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ULTRAFILTERS AND DARBOUX PROPERTY
OF FINITELY ADDITIVE MEASURE

VLADIMIR OLEJCEK

Introduction. It is well known that if m is a g-additive o-finite measure defined
on a §-ring (i. . a ring closed under countable intersections) 7 of subsets of a set
Z, then the following three propositions are fulfilled:

I. If 7 is a g-algebra (i. . Z € 7), then we can write Z= A U B, where A, B are
disjoint and where m is purely atomic on A (i. e. A is the union of a sequence of
mutually disjoint atoms) and nonatomic cn B (i. e. B contains no atom). This
decomposition is unique to within null sets.

II. Let E€.7. Then Je={TNE: Te T} isa o-algebra and by I, E= Ag U B,
where m is nonatomic on Be and Ag is the union of a sequence (finite or infinite)
{Ai}icr of mutually disjoint atoms. We can suppose that m(A)Zm(A;.)
whenever i, i +1 € I. The measure m has the Darboux property on the set E (i. e.
for every a € (0, m(E)) there is a measurable set A < E such that m(A)=a) if
and only if

m(A,)=m(E)— 52 m(A;)

tel,isn

for each nel.
III. The measure m has the Darboux property (i. e. m has the Darboux
property on each set E e 7) if and only if m is nonatomic.

In these propositions a set A € 7 is called an atom (with respect to m) if and only
if m(A)>0 and for every measurable set B« A we have m(B)=0 or m(B)=
m(A).

In [2, p. 47, Example A ; p. 48, Example B] and [3, 2, Theorem 1] it is shown
that for a finitely additive measure analogical propositions do not hold.

In the present paper the notion of atom is generalized in such a way that some
propositions about relations between the Darboux property and the properties of
atoms can be formulated for a finitely additive measure analogically to the way in
which they are formulated and hold for a o-additive measure.
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1. Generalization of the notion of atom

Let m be a finitely additive finite measure defined on an algebra € of subsets of
a set X. Let us denote by Q the set of all ultrafilters in the algebra €.

Definition 1. For every ultrafilter s{ € Q, the number
m(sA)=inf {m(A): Ae o}
is called a weight of the ultrafilter .

Definition 2. An ultrafilter «{ € Q with a positive weight is called an u-atom
(with respect to m).

Definition 3. An it-atom <A is called a trivial u-atom iff there is a set A € s such
that m(A)=m(A).

The next theorem shows that a u-atom is in fact a generalization of the notion of
the atom, namely that every trivial u-atom corresponds to an atom.

Theorem 1. Let m be a finitely additive finite measure defined on an algebra €.
Then

(i) foreach atom A € 6 there is one and only one u-atom s{. such that A € s{a,

(ii) for each atom A € €, the u-atom A, is trivial and m(A)= m(~a),

(iii) for each pair A, B of atoms s = s{g if and only if A=B mod m (i. e.
m(A + B)=0, where A+B = (A-B)u(B - A)),

(iv) for each trivial u-atom o the set A € o, for which m(A)=m(<l), is an
atom.

Proof. It is easy to see that for an arbitrary atom A € €

Ar={E€€: m(EnA)=m(A)}
is an atom, A € /s and m(A)= m(sfa). The properties of atom and ultrafilter
imply uniqueness of /. and the assertions (iii) and (iv).

Now we shall explain the relation between atom and u-atom with respect to
a o-additive measure.

Theorem 2. If m is a o-additive finite measure defined on a o-algebra f, then
every u-atom with respect to m is trivial.
Proof. Choose a sequence {A.,}.- of sets belonging to a 1-atom &f such that

m(A,,)<m(.C1)+%

and put A= ﬁA,.. Since f is a o-algebra, A €. and since m is o-additive,

n=1
m(A)=m(dA).
It is necessary to prove yet that Aesf. Choose an integer k such that
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m(Ac)<2m(A). Since m(Ac—A) < m(A) = m(s4), we have A, — A ¢ o/ and
considering A« € o, we obtain A € .

2. Atoms with respect to a ¢-additive extension
of m to the Stone representation space

Let m be a finitely additive finite measure defined on an algebra 6 of subsets of
a set X. If we denote

h(A)={AeQ: Aecd}

for every Ae€, then h is an isomorphism transferring € onto h(%)
= {h(A): Ae €}, where h(%6) is an algebra of all open-closed subsets with
respect to the topology of the Stone representation space Q, a base of which is
h(%6). The isomorphism h transfers also the measure m to a measure m, defined on
'. h(€) by the equality

my(h(A))=m(A).

