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Math. Slovaca 31,1931, No. 3, 263—276 

ULTRAFILTERS AND DARBOUX PROPERTY 
OF FINITELY ADDITIVE MEASURE 

VLADIMÍR OLEJČEK 

Introduction. It is well known that if m is a a-additive a-finite measure defined 
on a 5-ring (i. e. a ring closed under countable intersections) J of subsets of a set 
Z, then the following three propositions are fulfilled: 

I. If J is a a-algebra (i. e . Z e .T), then we can write Z = A u B, where A, B are 
disjoint and where m is purely atomic on A (i. e. A is the union of a sequence of 
mutually disjoint atoms) and nonatomic on B (i. e. B contains no atom). This 
decomposition is unique to within null sets. 

II. LetEe. f .Then JE = {TnE: Te .7} is a a-algebra and by I, E = A E u B E , 
where m is nonatomic on BE and AE is the union of a sequence (finite or infinite) 
{Ai}i€i of mutually disjoint atoms. We can suppose that m(A,)^m(A l+i) 
whenever /, i +1 e I. The measure m has the Darboux property on the set E (i. e. 
for every a e(0, m(E)) there is a measurable set A <= E such that m(A) = a) if 
and only if 

m(A,)šm(E)- 2 ™(A) 
iel, i- n 

for each nel. 
III. The measure m has the Darboux property (i. e. m has the Darboux 

property on each set E e J) if and only if m is nonatomic. 
In these propositions a set A e J is called an atom (with respect to m) if and only 

if m(A)>0 and for every measurable set B c A we have m(B) = 0 or m(B) = 
m(A). 

In [2, p. 47, Example A; p. 48, Example B] and [3, 2, Theorem 1] it is shown 
that for a finitely additive measure analogical propositions do not hold. 

In the present paper the notion of atom is generalized in such a way that some 
propositions about relations between the Darboux property and the properties of 
atoms can be formulated for a finitely additive measure analogically to the way in 
which they are formulated and hold for a a-additive measure. 
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1. Generalization of the notion of atom 

Let m be a finitely additive finite measure defined on an algebra % of subsets of 
a set X. Let us denote by Q the set of all ultrafilters in the algebra CS. 

Definition 1. For every ultrafilter deQ, the number 

m(s4) = M{m(A):Aed} 

is called a weight of the ultrafilter d. 

Definition 2. An ultrafilter deQ with a positive weight is called an u-atom 
(with respect to m). 

Definition 3. An u-atom d is called a trivial u-atom iff there is a set A e d such 
that m(A) = m(d). 

The next theorem shows that a u-atom is in fact a generalization of the notion of 
the atom, namely that every trivial u-atom corresponds to an atom. 

Theorem 1. Let m be a finitely additive finite measure defined on an algebra <€. 
Then 

(i) for each atom Ae^ there is one and only one u-atom dA such that AedA, 
(ii) for each atom A e ^, the u-atom dA is trivial and m(A) = m(dA), 
(iii) for each pair A, B of atoms dA = dB if and only if A = B mod m (i. e. 

m(A + B) = 0, where A + B = ( A - B ) u ( B - A ) ) , 
(iv) for each trivial u-atom d the set A ed, for which m(A) = m(d), is an 

atom. 
Proof. It is easy to see that for an arbitrary atom A e % 

dA = [E e (€: m(E n A) = m(A)} 

is an atom, AedA and m(A)= m(dA). The properties of atom and ultrafilter 
imply uniqueness of dA and the assertions (iii) and (iv). 

Now we shall explain the relation between atom and u-atom with respect to 
a a-additive measure. 

Theorem 2. If m is a o-additive finite measure defined on a o-algebra //, then 
every u-atom with respect to m is trivial. 

Proof. Choose a sequence {An}T=i of sets belonging to a u-atom d such that 

m(An)<m(d) + -

and put A = f |A- . Since .7 is a a-algebra, Aeff and since m is a-additive, 
n = l 

m(A) = m(d). 
It is necessary to prove yet that Aed. Choose an integer k such that 
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m(A*)<2m(A). Since m(Ak-A) < m(A) = m(si), we have Ak-A£d and 
considering Ak e s&, we obtain A e si. 

