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PROLONGATION OF NATURAL BUNDLES
ANTON DEKRET

We discuss some special aspects of the theory of natural functions (see [3], [5],
[6], [7]) in the case of fibre bundles. Our considerations are in the category C*.
1. Point fibre frames. Let (N, y) be a manifold with a fixed point y e N.

Definition 1. Let w: Y — X be a fibre space with a fibre type (N, y), dimX = m.
The set of r-jets Jo, 5P of all local fibre isomorphisms @ from R™ X N to Y will be
called the space of point fibre frames and denoted FH;Y.

Let FL..N; be the Lie group of all r-jets of local isomorphisms of the fibre space
pi: R™ X N— R™ with source and target in (0, y), the composition law of which is
given by the jet composition.

Proposition 1. Let 8 be the target jet projection. Then the space B: FH;Y — Y is
a principal fibre bundle with the structure group FL.N;.

Proof is routine.

Remark 1. In the definition of the manifolds FH;Y, FL,.N; the space.(R", 0),
n=dimN, can be used instead of (N, y). In this case we use the notations FH'Y,
FL;, .. Itis easy to see that FH'Y is a reduction of the space H'Y of all r-frames on
Y to the subgroup FL;, . of the group L., of r-jets of all O-preserving local
diffeomorphisms of R™*",

Let us describe some properties of the group FL.N;. Let DL(N) be the set of all
local diffeomorphisms on N. Remember that a local map from M to DL(N) is
differentiable, i.e. @ € CL(M, DL(N)), if the map ¢, @(x, y)= ¢(x)(y), from
MXxN to N is differentiable. We define j,;@:=jo.»®. Let @,
@2€ CL(M, DL(N)). Put @;@,(x)= @:i(x)- @,(x) where in all our considerations
the dot means the composition of maps or jets. Let L,.N; be the set of r-jets jo,5 @
of all maps @e CL(R™, DL(N)) that @(0)(y)=y. Let ai=j{,»n@:, az=
Jjto.»@2€ LL.(N);. Then ajca;=jio 5(@ic®2) is the composition rule of the Lie
group L..N;. Denote by L..(N, id); or L;N the Lie group of such j{, ;@ € L},.N; for
which j;@(0) = jiidn or @(x)=@(0), x € R™, respectively. Clearly the group L;N
can be identified with the group of r-jets j;g of all local diffeomorphisms of N such
that g(y)=y. It is easy to show that L/.(N, id), is a normal subgroup of L..Nj,
L;nL,(N, id); ={e) and L;(N)<L,(N, id), = L,.N;.
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Remark 2. Let A=ju»@eL, N;. Then ¢: L,.N,—-L;,NxT,N,, ¢(A)=
(;9(0), jow(x,y)) is a diffeomorphism iff r=1. Identifying T.N; with
T;N®(R™)* we get an Abelian group structure on T.N,. According to the
left-hand action of L} on T,N; given by the jet composition we construct the
semi-direct product LiNX R).N; of the groups L)N and T:.N; with the composi-
tion rule (ai, bi)(a;, b2) =(ai- az, by + a,- a1b,). In this case € is an isomorphism of
groups.

Every local isomorphism @ of trivial fibre space p;: R™ X N— R™ determines
the local diffeomorphism f=p,® on R™ and ¢ € CL(R™, DL(N)), @(x)= ®|xjx~
so that @(x, y)=(f(x), ¢(x)(y)). In local coordinates (x') on R™ and (y®) on N
we have for @: £’ =f(x’), y* = @*(x', y?). This gives

Lemma 1. Let &, = (f., @), i = 1, 2 be two local isomorphi ms of R™XN. Then
(jio.5P1 = jio.5 P2) <> (jof1 = jof2, jio., @1 = jlo.)P2)
The group L7, of r-jets jif, where f is a local diffeomorphism of R™ such that

f(0)=0, acts on the right-hand side on L;,N, by the rule j{.,,¢ < jiof = jio.»(® " f)-
Let LRxL,.N; be the semi-direct product with the group operation

(1) ((11, Al)(a2, AZ) = (al *az, (A1 . az)cAz)

It is easy to prove

Lemma 2. Let a=j{ 5 PeFL,.N,, ®&(f,®). Then the map i: FL, N,—
L., %X L..N,, i(a)=(jsf, joo.»»®) Is an isomorphism of groups.