According to the properties of h(%€), m, is o-additive and it can be extended in
a standard way to a o-additive measure p defined on the og-algebra S (h(€))
generated by the algebra h(%€) ([4, p. 325]).

Since each u-atom with respect to m is an element of the Stone represcntation
space Q, there is a question of a relationship between u-atoms with respect to m
and atoms with respect to u.

Theorem 3. Let m be a finitely additive finite measure defined on an algebra €
and let p be the o-additive extension of m in the Stone representation space of the
algebra €. Then

(i) for each atom A e F(h(€)) with respect to u there exists one and only one
u-atom s{x € Q with respect to m such that s{x€ A and m(da)=u(A),

(ii) for each u-atom s € Q there exists an atom A € F(h(€)) such that s, = A,

(iil) for each pair A, B of atoms with respect to u, six= s if and only if
A =B mod u.

Proof. Taking an arbitrary atom A with respect to u we put

da={A€b: u(h(A)nA)=p(A)},

similarly as in the proof of Theorem 1. &, is an ultrafilter and since for each set
A € (91,;
m(A)=mu(h(A))=u(h(A))Zu(A),

we have m(sa) = 1(A), whence 4, is a u-atom with respect to m.



Since A€ #(h(€)), by [1, 13.D], for each ¢, 0<e=u(A) there is a set A, € €
such that u(h(A:)+ A)<e. Since A is an atom,

u(h(Ao)nA)=pu(A),
whence A, € A.. We have

m(Aa)=m(A.) = n(h(Ae))=u((h(A)nA)u (h(A)—A)) =
=u(h(A)NA)+u(h(A)—A)=u(A)+ u(h(A) +A)<u(A) +e.
Thus m(sfs)=u(A).
The uniqueness of {4 and the assertion (iii) follow from properties of ultrafilters

and atoms.
According to the preceding uniqueness, to prove (ii) it suffices to show that for

each u-atom o/ eQ there exists an atom Ae.f(h(€)) such that sfe A and
m(s4)=u(A). For this purpose for each integer n choose a set B, € s such that

m(B,)<m(A)+n""and put A, = f] B;. Then {A.}-: is a decreasing sequence of
1=1
sets in .« (hence o € h(A,) for each n) with the property

lim m(A,)=m(.{).

From these facts, putting A = ﬁ h(A.), we obtain sf/ €A and
n=1

m(A)= liin m(A,)= lim my(h(An)) = u(A).

3. Decomposition of a finitely additive measure

If the measure m is not o¢-additive, it is true that we can decompose the
underlying set X to a set A and a set B such that m is purely atomic on A and
nonatomic on B, but this decomposition is not unique ([2, p. 48, Example B]), i. e.
proposition I does not hold in this case. Besides, a restriction of m to the nonatomic
part of X need not have the Darboux property. Therefore it will be suitable to
decompose m to a sum of a u-nonatomic measure and a purely u-atomic measure.

Definition 11. Lct m be a finitely additive finite measure defined on an algebra

€.
We shall say that m is u-nonatomic iff m(s{)=0 for all +{ €Q
We shall say that m is purely u-atomic iff for an arbitrary measurable set A with

m(A)>0 we have
m(A)=Z{m(s): s{isan u-atom, A € {}.
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Note that D ¢;=0 and that from Theorem 3 it follows

card {# € Q: m(A)>0} =R,.

Theorem 4. Let m be a finitely additive finite measure defined on an algebra .
Then there exist measures n and p such that

(i) n is u-nonatomic,

(ii) p is purely u-atomic,

(iii) m=n+p.

Conditions (i), (ii) and (iii) determine the measures n and p uniquely.

Proof. Denote by {}ic; the set of all u-atoms with respect to m and for an
arbitrary A € € put

p(A)=Z{m(sAd):iel, Aecdd}.
Evidently p is a finitely additive finite purely u-atomic measure. Now, if we put
n(A)=m(A)-p(A),

then n is also a finitely additive finite measure.

To show the u-nonatomicity of n let us take an arbitrary ultrafilter &« in €. Let
{Ci}%-1 be a decreasing sequence of sets in & such that C, ¢ s; for each k and each
iel, i<k for which s4,# sf, and

likm m(C)=m(A).