2. Atoms with respect to a o-additive extension 
of m to the Stone representation space 

Let m be a finitely additive finite measure defined on an algebra ^ of subsets of 
a set X. If we denote 

h(A) = {s£eQ:Aesd} 

for every Ae<€, then h is an isomorphism transferring % onto h(<€) 
= {h(A): A e ^ } , where h(%) is an algebra of all open-closed subsets with 
respect to the topology of the Stone representation space Q, a base of which is 
h(<€). The isomorphism h transfers also the measure m to a measure mh defined on 
h(<€) by the equality 

mh(h(A)) = m(A). 

According to the properties of h(<€), mh is a-additive and it can be extended in 
a standard way to a a-additive measure fi defined on the a-algebra .c/(/i(^)) 
generated by the algebra h(%) ([4, p. 325]). 

Since each //-atom with respect to m is an element of the Stone representation 
space Q, there is a question of a relationship between u-atoms with respect to m 
and atoms with respect to \i. 

Theorem 3. Let m be a finitely additive finite measure defined on an algebra <€ 
and let \i be the o-additive extension of m in the Stone representation space of the 
algebra %. Then 

(i) for each atom A e ff(h(<€)) with respect to \i there exists one and only one 
u-atom stfAeQ with respect to m such that s4AeA and m(dA) = ii(A), 

(ii) for each u-atom sdeQ there exists an atom A e ff(h(^>)) such that s£A = sA, 
(iii) for each pair A, B of atoms with respect to /i, s&A = d* if and only if 

A = B mod pi. 

Proof. Taking an arbitrary atom A with respect to [i we put 

4 = { A G ^ : f i ( f t ( A ) n A ) = f((A)}, 

similarly as in the proof of Theorem 1. dA is an ultrafilter and since for each set 

AedA 

m(A) = mh(h(A)) = ii(h(A))^iJL(A), 

we have m(sdA) = JU(A), whence sdA is a w-atom with respect to m. 
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Since A e (f(h(%)\ by [1, 13.D], for each f, 0 < f S / i ( A ) there is a set AE e € 
such that n(h(Ae) + A)<e. Since A is an atom, 

fi(A(Ae)nA) = ji(A), 

whence AE e dx. We have 

m(dA) g m(Ae) = !i(h(AE)) = f*((A(Ae) n A) u (h(A£) - A)) = 
- ^ ( A ( A e ) n A ) + / i (A(Ae) -A)g / i (A) + l((A(Af) + A ) < ^ ( A ) + f. 

Thus m(dx) = (i(A). 
The uniqueness of dx and the assertion (iii) follow from properties of ultrafilters 

and atoms. 
According to the preceding uniqueness, to prove (ii) it suffices to show that for 

each w-atom deQ there exists an atom A e i ( f t ( ^ ) ) such that i e A and 
m(d) = ii(A). For this purpose for each integer n choose a set Bned such that 

n 

m(Bn)<m(d) + n~l and put An = f]Bj. Then {An}n=i is a decreasing sequence of 

sets in d (hence de h(An) for each n) with the property 

\imm(An) = m(d). 
n 

From these facts, putting A = f] A(A„), we obtain deA and 
n = l 

m(d) = lim m(An) = lim mh(h(An)) = [i(A). 

3. Decomposition of a finitely additive measure 

If the measure m is not a-additive, it is true that we can decompose the 
underlying set X to a set A and a set B such that m is purely atomic on A and 
nonatomic on JS, but this decomposition is not unique ([2, p. 48, Example B]), i. e. 
proposition I does not hold in this case. Besides, a restriction of m to the nonatomic 
part of X need not have the Darboux property. Therefore it will be suitable to 
decompose m to a sum of a w-nonatomic measure and a purely .-/-atomic measure. 

Definition 11. Let m be a finitely additive finite measure defined on an algebra 
<€. 

We shall say that m is u-nonatomic iff m(d) = 0 for all 4 e Q 
We shall say that m is purely u-atomic iff for an arbitrary measurable set A with 

m ( A ) > 0 we have 

m(A) = Z{m(d): d is an w-atom, Aed}. 
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Note that 2 c« = ^ ai1d that from Tiieorem 3 it follows 
160 

card {sdeQ: m(.^)>0}^Ko . 