Remark 3. Let ¢ = jio 5y € FH;Y. Denote ¢ = ji(z—a-yY(z,y) =
=g(2)eH'X, c=j(Yloxn)eFI}(N,Y), c=jio(x—y(g7'(x),y)elY,
where FJ;(N, Y) is a manifold of all r-jets j;& of all local diffeomorphisms from
N to fibres of Y. Clearly the map n": FH,Y—> H' X X x[FJ;(N, Y)XJ'Y],
"(c)—(c1, ¢, ¢3) is a submersion. If r=1, then in the coordinates

(x', yo, Al Af AB) S (x', v, AL Ag, AYA))

where A*A{=5}. Every AeJ.Y, BA=yoe Y determinesamap A’: T, X— T, Y
such that Tw- A’ =idr,x and vice versa.

The group LLx(L,NXT,N;) acts on the right-hand side on H'X X
x[FIY N, Y)XyJ'Y] by the rule (H,B,A)h,b,a)=(H-h, B-b.
A’+B'-a’-h'"'-H'"") where the prime denotes the maps of the corresponding
tangent spaces determined by 1-jets. Then (', i) is an isomorphism of principal
fibre bundles. It is directly seen that m,: FH;Y—>H' XX xFJ;(N,Y) or my:
FH;Y—>H' XX xY is the principal fibre bundle with the structure group
L,(N,id); or L,.N,, respectively.
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2. Fibre base r-frames. Let us remember the notion of fibre r-jets, see [2].

Definition 2. Let mi: Y.—> Xi, i=1,2, be two fibre spaces. Then the fibre
morphisms v, y: Y:— Y. belong to the same fibre r-jet ji,s1y with the source
xo€ X1 if jyy = jiyp for any y € Yy, my = xo. The point ¥ = m,y(y), w1y = x, is called
the target of ji,sy.

Let m: Y— X be a fibre space with the type fibre N. By LB,.N we mean the set
of all fibre r-jets jos® of local isomorphisms & = (f, @) of the space R™ X N such
that f(0)=0, p e CL(R™, D(N, N)), where D(N, N) is the set of all diffeomorph-
isms of N. Let Jos®, jos® € LB,,N. Then the group structure on LB,N
determined by the composition rule

(jos@)(jois @) = jois(P - ')

is not a Lie group structure in the classical sense.

Definition 3. The set FH5Y of all fibre r-jets jo sy of local isomorphisms :

R™ X N—'Y, whose domain is a set pi'(U), where U is an open set in X, is called
_the space of basic r-frames on Y.

Let n3(a), ae FH3Y, be the target of a. The set (FH3Y),={ae FH3Y,
ns(a)=x e X} is called the fibre over x. Let us recall that 75: FH;Y— X is not
a fibre manifold in the classical sence. Let B = josy € FH3Y, A = jos®P € LB,,N.
Denote B A = jys(y- ®) and (B, A)=B-A. It is easy to prove

Proposition 2. The map x: FHyY XLB,.N—>FH3Y, x(B,A)=B-A is
a right-hand fibre preserving action of the group LBgN on FH3Y and is free and
transitive on fibres of FHgY.

Definition 4. Let G be both a Lie group and an algebraic subgroup of LB3N.
Every subset P of FH3Y, which is a principal G-fibre bundle over X, will be called
areduction of FH3Y to group G and is said to be a space of G-basic r-frameson Y.

3. G-frames. Let G be a Lie group, £: G X N— N be its left-hand action on N
and let §: N— N, §(y) =¢(g, y) be the diffeomorphism determined by g € G. We
use gigz(y) = 92(9:(y)).

Definition 5. The action ¢ is said of order k (at y € N) if j5d: = j53> => g1 = g, for
any yeN (for y=y).

Let H;={g € G, j;§ =j; idn} be the isotropic group of order r at ye N.

Lemma 3. If the action ¢ is effective, (J =/ﬁ/ > g =h), then it is of order k at y iff
H ={e} where e is the unit of G.

Definition 6. A local isomorphism @ = (f, @) of R™ X N is called a G-isomorphi-
sm if @ is such a local map from R™ to G that ®(x,y)=(f(x), (x)(y)). A
G-isomorphism @ is said to be trivial if ® = (idgm, @)= Ds.
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Lemma 4. Let @1, @2 Rm—)G and let ]5(171:]6(1’26 T:HG Then j(’O,y)¢¢v —=
jio. @, for any y e N.
Proof follows from identity

(I)‘p =(1dRm X S)(ldRm X ® deN)(A X id )

where A: R"—>R™ X R™, A(x)=(x, x) is the diagonal map

Corollary 1. If jop, = jogp.€ T,.G, then Py, @, belong to the same fibre r-jet
with source and target 0 € R™. This gives the map &: T,,G— LB,.N, E(jop)=
j(;lB(qu-

Let GL’,,N be the manifold of all jets j(.,) P, where @, is a trivial G-morphism.
We will describe th set

n"'(jlo.yy idrmxn) for n: T,G—GL" N, n(s ) o »Pe.