We have
n(A)=inf {n(A): Ae d}=inf {n(Ci): ke N}=
=li{n n(C)=lim (m(C)—Z{m(sA): iel, Cie s})=

=lim m(Ck)—liin Z{m(A):iel, Cie A} =m(A)— m(A4)=0.

The uniqueness of the decomposition is trivial.

4. u-nonatomicity and the Darboux property

Since the notion of the u-atom is a generalization of the notion of the atom, the
condition of u-nonatomicity is stronger than the condition of the nonatomicity. We
shall show now that this condition is already a necessary and sufficient one for the
Darboux property of a finitely additive finite measure.

Theorem S. A finitely additive finite measure m defined on a o-algebra ¥ of
subsets of a set X has the Darboux property if and only if it is u-nonatomic.
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Proof. We use the weli-known equivalent condition of the Dabroux property of
a finitely additive finite measure which is proved in [2, Theorem 2]:

A tinitely additive finite measure m defined on a g-algebra ¥ of subsets of a set
X has the Darboux property (i. ¢. m is full-valued) if and only if for each positive
number ¢ there exists a finite measurable cover {A;}i-, of the set X such that
m(A)<efori=1,2, .., n.

Let m have the Darboux property. Taking any &, choose a finite measurable
cover {A;}i-i of X suchthat m(A;)<efori=1,2, ..., n. Without lost of generality
we can suppose that A, N A, = ¢} whenever j# k. If o is an arbitrary ultrafilter in . 7,
then there is a unique index p such that A, e of. It follows that

m(sH)=m(A,)<e.
Consequently m(o)=0.

Now le* m be u-nonatomic and let € be an arbitrary positive number. Since the
function m is on Q identically equal to zero, for each 5/ € Q there is a set Ay e A
such that m(A ) <e. The class {A." sf € Q} is a cover of X, because for any x € X
there is an ultrafilter, namely o/, = {A € /: x € A}, all elements of which contain x.
Then {h(Ax): « € Q} is an open cover of the Stone representation space Q. Since
it is compact, this cover contains a finite subcover, say {h(A,)}i=. It follows that
{A-}i-1 is the required finite measurable cover, the elements of which have their
measure less than e.

According to the proved theoremn and Tl eorem 3 vve have the following:

Theorem 6. The finitely additive finite measure m defined on a o-algebra ./ has
the Darboux property if and only if its o-additive extension p to the Stone
representation space has the Darboux property

S. The Darboux property on a set

In this section, in Theorem 7, a sufficient condition is given for a finitely additive
measure defined on a d-ring to have the Darboux property on a measurable set of
a finite measure.

Let m be a finitely additive measure defined on a §-ring .7 of subsets of a set Z
and fet X be such a set that X e ./ and m(X) <. Theclass ¥={TnX: Te.j}1s
a g-algebra and m is a finitely additive finite measure on .7. Preliminary lemmas
will be used in the proof of Theorem 7.

Lemma 1. Let { .}/, be a set of mutually different u-atoms. Then for any ¢ >0

and fori=1,2, ..., n there exists a set A; € «; such that A, N A, =0 whenever j# k
and

n

m<QA,—) => m(d)<e.
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To choose A, such that

m<L"J A.-) ~ 3 m(sh)=0
i i=1
it is possible if and only if < is a trivial u-atom for i=1, 2, ..., n.

Lemma 2. Let Ye.# and my be a restriction of m to the o-algebra fy =
{SNY:Se¥f)}. Then B is a u-atom with respect to my if and only if there exists
a u-atom s with respect tomsuchthat Y e fand B={AnY: A € d}. Moreover,
writing my(B) = inf {m(B): Be B} we have my(B) = m(A) in this case.

The assertions of Lemma 1 and Lemma 2 follow from the properties of
ultrafilters and from the definition of their weight.

Theorem 7. Let m be a finitely additive measure defined on a 6-ring .7, let
Xe .7 and m(X)<o. Let {d,}:c1 be the class of all u-atoms with respect to m

restricted to the o-algebra ¥ ={T n X: T .7}. Further, let >, m(s,) <m(X) and
tel

m(A,)= m(A...) for i el whenever i+1el.

In order that m may have the Darboux property on the set X, it is sufficient for
eachnel

m(s,)<m(X)— 2 m(s;).

1,1=n

Proof. Taking any ae€(0, m(X)) we shall find a measurable set A with
m(A)=a. We shall do it successively in three steps.

