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Mctíh. Slovaca 30,1980, No. 4, 337—343 

THE P. P. RING AND THE PIERCE SHEAF 
REPRESENTATION OF NON-COMMUTATIVE RINGS 

GEORGE SZETO—T. O. TO 

1. Introduction. A. G r o t h e n d i e c k and J. D i e u d o n n e [6] showed that 
a commutative ring is isomorphic with the ring of sections of local rings. More sheaf 
representations of algebraic systems were given by J. D a u n s and K. H of mann 
[4], R. P i e rce [11], J. L a m b e k [ 9 ] , K. Koh [8] and others. A lot of applications 
of the sheaf representation theory have been found by R. P i e rce [11], 
O. V i l l amayor and D. Ze l i n sky [14], A. Magid [10], F. D e M e y e r [5], and 
G. B e r g m a n [2]. We note that most applications are in homological aspect of 
commutative rings. For example, when JR is a commutative ring with identity, 
G. B e r g m a n ([2], Lemma 3.1) showed that JR is a p.p. ring (that is, every 
principal ideal is projective) if and only if the stalks of the Pierce sheaf are integral 
domains and the support of each element is both open and closed in the Boolean 
spectrum of the ring. In the present paper, we ask what kind of rings I? have stalks 
of the Pierce sheaf induced by R being domains (non-commutative), prime rings or 
semiprime rings. For a non-commutative ring JR, G. Szeto[12] claimed that if R is 
a left almost hereditary ring in which the left annihilator of any element is the left 
annihilator of a central idempotent, then the stalks are domains. This fact will be 
studied for non-commutative p.p. rings. It will be shown that the class of p.p. rings 
in which the left annihilator of any element is the left annihilator of a central 
idempotent, is precisely the class of strongly p.p. rings (p.p. rings in which the left 
annihilator of any element is a two sided ideal), and that such a class of rings is also 
the class of rings in which the support of any element is both open and closed and 
the stalks of the Pierce sheaf are domains. Moreover, when the ring JR does not 
have an identity, we shall show that if R is a left p.p. ring then every nilpotent 
element r is square 0 (r2 = 0) in case either all idempotents of R are central or JR is 
a stably p.p. ring (see Section 2 for definition). At the end of the paper, some 
topological characterizations shall be given in terms of the Boolean spectrum of the 
ring whose stalks are domains, prime rings or semiprime rings. 

2. Preliminaries. Let R be a ring with identity 1, B(R) the set of central 
idempotents of jR. Then JB(JR) is a Boolean algebra under the joint evf = 
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= e+f — ef, the meet e /\f = ef, and the complement of e = 1 — e for all e and / in 
B(R). Denote the Boolean spectrum of B(R) by Spec B(R). Now let us recall the 
Pierce sheaf of rings [11]: Let T be the disjoint union of rings R/xR for all x in 
Spec B(R). Then each r in R induces a mapping/, from Spec B(R) to T such that 
fr(x) = r in R/xR for each x in SpecB(.R). Since f](xR) = 0 for all x in 
SpecB(fl), that fr(x) = 0 for all x in Spec B(R) implies that r = 0. Thus the 
mapping r —>/r is one-to-one from i? to the set of mappings: Spec B(R)-^T. Next, 
T can be topologized so that fr is continuous. In fact, we take {/r(T(e))/r in R and e 
in B(R)} as a system of basic open sets, where T(e) are basic open sets for 
Spec B(R). Then the map fr is continuous. Thus, we have a sheaf (Pierce) T of 
rings Rx ( = R/xR) for x in Spec i?CR) [11], where a sheaf T of rings Rx (R/xR) 
for x in a topological space X ( = Spec B(R)) is a disjoint union of Rx such that (1) 
for each x in X, a ring i?x is given with identity lx, (2) RxnRy = 0, a void set for 
x±y in X, (3) the projection P from T to X maps r in Rx to x for each r, (4) 
a topology is imposed on T such that 1) if r is in T, there exists an open set U in T 
with r in L7 and NczX such that P maps U homeomorphically on an open set N, 2) 
let T+ T denote {(r, s)/P(r) = P(s)}, with the product topology in T x T, then 
the inverse map r-^—r, the addition map (r, s)—>r + s and the product map 
(r, s)—>rs are continuous, and 3) the constant map x —> lx is continuous on X to T. 
The rings Rx are called stalks of the sheaf T. For a subset £/ of X, the collection of 
all continuous functions from U to T are called sections from L7 to T. Then one 
can show that R is isomorphic with the ring of sections of the sheaf T of Rx under 
the mapping r - » / r . 