Let M, Q be differentiable m nifolds and S = Q be a clo ed submanifold of Q.
A mapping h: M — Q is sa’'d to have the contact of order r with S at xo € M if there
is such a map h: M— S that jih = j’h. The action £ of G on N determines the
mappings €5 G—J5(N, N), e*(h)—jh, €2(h)—h(y). The action ¢ is called
r-normal if dim(e¥(G))=q —di, ¢q—dimG, d —dim H*, tor k=0, .., r.

Lemma 5. Let the action € of G on N be r-normal. Then jjo, y@¢ — j(o.yy idrmxn iff
@: R™— G has the contact of order k with H} * at 0e R™ for k=0, ..., r.

Proof. There is a sequence H)> H},> ... o H, of the clo ed i otropic subgroups
of the point y € N. There is a local chart (z?) on G such that e=(0, ..., 0) and
(z', ..., 2%,0,...,00e H, k=0, .., r. In this chart let &: G X N— N be given by
y*=F*(y®, z°). Then for a=(z', ..., 2%, 0, ..,0)e H}
(2) Fe(y, a)—y®, 3F“(y, a)/dy” —o",

***F*(y, a)/3y?...0y»3z"...9z" =0

where s=0,1, ...,j,p—1,...,d, j—0, ..., r. Let ¢ be given by z* = ¢*(x') and
let jo@ =(a®, a?, ..,a% ., (0)=a. Then the equations for &, are: £'=x’,
)‘;‘1=F0(yﬂ’ ZP=(pp(x)) and j(’o )-’)‘DCP_(bua b?? ° bfl ry v bgl Biit o bg7 LR
bg.. ), where

3) be .= D3 F(y, a)/dz"..9z" Y ab...ak, u=1,..,r
s=1

(4) biy s W= 2 F(y, a)/dy? ...3yH3z".. 3z”a"...a%,
s 1 o

kK 1,..,r=1; u=1,..,r—k
5) bs OF*(y, a)/dyB, .., b, 3 Fe(y, a)/dy? .. y*
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where o denotes the set of all o-decompositions of the sequence is...i, (an s-part
decomposition & of the sequence i;...i, is called a o-decomposition if 7(i;...i,) =
01...0, = (g .. i) (i . 0ny) ... (i, . ..0,) and 1< 2 <... <¢,, ¢;<...<h;. For instance
7 (irizizis) = (i1i3)(i2is) or = (i1)(i2is)is are examples of o-decompositions). Since
jio.» idrmxn=(y%, b = 6§, 0, ..., 0) the assertion of our Lemma follows from (2),
(3), (4), (5).

We supose that the action € is r-normal. Then by Lemma 5 we can prove

Lemma 6. The group homomorphism §: T;,G— LB/.N is injective iff the action
¢ is effective.

Corollary. If the action ¢ is effective, then the group of all fibre r-jets jos D, of all
trivial G-isomorphisms @, can be identified with the group T,.G. The
homomorphism & can be extended on &: L, X T,G-LB,N, E(jif, jop)=
jos(f, ), where L, X TG denotes the semi-direct product of the groups,
(a, A)-(b, B)=(a-b, (A-b)B). Then the group of all fibre r-jets jos® of all
G-isomorphisms @ can be identified with L,,X T,,G iff the action ¢ is effective.

Lemma 5 implies

Assertion. The map 1 is injective iff HY= {e}, i.e. iff the action ¢ is free at y € N,
i.e. iff é[()-))= gz()j) :> g1 = ga.

Corollaries: 1. If the action ¢ is free at y € N, then the group of r-jets j, ;P of
local G-isomorphisms @ = (f, @) such that ®(0, y)=(0, y) can be identified with
L. X T.G., where jip € TnG.<>@(0)=e.

2. Let LB/.Ng be the set of all fibre r-jets jos P, of all local trivial G-isomorphi-
sms of R™ X N. The map &: LB, Ns— GL,;3N, {(josPy) = jio,5) P is injective iff
the action ¢ is free. In this case the manifold GL;N is the Lie group which can be
identified with T,,G and with LB;,Ng.