1. We assume that the class of all u-atoms in ¥ is finite,i. e. = {1, 2, ..., n}.
We shall take an index subset J of I as follows:

if a=m(4,), then J=0,
lf (1>m(&4,.), then J= {kp};=17

where
ky=min {ieI: m(A)<a},
—1
k,=min {iel:.i>k,_,, m(sf)<a —pz m(&ﬁk,)}
1=1

for p=2,3, ..., r.
We shall show now that

jeJ

O0<a—2 m(dA)<m(X)- E.m(&ﬁ.).

Note that if J=, then >, m(sf;) =
jed
hold.

> ¢, =0, therefore the inequalities evidently
jed

269



If J#0, the left inequality follows from

m(A,)<a-— 2‘ m(A ).

To prove the right inequality, first we suppose that J=1. Then
a= m(sd)—a—3 m(4)<m(X)- Y, m(A).
1 o1 rel

Now we suppose that k, <n. Then

a—> m(A)sm(A4)<m(X)- D, m(d).
yed iel

Finally, if J#1I and k, =n, writing
p=max {jel:j+k fori=1,2, ..., r},
qg=max {j=r: k,<p},
we obtain
q
a —2} m(sd)=m(sd,)<m(X)— iézfpm(.vi) =
=m(X)— m(s)+ 21 m( )= m(X) —;m(y@) + Z m(ss,)

iel 1=q+1

whence

o= m() <m(X) = m(4)

and we have proved the required inequalities.
Put now

€=min {a —2 m(sdy), m(X)—Y, m(4,)—«a +ij(~“11)-

jed
By Lemma 1 choose mutually disjoint sets A, € o such that

m(HA,) ~S m(st)<e.

rel

If we denote

5= m(U A,) =S m(s),

jel el

we have

1€J
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and further

a —m(UA,»)éa —m<;LEJ;A') +6ﬁa—,zﬂm(.9¢,~)§

\jedJ

< m(X)= 3, m(sh) — e <m(X) - m(u A,) - m(X—UA.»).

iel iel
Since the set X —J A, does not belong to any of the u-atoms &, i=1, 2, ..., n, by
i I

Lemma S, m is u-nonatomic on the set X—|JA;. Consequently, m has the
iel

Darboux property on X —|_J A,, therefore there is a set Be #, B < X —|J A, such

iel iel

that
m(B)=a— m(jEUJA,).

The set A=Bu|JA,; is the required set, satisfying m(A)=a.
jelJ
2. In the second case we shall assume that the set {sf,}ie; of all u-atoms is
infinite, i.e. I={1, 2, ...} (note that by Theorem 3 I is at most countable) and

a<m(X)=> m(s).

<t
By means of recurrence we shall construct sequences {K.}--, and {L,}7-: of
measurable sets and a sequence {&,}.-; of positive numbers such that lim g, =0
and for all n K, ¢ K,y € L,sy = L, and
a—e.=m(K,)<a<m(L,)<a+2¢,.

By Theorem 4 decompose the measure m on ¥ to the sum of the u-nonatomic
part n and the purely u-atomic part p. Take an arbitrary positive &<
min {a, n(X)— a}. Since n is u-nonatomic, it has the Darboux property, therefore
there is a set Fi € # such that n(F}) = a + &,. Further, we can choose an integer k,
such that Z m(s4;)<e, and by Lemma 1 for each i=k, we can choose a set

i>ky

A, € & such that A;n A, =0 whenever j# k and

m(U A,-) —,2 m(s4)<g.

i=

kl
If we put F,=F;—J A, we have
i=1 .
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nl(F,)zn(F,)er(Fl):11(F1)+p<F{ -U A.) =

1=ky

=n(F))+ 2 m(od)<a+2e

1>k
and on the other hand

m(F)Zn(F)= n(F1 y )2
zn(F;)—n(UA> n(Fy) ((UA) (UA,-))%

i<hg =k, <k,

= n(F)— m(UA)+ 3 m(el)>n(F)— e =a.

1=k

Since 0 <&, <a <n(F,) and n has the Darboux property, there is a measurable set
E, c F, such that n(E,)=a—¢,. Then

a—e=n(E)=m(E)=n(E\)+p(E)=n(E)+p(F)=
Sn(E)+ > m(d)<a—e+e=a

>k,

Now we put K; = E, and L, = F,. For the sets K,, L, and the number &; we obtain
K, cL,,

a—&=m(K)<a<m(L)<a+2¢

and
n(Ll—K1)>a—a+81=E;.