An ideal I of R is called completely prime if R/I is a domain, the ring R is called 
reduced if it has no nonzero nilpotent elements, and R is called left (right) p.p. if 
each left (right) principal ideal is projective. We note that R is left p.p. if and only if 
the left annihilator A(r) or an element r in R is the left annihilator A(e) of some 
idempotent e. Such an idempotent e is called an associated idempotent of r, which 
is denoted by er. A strongly felt p.p. ring is a left p.p. ring such that A (r) is an ideal 
for each r inR. A stably left p.p. ring is a left p.p. ring such that A(er) = A(rer) 
for each r in R. A ring R is called almost reduced if every nilpotent element r is 
square zero (r2 = 0). 

Throughout, we assume that R is a ring, and that a p.p. ring means a left p.p. 
ring. The left annihilator of an element r is denoted by A(r). 

3. p.p. rings. In this section, we shall show that the following two classes of p.p. 
rings are almost reduced: (1) for each r in R, er is central, and (2) R is stably p.p.. 
Several characterizations of a strongly p.p. ring are then given. A condition is also 
obtained for a reduced ring being strongly p.p.. We begin with p.p. rings without 
identity. 

Lemma 3.1. Let R be a p.p. ring such that er is central for an r in R. Then 
RmA(r) = {0}. 
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Proof . Let tr be in A (r) for some t in R. Then trr = 0. Hence trer = 0. Since er is 
central, trer = terr = 0. But then terer = ter = 0 ( forA(r ) = A(er)). Thus tr = 0. 

Theorem 3.2. Let Rbea p.p. ring such that er is central for each r in R. Then, r is 
nilpotent if and only if A(r) = R. Consequently, R is almost reduced. 

Proof. The sufficiency is clear. Conversely, if r = 0, clearly, A(r) = R. If r ^ O 
such that rn = 0 for some n >2, then rn~x = rn~2r is in RmA(r). By Lemma 3.1, 
rn_1 = 0. Thus, by mathematical induction principle, r2 = 0. Since er is central, 
rer = err = 0 (r2 = 0) ; and so erer = er = 0. This implies that A(r) = A(er) 
= A(0) = R. 

Next we give another class of almost reduced p.p. rings. 

Theorem 3.3. Let R be a stably p.p. ring. Then, r is a nilpotent element of R if 
and only if A(r) = R. Consequently, R is almost reduced. 

Proof.' The sufficiency is clear. For the necessity, let r" = 0 with n>2. Since R 
is stably p.p., A(r) = A(rer); and so r

n = r
n~l

r=-0 implies r
n~l

er = 0. That is, 
r
n~2

rer = 0. Hence rn_2e r = 0. Thus, by mathematical induction, r2 = 0. This gives 
that rer = 0. Therefore A (r) = A (0) = R. 

We recall that R is a strongly p.p. ring if A (r) is a two sided ideal of R. When R 
has an identity 1, it can be shown that the class of strongly p.p. rings is precisely the 
class of p.p. rings R in which er is central for each r in R. Moreover, strongly p.p. 
rings can be characterized in terms of the Pierce sheaf, and this characterization is 
a non-commutative generalization as given by G. B e r g m a n ([2], Lemma 3.1). 
From now on, we assume that R always has an identity 1. 

Theorem 3.4. The following statements are equivalent: 
(1) R is a strongly p.p. ring. 
(2) R is p. p. in which er is central for each r in R. 
(3) For each r in R, supp (r) is both open and closed in Spec B(R), and Rx is 

a domain for all x in Spec B(R). 