Theorem 4. Let mbe a finitely additive finite measure defined on an algebra %. 
Then there exist measures n and p such that 

(i) n is u-nonatomic, 
(ii) p is purely u-atomic, 

(iii) m = n-\-p. 
Conditions (i), (ii) and (iii) determine the measures n and p uniquely. 
Proof. Denote by {sdi}ieI the set of all u-atoms with respect to m and for an 

arbitrary A e % put 

p(A) = X{m(s4i): ieI,Aedi}. 

Evidently p is a finitely additive finite purely u-atomic measure. Now, if we put 

n(A) = m(A)-p(A), 

then n is also a finitely additive finite measure. 
To show the u-nonatomicity of n let us take an arbitrary ultrafilter si in %. Let 

{Q}T=i be a decreasing sequence of sets in si such that Ck £ d{ for each k and each 
iel, i^k for which sdi^si, and 

lim m(Ck) = m(si). 
k 

We have 

n(s£) = 'mi {n(A): Aed}^mi {n(Ck): keN} = 

= \\mn(Ck) = \\m(m(Ck)-
yL{m(sii): ieJ, Ckes4(}) = 

k
 k 

-=lim m(G)-l imZ{m(/4)- iel, Ck e .^} = m(sd)- m(si) = 0. 
k k 

The uniqueness of the decomposition is trivial. 

4. u -nonatomicity and the Darboux property 

Since the notion of the w-atom is a generalization of the notion of the atom, the 
condition of u -nonatomicity is stronger than the condition of the nonatomicity. We 
shall show now that this condition is already a necessary and sufficient one for the 
Darboux property of a finitely additive finite measure. 

Theorem 5. A finitely additive finite measure m defined on a o-algebra ff of 
subsets of a set X has the Darboux property if and only if it is u-nonatomic. 
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Proof . We use the well-known equivalent condition of the Dabroux property of 
a finitely additive finite measure which is proved in [2, Theorem 2] : 

A finitely additive finite measure m defined on a a-algebra J of subsets of a set 
X has the Darboux property (i. c. m is full-valued) if and only if for each positive 
number e there exists a finite measurable cover {A,}r=1 of the set X such that 
m(At)<e for / = 1, 2, ..., n. 

Let m have the Darboux property. Taking any e, choose a finite measurable 
cover {A,}^! of X such that ra(A/) < e for / = 1, 2, ..., n. Without lost of generality 
we can suppose that A,nAk=fl whenever / = k. If sd is an arbitrary ultrafilter in ./, 
then there is a unique index p such that Ap e s&. It follows that 

m(.rf)^m(Ap)<e. 

Consequently m ( ^ ) = 0. 
Now le' m be ^-nonatomic and let e be an arbitrary positive number. Since the 

function m is on Q identically equal to zero, for each si e Q there is a set A.* e si 
such that m(Ad)< e. The class {A.̂ * d e Q} is a cover of X, because for any x e X 
there is an ultrafilter, namely dx = {A e J: x e A}, all elements of which contain x. 
Then {h(A7i): .-ieQ} is an open cover of the Stone representation space Q. Since 
it is compact, this cover contains a finite subcover, say {/z(A.)}r=i. It follows that 
{A }T=i is the required finite measurable cover, the elements of which have their 
measure less than e. 

According to the proved theoicrn and Tl eorem 3 ve have the following: 

Theorem 6. The finitely additive finite measure m defined on a o-algebra J has 
the Darboux property if and only if its o-additive extension fi to the Stone 
representation space has the Darboux property 

5. The Darboux property on a set 

In this section, in Theorem 7, a sufficient condition is given for a finitely additive 
measure defined on a 6-ring to have the Darboux property on a measurable set of 
a fmite measure. 

Let m be a finitely additive measure defined on a 6-ring J of subsets of a set Z 
and let X be such a set that X e J and rn(X)<™. The class .7= { T n X : Te J} is 
a a-aigebra and m is a finitely additive finite measure on ./. Preliminary lemmas 
will be used in the proof of Theorem 7. 