Thus we have the first step of the construction by means of recurrence. Let us
suppose now that there are thesets K, c K. ... « K,-,,Li o L, o ... o L.,
and a positive number €,-, such that

K,.1c L,
n(Lu-y—K,1)> €.,
a =g, =m(K,-)<a<m(L,_)<a+2¢e,-..
Take any positive €, such that
g <min {a —m(K,-), n(L,-1— K,-,)—a+ m(K,-,)}.
Since
0<a-m(K,.)+e <n(L..,—K,-)
and n has the Darboux property, there is a set F, < L,_, — K, such that
n(F)=a—m(K,-1)+e,.
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Choose an integer k, such that Z m(4;)<e, and by Lemma 1 for each i =, take

i>kp

a set A; € A such that A;n A, =0 whenever j# k and

(U A) 3, m(A)<s.

1=k,

If we put F,=F,— |J A:, we have

i=kn

m(F,)=n(E,)+ p(F,)= n(F,.)+p(F,'.— U A,-) <

i=kp

=n(F)+ > m(d)<a—m(K.-.)+2e,
i>kp

and on the other hand

m(E,)Zn(F,)= n(F U ) n(Fl)— n(ékA,>

=n(F)=(m(|) 4) - A))2

zn(F)— m(U A,> + 2, m(sA)>n(F)—e.=a—m(K...).

i=kn
Since 0<¢&, <a—m(K,-1)<n(F,) and n has the Darboux property, there is
a measurable set E, c F, such that n(E,) = a—m(K,-\)—¢.. Then
o= m(Kyoi)~ & =n(E)Em(E,) = n(E,) + p(E.) =n(E,) + p(F,) =
=n(E)+ > m()<a -m(K,-)— & +e.=a—m(K,).

i>kn

If we put K,=K,_,UE, and L,=K,_,UF,, then
Kn—l c Kn c Ln c Ln—ls
n(L,,‘—K,,)>a_m(K,,_l)—a+m(Kn—l)+£n=£n)

a—&e=m(K,)<a<m(L.)<a+2¢,.

Finally, putting A = O K, (or A= ﬁ L,,) we obtain m(A)=a.
n=1

n=1

3. There remains to find a set A with m(A) =a by the assumption I={1, 2, ...,

n, ...} and a Zn(X). Similarly as in the first case we shall choose an index subset
J={k,}p-1 of I as follows

ki=min {iel: m(4)<a},
k,=min {iel:i>k,, m(s)<a —2 m(sty,)
j=1
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for p=2.3,.... Since I'is infinite, J is infinite too. We shall show that there exists
an index ¢ € J such that
a— > m(H4)<n(X).
iel.i=q
For this purpose we first assume I —J to be infinite. Then for any positive ¢ there
is an index p e [ ~J such that m(=,)<e. If we put £ =n(X), we obtain
) >m(A)Z2a— 2 m(4).
ied i<p
Let ¢ be the last index in J fess than p (¢ exists because « = n(X)). Then ¢ satisfies
our condition.
Further, we assume I'=J. Then
w=> m(A)<m(X)- Z m(4)=n(X)
reld el
and there follows the existence of the required q.
Finally, let J# I and I —J be a finite set. If we denote by r the last index of I —J,
we have

u—AE m(.r.x?,-)ém(.vi,)<m(X)—_‘Z m(.d;)=

ied i LIS

= 3 m(h)+nX)= 3 m(A)+n(X),

h
whence u—z m(A4)<n(X).
el
The last inequality implics the existence of the required g also in this case.

Now put
V £=min{u~i€;§qm(.ﬂ,), n(X)—((x—[E;gqm(ﬂi,)”

and by Lemma 1 for each ieJ, i=q choose A e such that A,nA, =0
whenever j# k and

m( U A,-)—- > m(A)<e.

