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ABSTRACT. A notion of modular ordered set is introduced. There is shown that 
a modular ordered set fulfils the .lordan-Dedekind condition for chains. 

By an ordered set \= o. set) we m e a n a part ia l ly ordered set. In [2], notions 
of modular i ty and dis t r ibut iv i ty of o. sets are in t roduced. T h e r e was shown t h a t 
modular i ty and dis t r ibut iv i ty o fo . sets can be characterized by t h e non-existence 
of specific subsets of these o. sets. In t h e present p a p e r a n o t h e r notion of m o d u l a r 
o. set is given. 

We first in t roduce some n o t a t i o n s . Let ( P ; < ) be an o. set. Given a G P, 
we write [a) = {./; G P ; a < x} and (a] = {x G P ; x < a}. For a, 6 G P such 
that a < b, set [a, b] = {x G P ; a < x < b} . If a < b and [a,b] = {a,b} , we 
say that b covers a (in symbols a ~< b). For a, b G P we set l(a,b) = (a] n (b] 
and //(a, b) = [a) D [6) . If c G /(a, 6) , we write /(a, fe; c) = [c) n /(a, 6) , and when 
r G u(a, //) . H(a, b; c) = (c] D u(a, b) . 

An o. set is said t o have locally finite length if all its maximal b o u n d e d chains 
are finite. In what follows we will suppose t h a t o. sets under considerat ion have 
locally finite length. 

D E F I N I T I O N . An o. set P is said to be modular if it fulfils the following con
ditio ti: 

Id o,b.c G P and b < c. If there are p G /(a, b)(ll(a, c) , q G u(a,b)nu(a,c) 
will) I (a, b: p) = J (a, c; p) and u(a, b; q) = u(a, c; a) . then b = c . 

In [2], there was shown t h a t t h e o. set which consists of e lements a , b, c, 
p such t h a t p < a and p < b < c, is not m o d u l a r according t o t h e not ion 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 06A99. 
K e y w o r d s : Ordered set, Modular. 

139 



MILAN KOLIBIAR 

of modularity in [2]. But it is modular in our sense of modularity. Hence these 
notions of modularity of o. sets are different. 

LEMMA. Let P be a modular o. set. Assume that a,b,c E P and a -< c -< b. 
Then any maximal chain in the interval [a, b] has length 2 . 

P r o o f . Consider a maximal chain 

a = ao -< ai -<...-<< an = b. 

Either a\ = c, and therefore a2 = 6, or ai ^ c. In the last event, a 2 ^ b 
implies l(c, a i ; a ) = l(c, a2;a) and H(c, ai ;b) = H(c, a2;b). By the modularity of 
P, we have ai = a2 , a contradiction. Thus a2 — b and n = 2. 

THEOREM. 4̂ modular O. se£ P O/ locally finite length fulfils the Jordan-
Dedekind condition for chains, that means, all maximal chains between the same 
endpoints in P have the same length. 

P r o o f . We will proceed by induction on the length of maximal chains in 
the intervals of P. More precisely, let (In) denote the following property of P : 

If [a, b] in P has a maximal chain of length at most n, then all maximal 
chains of [a, b] have the same length. 

Lemma shows that (I2) is true in P. Assume that (In-i) is true in P for 
n > 3 . Let a = ao -< ai -< . . . -< an = b be a maximal chain of length n in P. 
Moreover, assume that a = bo -< bi -< . . . -< bm — b is another maximal chain of 
length m > n . 

Two cases can occur: (i) a\ = b\ or (ii) a\ ^ b\ . 

In the first event, n = m by the induction hypothesis. Suppose that a\ ^ b\ . 
Evidently, a\ and bi are incomparable, and l(ai,bi;a) = / (a i ,b2;a) . u(a\,b\\a) 
= H(ai, b2; a) is impossible as m > 3 . Therefore u(a\,b\;b) ^ u(a\, b2; b). Take 
a minimal element c from the set u(a\,b\]b) — u(allb2]b). It is easy to verify 
that c and b2 are incomparable. Now we claim that bi -< c. Really, assume to 
the contrary that there exists b\ -< c\ < c. Clearly, / (a i ,b i ;a) = / ( a i , c i ; a ) . 
^(a i ,b i ;c) = u(ai,c\;c) follows from the minimality of c in u(a\,b\;b) — 
w(ai,b2;b). Therefore, by modularity of P , bi = c i , which is a contradiction. 
Hence bi -< ^ as claimed. Now ai -< c by Lemma. Using the induction hypoth
esis we see that the length of all maximal chains in intervals [ai,b] and [bi.b] 
is n — 1. Thus n = m and the proof is complete. 

R e m a r k . One can try to generalize the Jordan-Dedekind condition for 
modular multilattices and lines (see [3]). Let us recall that an o. set P is called 
a multilattice if 

(i) for any a,b,c£ P with l(a,b\c) there exists a maximal element u of 
(a] H (b] such that c < u; 

(ii) the dual of (i). 
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Then a V b means the set of minimal elements of [a) n [b). Similarly, a A b 
is the set of all maximal elements of (a] D (b]. 

We can now define the betweenness relation axb on P as follows: axb if 
and only if 

[(a A x) V (6 A x)] n 0 ] = {x} = [(a V x) A (6 V z)] D (x] . 

A subset of a multilattice P is called a line if for a,b,c G P one of the relations 
abc•, 6 a c , or a c 6 is true. Obviously, any chain is a line. 

The following example shows that the Jordan-Dedekind condition for lines is 
not, true for modular multilattices. 

Take P = {a, 6,L>, r, s, /:, U} and define the partial order as follows: t < p < 
a < r, p < b, a < v and s < b. It can easily be shown that this is a modular 
multilattice, and that the sets {a,p, 6} and {a, r, s, b} are lines in P . They do 
not have the same length. 

The author is grateful to the referee for critical comments. 
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