Lemma 1. Let { ^, }r=i be a set of mutually different u-atoms. Then for any e>0 
and for i = 1, 2, ..., n there exists a set A, e s&i such that A,nAk = 0 whenever j±k 
and 

m(\jA)-Ęm(sĄ)<є. 
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To choose At such that 

t"(ÛAi)-І>(Д) = 0 

if is possible if and only if dt is a trivial u-atom for / = 1, 2, ..., n. 

Lemma 2. Let Ye J and mY be a restriction of m to the o-algebra JY = 
{SnY: SeJ}. Then 31 is a u-atom with respect to mY if and only if there exists 
a u-atom sd with respect to m such that Y es& and $fc = {Ar\Y: Aesd}. Moreover, 
writing mY(38) = inf {m(B): B e 33} we have mY($ft) = m(,d) in this case. 

The assertions of Lemma 1 and Lemma 2 follow from the properties of 
ultrafilters and from the definition of their weight. 

Theorem 7. Let m be a finitely additive measure defined on a d-ring J, let 
XeJ and m(X)<oo. Let {^,}t6l be the class of all u-atoms with respect to m 

restricted to the o-algebra f/= {TnX: Te J}. Further, let Y. m(dt)<m(X) and 
iTi 

m(sdt)^m(^i+i) for iel whenever i + 1 eI. 
In order that m may have the Darboux property on the set X, it is sufficient for 

each nel 

m(sdn)<m(X)- £ m(sdi). 
i el, i^sn 

Proof. Taking any ae (0 , m(X)) we shall find a measurable set A with 
m(A) = a. We shall do it successively in three steps. 

1. We assume that the class of all w-atoms in ff is finite, i. e. J = {1, 2,..., n}. 
We shall take an index subset J of J as follows: 

if a^-m(sdn), then J = 0, 
if a>m(sdn), then J = {kp}p=i, 

where 

k! = min liel: m(sit)<a}, 
\ p - i >| 

kp=min {í€/:.í>fcp_i, m(sái)<a-Yl m(dk)\ 
J = I J 

for p =2, 3, ..., r. 
We shall show now that 

0<a-'2tm(Ą)<m(X)-У.m(sd,). 
i*J tťi 

Note that if J = 0, then 2 m(s&j) = ̂ c,=0, therefore the inequalities evidently 
J e J J 6 0 

hold. 
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If J4= 0, the left inequality follows from 
r 1 

m ( ^ 0 < « - 2 m ( . < ) . 

To prove the right inequality, first we suppose that J -=J. Then 

a - y m ( 4 ) - a - y m ( . 4 ) < m ( X ) - 2 m ( ' ^ ) -
, J 7 1 i c / 

Now we suppose that kr<n. Then 

o - 2 m ( 4 ) g m ( . i ) < m ( X ) - £ m W ) . 
, e J i e l 

Finally, if J ^ 7 and kr — n, writing 

p =max {j e I: ]4- k, for / = 1, 2, ..., r), 
q =max { j^ r : k, < p ) , 

we obtain 

a - f m ( 4 ) ^ m ( 4 ) < m ( X ) - V m(.^) = 
7=1 i e T j ^ p 

n r_ 

= m(X)-_>>( .#) + Y m(^,) = tn(X)-ym(^,)+ 2 . m ( - < ) ' 
i e l i - p + i l e i i = q + l 

whence 

a - 2 m{,dkl) < m{X) - 2 . m{dt) 
i=l iel 

and we have proved the required inequalities. 
Put now 

e = m i n j a - Y m ( 4 ) , m ( X ) - ^ ( i , ) - a + 2 n i ( 4 ) ' 
I JeJ i e l / e J 

By Lemma 1 choose mutually disjoint sets A, e d- such that 

4 U A , V E ^ ) < ^ 
W l / i e l 

If we denote 

6 = m ( U A /
N ) - 2 m ( 4 ) , 

\ , e J / ,fcJ 

we have 

0 ^ a - ^ m ( i J - e ^ a - ^ W ) - ( ) - - a - m ( U A 
, e J , e J \ , e J / 
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and further 

a -m(uAy).Sa-m(\jA\ + 6 =--a-Tm(4)g 

gm(X)-2m( . r f / ) -£<m(X)-m(UA l )^m(X-l jA i . . 
iel \iel / iel 1 

Since the set X - l j A , does not belong to any of the t(-atoms s4t, i = 1, 2,..., ri, by 
I i 