‘1el. iZq el i=q

Let us denote by Y=X—- |J A, fi=a- m( U A,-), my the restriction of m

i€l i=q iel. i=q

to Sy={SnY: Se./}. my(B) the weight of a v-atom B with respect to my.

ny the u-ncenatomic part of my and {% } the set of all «-atoms with respect to
C keK

my. By Lemma 2

2 m(.l;) +i§_]m(.cr-l,-_)élgkmy(?73,\),

iel. i>q



whence

ISa-— Z m(A)=n(X)-— F=m(X)—Z m(A)—e=m(Y)+

ted,iZy
+m( U A,-)— Z m(A)— Z m(.d,)— Z m(A)—e<m(Y)+e—
iel.i=q i€ i=q iel, 1>q icl-J
- > m(A)- Z]m(.ﬂ.»)—t‘ém(Y)—kzkmy(!’/}A)——*ny(Y).
ieJ. 1>q iel— 3

The measure my and the number f3 satisfy now the conditions of the preceding
case, thercfore there is a set Be!fy such that my(B)=m(B)=[}. Putting
A=Bu |J A wec have m(A)=a.

teJ 1=q

Note. In genecral we cannot give a necessary and sufficient condition in order
that a finitely additive measure defined on a §-ring .7 may have the Darboux
property on a set Xe.7. It is possible if the number of w-atoms in /=
{TnX: Te.J} is finite, but a formulation of this necessary and sufficient
condition is too complicated and thercfore it is not cffective.

6. The Darboux property in the sense of Radakovi¢

Let us consider a measure m defined on a ring #. For a og-additive o-finite
measure /n the propositions I and III remain valid if the Darboux property is
weakened in the following sense:

Definition 12. We say that a finitely additive measure m defined on a ring R has
the Darboux property in the sense of Radakovi¢ on a set E e R iff for every
ae (0, m(E)) and for every € >0 there is a measurable set A c E such that

|m(A)—a|<e.

Definition 13. We say that a finitely additive measure m defined on a ring .# has
the Darboux property in the sense of Radakovic iff m has the Darboux property in
the sense of Radakovi¢ on the set E for every E € .

We shall show now that analogical propositions hold for a finitely additive
measure if the notion of the atom will be replaced by the notion of the u-atom.

Theorem 8. Let m be a finitely additive measure defined on a ring £ and let
XeR with m(X)<w. Let {A}.c; be the set of all u-atoms of the algebra
€={EnX: EeR}, indexed such that m(A,)Zm(A..,) for all i, i+1el. The
measure m has the Darboux property in the sense of Radakovi¢ on the set X if and
only if for all nel

m(A)=Em(X)— > m(A).

iel, 1=n
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Proof. Let us consider the Stone representation space Q of the algebra € and
the o-additive extension p of m to £(h(%€)). According to Theorem 3 there is
aclass {A,};c,of all atoms in #(h(€)) such that of; € A;, u(A,)=m(sf,) forall iel
and (since u is o-additive and .#(h(%€)) is a o-algebra) A, N A, = whenever j# k.
It follows that p has the Darboux property on Q= h(X), whence we obtain the
proof of sufficiency using [1, 13.D]. The necessity of the condition is obvious.

Corollary. If m is finitely additive finite measure defined on an algebra ¢ and u
is the g-additive extension of m to the Stone representation space of the algebra €,
then the following assertions are equivalent:

(i) m has the Darboux property in the sense of Radakovic,

(it) m is u-nonatomic,

(iii) p has the Darboux property.
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MAKCUMAJIBHBIE ®UJIBTPEI U CBOUCIBO [APBY
KOHEYHO AJIUTUBHOW MEPHI

Bnagumup Oneituexk

Pesiome

O606L1aeTcst MOHSATHE aATOMA MEPbI TAKUM 00pa30M, YTOObLI HEKOTOPBIC YTBEPKAEHHMS, KacaloLuecs
B3aUMOCBSI3M cBOiCTBa JlapOy M CBOHCTB aTOMOB, GbLIO MOXHO nepeOpMyNHPOBaTh A1t KOHEUHO
aJIMTUBHOM Mepbl AHAJIOFMYHO TOMY, KaK 3TO CAEJAHO Al - aiiMTHBHOH Mepbl. [Inst 06061eHHOro
MOHATHS aTOMA, Ha3BAHHOrO U-ATOMOM, CMPABEAJIMBO, YTO KOHEYHO AfjMTHBHas Mcpa oGnagaeT
cBoiictBoM [{ap6y Torgpa M TONBKO TOTAA, KOrfa OHa u-HeaToMuuyeckas. [Ipu nomoiuu 3TOrO
MOKa3bIBAKOTCA YTBEPXKIEHHUS, B KOTOPbIX NPUMEHSAETCHA MOHATHE 1 -aTOMA 18 NPUBCACHUA KAKOTOTO
AOCTATOYHOIO U, B YACTHOCTH, HEOGXOMMOTr0 U AOCTATOYHOTO ycI0BHs cBoiicTBa [JapOy Ha MHOXeCTBe.
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