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(Communicated by Martin Skoviera) 

ABSTRACT. We prove tha t there exists a self-complementary graph G with 

^—-j=^-k2k ' '1 vertices which does not contain a clique of size k. 

1. I n t r o d u c t i o n 

The following concept was introduced in [8] (cf. also [7]). 

DEFINITION 1.1. A graph G = (V,E) is called self-complementary if there 
exists a permutation n: V —> V such that 

{x,y}eE ^=> {7r(x),7r(y)} £ E 

for every pair of vertices x and y. Such a permutation IT is called the generator 
of the graph G. 

In other words, the graph G is self-complementary if it is isomorphic to its 
complement G. It was proved in [8] that generators can be only permutations 
on sets V of size 4n or 4n + 1. 

Let k be a positive integer. We denote by r(k, k) the diagonal Ramsey num­
ber, i.e., the smallest integer n with the property that for any graph G on n 
vertices either G or its complement contains a clique of size k. 

Self-complementary graphs have been used in the past to give lower bounds 
for the Ramsey numbers r(k,k), by G r e e n w o o d and G l e a s o n [6], 
B u r l i n g and R e y n e r [1] and C 1 a p h a m [3] for small values of k. 

DEFINITION 1.2. Let s(k) be the largest integer n such that there exists a 
self-complementary graph G with n vertices which does not contain a clique of 
size k. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 05C55. 
K e y w o r d s : Ramsey number. 
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Clearly s(k) < r(k, k) — 1. On the other hand, it is well known (cf. [6]) that 
s(k) = r(k, k) — 1 for k = 3 and k = 4, and this fact suggests that investigating 
of s(k) is of independent interest. C h v a t a l , E r d o s and H e r d 1 f n [2] 
proved that 

4 • 2fc/4 < s(k). 

The aim of this note is to improve this lower bound and establish the following 
theorem: 

T H E O R E M 1.3. 

s(fc)>ii±i^W/2, 
4 e \ /2 

Note that this bound is, up to the constant factor, the same as the best known 
current lower bound for Ramsey numbers r(k,k) (cf. [5], [9]). 

2. Proof of Theorem 1.3 

Let A, B, C, D be pairwise disjoint sets of cardinality n . Set A = 
{ a i , a 2 , . . . , a n } , B = {bi,b2 , . . . , b n } , C = {c i , c 2 , . . • , c n } , D = { d i , d 2 , . . . ,dn} 
and V = AUBUCUD. Let 7r: V —> V be a permutation consisting of n 4-cycles 
l^i , Oi, Ci, ai). 

Set 

We will show that, if 

1/4 

Є4k4' 
C * = ( - 4 T 4 • (0) 

4 n < l - ^ k 2 f c / 2 , (1) 

then there exists a self-complementary graph G = (V, E) with generator IT 
which does not contain a fc-clique. 

Let ~ be an equivalence on a set [V]2 of all unordered pairs of distinct 
elements of V defined by 

{x,y}~{z,u} ^ {z,u} = {nm(x),nm(y)} 

for some integer m. 

Obviously, the pairs {a{,aj}, {ai,bj}, {ai,Cj}, {at,dj}, (i,j = l , 2 , . . . , n , 
i ^ j) and {a^,^}, {ai,Ci} (i = 1,2,... ,n) are indifferent classes of ~ . In order 
to define a self-complementary graph, it is sufficient to decide for representants 
of the classes whether or not they are edges of G. This, with respect to the fact 
that 7r is a generator of G, determines the edge set of G in the following way: 

If {#• y} is a representant of the equivalence class and {x, y} = {ir™ (z), IT™ (u)} , 
then 

{x,y} E E <=> {z,u} E E provided m is even, 

{x,y} E E <^=^ {z,u} £ E provided m is odd. 
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Note that due to the form of the permutation 7r, we have {n™(z),n171 (u)} ^ 
{np(z),7rp(u)} whenever m is even and p is odd, and thus the above definition 
is correct. 

We will find convenient to consider the self-complementary graphs G = (V, E) 
generated by 7r which satisfy the following additional condition 

{ai,aj} e E <=> {aucj} (£. E (3) 

for ij = l , 2 , . . . , n , i^j. 

In view of the condition (3), consider a new equivalence ~ ; on [V]2 defined as 
,the finest equivalence which is coarser than ~ and in addition satisfies {a^, aj} ~* 

{ai,Cj}. The equivalence ~' has 2n + 3( 9 ) equivalence classes. Define the 

random graph G by deciding whether a fixed representant of the equivalence 

class of ~' is an edge. We will make these 2n + 3 ( !J ) decisions independently, 

each with probability — . 

In order to conclude the proof of Theorem 1.3, it will be sufficient to prove 
the following claim. 

CLAIM 2 . 1 . Prob(G contains clique of size k) < 1. 

P j o o f of J 3 1 a i m 2.1. Suppose that G contains^ a clique with vertex 
set AUBUCUD, where A C A, B C B, C C C , and D C D. Set 

A' = {ie [l,n], aieA}, 

B' = {iG[l,n], b{eB}, 

C" = { ie[ l ,n] , Q G C } , 

D' = {ie[l,n], d{eD}. 

Suppose that {i,j} C A' (1 B', then {a^^aj} G E and {a^fy} = {7r(ai),7r(aj)} 
e E, which contradicts (2). 