Lemma 5, m is u-nonatomic on the set X-\jAit Consequently, m has the 
iel 

Darboux property on X - U A,, therefore there is a set B e .r/, B c X - | j A such 
i e l t e / 

that 

m(ß) = a-m(Цд)-

The set A = JBuUA, is the required set, satisfying m(A)-a. 
jeJ 

2. In the second case we shall assume that the set {dt}i€i of all u-atoms is 
infinite, i. e. 7 = {1, 2, ...} (note that by Theorem 3 / is at most countable) and 

a<m(X)-^m(^i). 
iel 

By means of recurrence we shall construct sequences {Kn}n=l and {L„}T=i of 

measurable sets and a sequence {en}n=i of positive numbers such that lim en = 0 
n 

and for all n Kn a Kn+i cz L„+i <= L„ and 

a - en ^ m(Kn)< a < m(Ln)< a + 2en. 

By Theorem 4 decompose the measure m on ff to the sum of the w-nonatomic 
part n and the purely u-atomic part p. Take an arbitrary positive ex< 
min {a, n(X) — a}. Since n is w-nonatomic, it has the Darboux property, therefore 
there is a set F[ e -f such that n(F[) = a + ex. Further, we can choose an integer ki 

such that ^ m(sdi)<£i and by Lemma 1 for each /^k i we can choose a set 
i>fci 

A, e s&i such that AjnAk = 0 whenever /'=£ k and 

m(d.A,)-2>(^)<*-
\ i = i / 1=1 

fci 
If we put Fi = F{ — U A , we have 

£ = 1 
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m(Ft) = n(F1) + p(F1) = n(Fi) + p\F[-\jA,)^ 

= tt(F0+2 m ( 4 ) < a + 2F, 
i>ki 

and on the other hand 

m ( F 0 ^ F 0 = rt(F;-UA)_-

^n(F[) - n({J A ) = n(F[) - ( m ( 0 A.) - p ( U A-)) ^ 

_ _ / i ( F 0 - m( U A,) + ^m(Ml)>n(F[) -ex = a. 

Since 0 < ex < a <n(Fx) and n has the Darboux property, there is a measurable set 
Ei c Fi such that AZ(E0 = a — £x. Then 

a - E 1 = t/(Ei)_im(Ei) = A7(E1) + p (E0-S^(Ei ) + p ( F 0 - i 

_i tz(E0+ 2 tf-(M)<a — £1 + _i = a . 

Now we put Ki = Ex and Lx = F^ For the sets Kx, Lx and the number ex we obtain 

Kx cz Li, 

a - 6*1 _i m(Kx) < a < m(Lx) <a + 2ex 

and 

/? (Li — KO > a — a + £i = ex. 

Thus we have the first step of the construction by means of recurrence. Let us 
suppose now that there are the sets Ki cz K2 cz ... cz Kn-U Lx z L2 z ... z Ln-X 

and a positive number en-x such that 

i_„-i cz L„-i , 

n(Ln-x-Kn-x)>en-x, 

a — £„_i __ m(Kn-x) <a< m(Ln-x) <a + 2en-x. 

Take any positive en such that 

en <min {a - m(Kn-x), n(Ln-x - Kn-X) -a + m(Kn-x)} . 

