Z,. According to 1.2 (for
integral domain Z,) there exist a;, B, %, o«€Z, foreach 0 < k < N — 1 such
that No, B v = 1, {0o, Q5 -.-, Oy _,} i the N-element set of all the Nth roots of
unity in Z, and

@G = 00> by, = 0B = 0LV
O£k, h<N—-1). For 0k £N -1 and the matrix T® = (a, B, 7.) let
T® = (ay, Bu>» 7) be matrices of size 1/3 over Z, (1 < i < p?) with the properties
from 3.2. For a mapping ¢ from the set {0, I, ..., N — 1} into the set {1, 2, ...,
P’ put

A¢ = (Q/fak.p(k)) ’ B¢ = (Qlf»'ﬂw(k)), C¢ = (Q:?’kd’(k)) Ok, hsN-1).
According to 1.2 the triple T, = (A,, B, C,) forms SCC-matrices of order N
over Z,. Clearly, T, = T(mod p").

Let ¢, y be different mappings from {0, 1, ..., N — 1}into {1, 2, ..., p*}. Then
there exists 0 <k <N —1 such that @(k)# y(k). Hence T # T;f),
(mod p"*"), which follows T, # T,(mod p"*").

LetT' = (A", B’, C’) be a triple of SCC-matrices of order N over Z, with the
property T’ = T (mod p"). According to 1.2 we have A’ = (a;,), B’ = (by)),
C’ =(c;) and

’ h 7 hn’ ’ hat
A = 04y, by = 0P, cv=0vi Ok, h<N-1),

where {0y, 0}, ..., o5 _ 1} = {05, 01, ---» Ov 1}, @, B }’Z»EZP and Na;Bivi = 1 for
each 0 < k < N — 1. Further
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ay, = ay,(modp™), by, = by, (modp”), ciy = ¢ (mod p”)

0=k, h<N-—1). For h =0 we obtain (a;, Br, 7v) = (&, B, 7) (modp”).
Hence there exists a mapping ¢ from {0, 1, ..., N — 1}into (1, 2, ..., p*} such that
(@ks Bis 71) = (Qgiays Browys Yeouy) (mod p™™* D

For h = 1 we get 0, = o, (mod p”), hence 0, = g, foreach0 <k =< N- 1.1t
follows that T’ = T, (mod p"*') and the Proposition is proved

3.4. Notation. Let T=(A, B, C), T' = (A’, B’, C’) be triples of square
matrices of order N over Z,, A =(a,), B = (by), C=(cy), A" = (ai),

=0bu),C =) 0=k, t<N-1).IfT'=T (modp"), then there exists
Xk Yior 2 € Z, such that

A = @+ x,p",

bie = b + yup"

Ct = Cii + ZiP"
0<k t<N—1). Put

(T, T") = (X00, Xo15 -5 XoN— 15 +o» XN AN—1> Voor ++> ZN—IN—1)-

Then o(T, T’) is a matrix of size 1/3N? (a vector of dimension 3N? over Z,
Further we shall consider the following system & (T) of N? linear congruences
mod p with 3N? unknowns X,,, ¥,, Z,, 0<k,t <N —1).

N-1

LMY, Kb + YOG + Z4 a1, br,) = 0 (mod p)
K=o

O=Z2u,v, wsN-1)

3.5. Proposition. Let T be a triple of SCC-matrices of order N over Z,. Then
the rank of the matrix of the system ¥ (T) (modp) equals 3N 2 2N so the
number of solutions (mod p) of the system & (T) mod p) is p*

Proof. The Proposition follows immediately from the form of the p-adic
integers ay,, by,, ¢, defined by 1.2 and from Theorem 2.9.

3.6. Definition. A triple T' = (A’, B’, C’) of square matrices of order N over
Z, is said to be a triple of SCC-matrices modp"*' if ¢,, (A", @,,.,(B"),
®,+1(C’) are SCC-matrices over the ring Z,/p"*'Z,.