Thus 
\A' fl B'\ < 1, and similarly, 

\B'nc'\<i, 
\CnD'\<i, u 

I.D'n.A'l < i . 

Suppose on the other hand that { i , j} C A' and J E / l ' n C " , i ^ j ; then both 
{ai^aj} and {ai,Cj} are edges of G which contradicts to (3). 
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This however means that 
either A'nC' = 9 or A'= C = {i} for some i G [1, n], 
and similarly, 

either B' f) D' = 
Set 

or B' = D' = {j} for some j G [1, n]. 
(5) 

.4.4 = .4, 

AB = {a, eA; ieB'}, 
Ac = {a. € A; » e c"} , 
.4D = {a, 6 . 4 ; i £ D'}. 

In view of (4), one of the following eases happens 

a) -4 'nC = 0 and B'nD' = 0, 
b) A' = C = {i} and B' n o' = 0, 
c) A' D C" = 0 and 5 ' = D ' = {i}, 
d) .4' = c" = {«} and B' =D' = {j}. 

The eases b) and c) are analogous, and the case d) implies that k < 4 , and hence 
is not interesting. Thus we will analyse the first two cases (depicted on Figure 1 
and 2) only. 

Figure 1. Figure 2. 

The following numbers express the number of choices of a set X = AAUAB U 
Ac U AD such that no, one, two, three or four dashed areas in Fig. 1 contain 
precisely one point: 

-k + r (")«'• (* П 2>'- 2 <"-*^. (к

П-4У-'(П-к2+І)(î), 

( ł 2 . ) « ' - ( n - î + в ) ( i ) . ( ł n
8 K - ( в - î + в ) ( І ) . 

(6) 
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Similarly 

(jb-l) 2*"^*- 1). {k-2У-2(k-2) (7) 

are numbers of choices of a set X C A so that (AA^AD = 0 and AA^AB = 0 ) 

or (AA-(ABUAD) = $). 

Suppose that the subgraph G(X) of G induced on a set X = AUBUCUD 
is a clique; then 

aj} Є E for iђj Є A', iф j 

aj} £ E for iђj Є B' ђ iфj 

a3} Є E for i, j Є C , iф j 

aj} $_ E for iђj Є D' ђ iфj 

a3} £ E for i Є A', j Є C" 

o j Є £ for ІЄB' ђ j Є D' 

Ъ3} Є E foľ ІЄA' ђ j ЄB' 

Ъ3}<ÊE for ІЄB' ђ j єC 

Ъ3}ЄE for iєC ђ j ЄD' 

b3} £ E for i Є £>', j ЄA' 

(as G(A) is a clique), 

(as G(B) is a clique), 

(as G(C) is a clique), 

(as G(D) is a clique), 

(conséquence of (3)), 

(conséquence of (3)), 

(as G (A U B) is a clique), 

(as G(B U C) is a clique), 

(as G((7 U .D) is a clique), 

(as G (A U D) is a clique). 

For all pairs { i , i} G [X]2 we have a condition of "type" {ai,a3} or {ai,bj}. As 
every pair of such type is a representant of a different equivalence class of ~ ' , 
the events that corresponding pairs {ai,a3} and {ai,b3} are (or not are) edges 
are independent. 

Thus 

Prob(G(X) is a clique) < 2"C?') . (8) 

Let P be the probability that G contains a fc-clique. Then in view of (6), (7) 
and (8) 

P < Pi + P2 , 

where 

Я = E ( * - % > ' - 2 Í ( " - Г 2 J ' ) 0 K ( V ) 

4 n e 
fc-2í 

j = o 
4 

< j2Ą.(^2i)Ҷ^Y~j(j)2-Cґ) 
3=0 Г- 4e 
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and 

^ = 2 ( ( f c - 1 ) 2 " - ^ - 2 ) 2 " < v ) + { k ~ i ) 2 * - 2 ^ - i)2"1*"'1 

<E(,-%)^("-^20(l)2-(V)-
Thus 

^2gir(^l i) ,(i%lj)"(02"(' ; r (9) 

As for k > ko 

L(h^L\J(^<±(±X 
j \ \ 4e j V.7^ ^ 2 4 ^ 4 e ) 

holds, we infer that k > ko implies 
4 / , \ fc~Í 

4ne o-fc-ž"1 i > <n (^) 4 E(F?i j 2 -"J • («» 
We will prove that for k sufficiently large each summand on the right-hand side 
of (10) is bounded from above by —. This means that for k large enough the 
probability that G contains no fc-clique is positive which concludes the proof: 

In view of (1), we have 
4 / \ k-j 

' -iJL_2-i=*-iN 

1 2 V 4 e j \k-2j 
1_(±\ ( 4n« 
L 2 \ 4 e J \k-'. 

<-m\^^-^r 
<-h{^)^^"f-

Due to the condition on j , we have that -r2 J / 2 < 1, and thus we bound the 

right-hand side of (11) by 

f J L \ ,<vr ' I * ] ^ 
12 

k-j 

h{-t)ck^ii^2j)~3- ^ 
( k \k~3 

As lim ck
3 = 1 and lim I -r r ) = e2j , we bound (12) from above by 

k—>oo k—•oo V fc — J J 

M£;Yi£?<2i(1+°w)<^+°m)<h 
D 
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