Since 

0 < a - m(Kn-x) + sn < n(Ln-x - Kn-X) 

and n has the Darboux property, there is a set F'n c_ Ln-X — Kn-X such that 

n(Fn) = a-m(Kn-x) + en. 
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Choose an integer kn such that ^ m(.di) < en and by Lemma 1 for each / _i kn take 
i>kn 

a set A, e d{ such that A,- nAk-0 whenever j£k and 

m([jA)-%m(rfl)<£n. 
\._k„ / itt.n 

If we put Fn = Fn— (J A,, we have 
i^kn 

m ( Ғ „ ) = Л ( Ғ , ) + P ( F „ ) = П ( Ғ „ ) + P ( Ғ ; , - U A І Ì Ї І 
\ i^kn I 

ѓn(F'n) + T míДKa-ml jC-^ + гє̂  

and on the other hand 

m (F„) i= n(F„) = « ( F ^ - U A.) S „ ( F : ) - n( U A) = 
\ r_k„ / \«_fc„ / 

="< K>-(m(y^)-"(y.A)) a 

_ n ( F ; ) - m ( U A ) + Y m(rti)>n(F'n)-En = a-m(Kn-l). 

Since 0<£„<a — m(Kn-l)<n(Fn) and n has the Darboux property, there is 
a measurable set En c_ Fn such that n(En) = a — m(Kn-x) — £n. Then 

a-m(K . ._i)-£„ = n(E-)__^^ 

_i «(En) + 2 . m(.5.i) < a - m(K„_i) - £„ + en = a - m(Kn-x). 
i>k„ 

If we put Kn = Kn-iuEn and Ln = Kn_ luFn , then 

K--i c_ Kn c_ Ln a L„_i, 

rz(L„ - K„)> a - m(Kn_1) - a + m(K-_1) + e_ = £n, 

a - £„ __i m(Krt)< a < m(L„) < a + 2en. 

0 0 / 00 \ 

Finally, putting A = [jKn (or A = n ^ « ) w e obtain m(A) = a. 
n=l \ n=l / 

3. There remains to find a set A with m(A) = a by the assumption J={1 , 2, ..., 
n, ...} and a i_tt(X). Similarly as in the first case we shall choose an index subset 
J={kp}p=i of J as follows 

ki = min {iel: m(.di)<a}, 

kp=min {iel: l>/cp_i, т ( Д ) < а - ^ £ m(sdkf) l 
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for /; = 2, 3 Since / is infinite, J is infinite too. We shall show that there exists 
an index q eJ such that 

a - 2 .'"(.«/,)<//(X). 
i e J. i^q 

For this purpose we first assume I — Jxo be infinite. Then for any positive r there 
is an index pel —J such that m(/>/,,)<f. If we put f = /z(X), we obtair. 

MA)>m(.?/,,)-=«- 2 m H ) . 
i e J, / •" p 

Let <y be the last index in J less than p (q exists because a =^/?(X)). Then c/ satisfies 
our condition. 

Further, we assume I = J. Then 

u - - 2 m ( . " / , ) < m ( X ) - 2 m ( . ^ ) = //(X) 
/ € J < G / ' 

and there follows the existence of the required q. 
Finally, let Ĵ = I and I-J be a finite set. If we denote by r the last index of I- J, 

we have 

a- 2 . iii(.«:«)-Sm(.^)<m(X)- £ m(/i,)=-
i e J . i - -r i e T T i ^ r 

= 2 m(//,) + //(X)= 2 m(.4) + n(X), 
i f l . O r i e J. »>r 

whence -^ . 7X ,__x 
a-2,m(r4i)<n(X). 

I^J 

The last inequality implies the existence of the required q also in this case. 
Now put 

f = min 
i n { t t -J^ m W n{X)~(a~^ m(^'))} 

and by Lemma 1 for each ieJ, i = q choose Aterdi such that A / nA / v =0 
whenever /-£ k and 

'«( U A)- 2 m(^)<f-
X / e J , i^cv / ieJ.i^q' 

Let us denote by Y = X— IJ A,, /l" = a - m( | J A,), mY the restriction of m 
i e J. i^q M 6 J, i ^ q / 

to .7V= [Sn Y: 5 e . / ) , mY(.f>) the weight of a //-atom & with respect to my, 

/iy the //-nonatomic part of mY and {rJlk } the set of all //-atoms with respect to 
keK 

mY. By Lemma 2 
2 m(.o/,)+ Y m ( 4 ) § 2 M « 0 , 

ieJ.i>q iel-'j k<K 
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whence 

| ) S « - 2 m{.'4,)£n(X)-e = m(X)-'2liu(.'.4l)-t' = m(Y) + 
i e J, i^q i e I 

+ m( ( J A , ) - 2 » • ( • * . ) - . . £ «(• ' •«)- 2 m ( . ^ ) - f < » n ( V ) + F -
^ieJ.i^q I ieJ.i^-q ieJ,i>q it-I-J 