Let x: P— X be a principal fibre bundle. Its structure group G acts transitively
and freely on itself by the right translation d(g) = ga. Therefore the group L,.BG
of fibre r-jets jos® of all local G-isomorphisms @ of R™ X G is identified with
L. XTnG. Let F: R™" X G— P be a local isomorphism of fibre bundles. Then
f(z)=m-F(z, e) or oe(x)=F(f'(x), e) is a local isomorphism from R™ to X or
a local cross-section of P, respectively, so that F(z, g) =[0(f(z))]g and jf.»HF =
jorr@d - jf0rF - jof, where g denotes the diffeomorphism of P determined by g € G.
It yields

Lemma 7. Local isomorphisms F,=(fi; or), F2=(fz, 0r,) of principal fibre
bundles R™ X G, P belong to the seme fibre r-jet josF: iff jofi = jofz, jhOn =
j;z(O)on-

Corollaries: 1. The space W'P of fibre r-jets j5is of all local isomorphisms from
R™ X G to P can be identified with the Whitney sum H'X X xJ'P, which is the
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principal fibre bundle with the structure group L, X T,.G, see [1]. Hence W'P is
a reduction of the space FHgP of all basic r-frames on P to the group L}, X T,.G.

2. Let p: Q— X be a fibre bundle associative to P with a fibre type N on which
the group G acts effectively on the left-hand side. Quite analogously to the above it
can be shown that W'P=H'X X xJ'P is the reduction of the space FHzQ of all
basic r-frames on Q to the group L., X T,.G.

Remark 4. It is known (see [3]) that the space H' X X J'P— P is a principal
L;. %X T, G.-bundle. It is clear that it is the reduction both of the space FHP of all
point r-frames on P and of the space FH.Q (where Q is a fibre space associated to
P) to the group L., X ThG..

4. Natural fibre functor. Let FB be the category of fibre bundles, B.. be the
category of manifolds M (m = dim M) whose morphisms are diffeomorphisms, FB,,
be the category whose objects (morphisms) are m-dimensional manifolds (fibre
morphisms over diffeomorphisms of bases).

A natural functor F restricted to the category FB,. will be called fibre, i.e. if (7:
Y - X) e Obj(FB,.) and (f: Y1— Y:)eMor(FB.,.), then (7z: FY— Y) e obj(FB)
and the morphism Ef: FY,— FY, is over f.

Remark 5. If F is a natural fibre functor, then the rule F,(Y)=(n-7::
FY — X) determines a functor F,, from FB,, to FB,,.

Let us recall that a natural fibre functor F is of order r if j;f=j;g implies
Ff|vy, = Fg|v), for any fibre morphisms (f, g: Y— Y)eMor(FB,,.).

Example. The prolongation functor J* from FB, to FB(J'Y is the r-jet
prolongation of Y) is a natural fibre functor of order r.

Remark 6. Let F be a natural fibre functor of order r. Then every jet
A=jfel;(Y, Y); defines a map A: (FY),—(FY);, A = Ff|sy,.

A small modification of the well-known assertions in the theory of natural
bundles gives

Proposition 3. Let F be a natural fibre functor of order r. Let m: Y — X be a fibre
bundle, m=dimX, n+m=dimY. Let Nr be the fibre of F(R™ X R") over
(0,0)e R"x R". Then nr: FY—Y is associated to the principal fibre bundle
FH'Y of all point r-frames on Y with the type fibre Ng.

Let P(K)— X be a reduction of the space FH3Y of all basic r-frames on Y to
a Lie group K = LB},.R" of fibre jets jo;s® of all local isomorphisms of R™ X R".

Proposition 4. Let F be natural fibre functor of order r. Let Np,, be the fibre of
F,.(R™ X R")— R™ over Oe€ R™. Then the space n-nr: FY — X with fibre type
Ng,, is associated to P(K).

Remark 7. Let P— X or Q— X be a principal fibre bundle with a structure
group G or a space associated to P with a fibre type N on which the group G acts
effectively. Then W'P=H'XXJ'P is the reduction of FHY to the group
L. X T..G. It is well known that if v is a natural functor of order k, then the space
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X — X is associated to H*X. Therefore FypX— X is associated to W'(H*X) =
H'X xxJ'H*X. Since Fy is a natural functor of order k+r, then FyX is
associated to the principal fibre bundle H***X, which is a reduction of W"(H*X) to
the group L,t*< L;, X T,L*.
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