3.7. Proposition. Let T, T’ be triples of square matrices or order N over zZ,T
be a triple of SCC-matrices (in Z,) and T =T’ (mod p"). Then T’ is a triple of
SCC-matrices mod p"*' if and only if the vector o(T, T’) is a solution of the
system & (T).

Prz)of. Let A=(a,), B=(0y), C=(c), A =(a;,), B =(b;),

= (Ck) )

’r n
Ay = Ay + XD
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’

bl = by + yip",
’

Cht = Ciy + Zi,P",

Xirs Vs Zu€Z,and 0 =k, t < N — 1. Then for 0 S u, v, w < N — 1 we have
N-1 N

-1
2 N
Z akubkvckw = Z akubkvckw+
k=0 k=0

N-1
427 B b+ Yt + i) mod p ).
k=

The result follows.

Similarly we can prove:

3.8. Proposition. Let T, T', T” be tripes of square matrices of order N over Z,
andlet T' =T (modp,), T" = T(modp,). Then T = T” (mod p" *") if and only
if o(T, T') = o(T, T”) (mod p).

3.9. Remark. We obtain from 3.3, 3.7 and 3.8 that the system % (T) for each
triple T of SCC-matrices of order N over Z, has at least p?" solutions. Then the
following inequality holds for the rank r of the matrix of & (T): r £ 3N? — 2N.
But for the rank r(), r(D) of the matrices A, D defined in Paragrph 2 there
holds r = r(A) = 1(D) + N>+ N(N — 1) (s. proof of 2.9), hence r(D) £ N? —
— N. It means it is enough to prove only the inequality N2 — N £ r(®) in 2.7.

3.10. Theorem. Let T, T’ be triples of square matrices of order N over Z,, T
be a triple of SCC-matrices (in Z,) and T' =T (modp"). If T is a triple of
SCC-matrices mod p"*', then there exists a triple T* of SCC-matrices of order
N over Z, such that

T =T*(modp"*").
Proof. We obtain the Theorem directly from 3.3, 3.5, 3.7 and 3.8.

3.11. Proof of Main Theorem 1.5.

We shall prove this Theorem by mathematical induction with regard to n.

I. Suppose n=1 and let o =(4,,), B =(B,), €=(C,) 0=k,

t £ N — 1) be SCC-matrices over the ring P = Z/pZ. According to 1.2 there

exist a, by, ¢, g€Z such that g¥=1 (modp), Na,b,c,=1 (modp)

(0 = k = N — 1), the rational integers g, g,, ..., gy _ , are incongruent mod p and
840 € Ay, 8ibr€ By, gicye G foreach 0 <k, t< N — 1.

There exist p-adic integers g, @, ..., oy, such that g¥=1 and

O = g, (modp). Then {gy, 0, ..., oy_} is the set of all the Nth roots of unity
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inZ,. Put ¢, = a,, f = b, for 0 < k < N — 1. Since @, B, N are units in'Zp,
there exist y, € Z, such that Ny B v = |- Then , = ¢, (mod p) and the matrices
A=(ga), B=(0B) C=C(in) Ok, t<N-—1) have the requiered
properties according to 1.2.

1. Let the Main Theorem hold for n = 1. Let o/, £, € be SCC-matrices of
order N over the ring Z/p"*'2Z = Z,/p"*'Z, (canonically). There exist matrices
A’, B’, C’ over the ring Z, such that ¢,,,(A) = 4, ¢,,,(B) = B,
¢,.,(C)=%. The triple T'=(A’, B’, C’) is a triple of SCC-matrices
mod p" .

By the induction assumption there exists a triple T of SCC-matrices over the
ring Z, such that T = T’ (mod p"). According to Theorem 3.10 there exists a
triple T* of SCC-matrices of order N over Z, such that T' = T* (mod p"*").

The Main Theorem is proved.
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