- Y m(.v/,)- ^ m ( . ^ ) - f S i n ( y ) - 2 m v ( ^ ) = /iv(Y). 
.e77*><y i e / - 7 u A : 

The measure mv and the number fi satisfy now the conditions of the preceding 
case, therefore there is a set Be'lY such that mY(B) = m(B) = [\. Putting 

A = Bu (J A, we have m(A) = a. 
tcJ.i^q 

Note . In general we cannot give a necessary and sufficient condition in order 
that a finitely additive measure defined on a d-ring J may have the Darboux 
property on a set XeJ. It is possible if the number of *t-atoms in 7 = 
{TnX: Te J} is finite, but a formulation of this necessary and sufficient 
condition is too complicated and therefore it is not effective. 

6. The Darboux property in the sense of Radakovic 

Let us consider a measure m defined on a ring ;A. For a a-additive a-finitc 
measure m the propositions II and III remain valid if the Darboux property is 
weakened in the following sense: 

Definition 12. We say that a finitely additive measure m defined on a ring ;7t has 
the Darboux property in the sense of Radakovic on a set Ee f;h iff for every 
a e (0, m(E)) and for every z >() there is a measurable set A cz E such that 

\m(A) — a\<t\ 

Definition 13. We say that a finitely additive measure m defined on a ring ;A has 
the Darboux property in the sense of Radakovic iff m has the Darboux property in 
the sense of Radakovic on the set E for every E e r.Jl. 

We shall show now that analogical propositions hold for a finitely additive 
measure if the notion of the atom will be replaced by the notion of the w-atom. 

Theorem 8. Let m be a finitely additive measure defined on a ring ;R and let 
XeJl with m(X)<™. Let {.Ai}ieI be the set of all u-atoms of the algebra 
c€ = {EnX: Ee91), indexed such that m(.Ai)^m(.Ai+l) for all /, / + 1 eI. The 
measure m has the Darboux property in the sense of Radakovic on the set X if and 
only if for all n e I 

m(.An)^m(X)- 2 « W ) . 
i 'e/ , t^n 
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Proof. Let us consider the Stone representation space Q of the algebra ^ and 
the a-additive extension JU of m to !f(h(c€)). According to Theorem 3 there is 
a class {A,;}ie/of all atoms in -f(h(%)) such that 4eA,-, JU(A,) = m(.dt) for all / e I 
and (since pt is a-additive and / / ( / i^) ) is a a-algebra) Â  n A^ = 0 whenever j =£ k. 
It follows that \i has the Darboux property on Q = /t(X), whence we obtain the 
proof of sufficiency using [1, 13.D]. The necessity of the condition is obvious. 

Corollary. If m is finitely additive finite measure defined on an algebra € and u 
is the o-additive extension of m to the Stone representation space of the algebra % 
then the following assertions are equivalent: 

(i) m has the Darboux property in the sense of Radakovic, 
(ii) m is u-nonatomic, 

(iii) \i has the Darboux property. 
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МАКСИМАЛЬНЫЕ ФИЛЬТРЫ И СВОЙСТВО ДАРБУ 

КОНЕЧНО АДДИТИВНОЙ МЕРЫ 

Владимир О л е й ч е к 

Р е з ю м е 

Обобщается понятие атома меры таким образом, чтобы некоторые утверждения, касающиеся 
взаимосвязи свойства Дарбу и свойств атомов, было можно переформулировать для конечно 
аддитивной меры аналогично тому, как это сделано для а-аддитивной меры. Для обобщенного 
понятия атома, названного и -атомом, справедливо, что конечно аддитивная мера обладает 
свойством Дарбу тогда и только тогда, когда она «-неатомическая. При помощи этого 
доказываются утверждения, в которых применяется понятие «-атома для приведения какогото 
достаточного и, в частности, необходимого и достаточного условия свойства Дарбу на множестве. 
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