Proof. (1)—> (2). It suffices to show that all idempotents are central. Let e be an 
idempotent. Then A(e) = R(l -e) which is an ideal by hypothesis, so R(l -e)R 
= R(l-e). Similarly, Re is an ideal. Hence R = Re@R(l — e) as a direct sum of 
ideals. Since l=e + (l — e), for any r in Re, r = re and r = er-\-(l—e)r. But 
(l-e)Re = 0, then (l-e)re = (l-e)r = 0. Thus r = re = er for all r in Re. 
Noting that eR(l— e) = 0, we conclude that e is central. 

(2)—>(1) is clear. For (2)—>(3), since er is central for each r in R, R~~ 
~=Rer®R(l - er) in which er is an identity of Rer. Also, r ==• err + (1 - er)r = err 
^ rer (for ( l - e r ) r = 0 ) , so r is not a right zero-divisor of Rer. Noting that 
Spec B(R) = Spec B(Rer) u Spec B(R(l-er)), we have supp (r) = supp (er) = 
=̂  Spec B(Rer), which is both open and closed in Spec B(R). Next, we claim that 
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Rx is a domain. Let rx±0x in Rx. Then x is in supp (r) which is Spec B(Rer), where 
r is a preimage of rx inR. From the decomposition of R, R =Rer@R(l — er), we 
have known that r ( = rer) is not a right zero-divisor of Rer, so rx is not a right 
zero-divisor of Rx ( = (Rer)x). 

(3)—>(2). Since supp (r) is both open and closed for each r in R, supp (r) = 
= supp (e) = Spec B(Re) for some e in B(R). Since R =Re@R(l -e), r is in 
Re. Noting that Rx is a domain for each x in Spec B(R), we have that rx is not 
a zero-divisor in Rx for each x in Spec B(Re); and so r is not a zero-divisor in Re. 
Thus A(r) = A(e) for an e in B(R). 

We remark that the hypothesis that Rx are domains cannot be dropped in 
(3)—>(2). For example, let R=Z/(p2) for a prime integer p in the ring of 
integers Z . Then Iv is a ring with no idempotents but 0 and 1 and with p a 
zero-divisor. Hence it is not a p.p. ring. 

Corollary 3.5. If supp (r) is both open and closed for each r in R, and if R is 
a reduced ring such that Rx is a prime ring for each x in Spec B(R), then R is 
strongly p.p.. 

Proof. Since Rx is a prime ring, (xR) is a minimal prime ideal for each x. The 
ring R is reduced, so (xR) = 0(xR) which is the set, {r in (xR)\ there is some s not in 
(xR) with res = 0}. Hence Rx is also reduced ([8]). Any prime reduced ring is 
a domain, so Rx is a domain for each x. Thus R is strongly p.p. by Theorem 3.4. 

4. Topological characterisations. Theorems 3.4 and 3.5 characterize certain 
classes of rings whose stalks are domains or prime rings. In this section, we shall 
characterize the rings R whose stalks are domains, prime rings or semiprime rings 
in terms of the support of a set in Spec B(R). 

Theorem 4.1. The stalks Rx are domains if and only if sup (r) n supp (A (r)) = 0 
for each r in R. 

Proof. We first show that supp (r) n supp (A(r)) = 0, a void set. Let x be a 
point such that r ^ 0 x in Rx and A ( r ) ^ O x . But A(r) r = 0, so A(r ) r = Ox implies 
that either A (r) = 0* or r = 0X in Rx. This is a contradiction. 

Conversely, let sr = 0x in Rx with r=£0x. Then there exists an idempotent e in 
B(R) such that esr = 0 with e = lx in Rx. Hence (es) is in A (r), and so es = 0X (for x 
is in supp (r)). Thus s = es = 0x. This implies that Rx is a domain for each x. 

Theorem 4.2. The stalks Rx are prime rings for all x in Spec B(R) if and only if 
supp (r) n supp (A (RrR)) = 0 and A (RrR) = A (RrR) in Rx for each x and r in 
R. 

Proof. Assume Rx are prime rings. We claim that supp (r) n supp (A (RrR)) = 
0 for any r in J?. Let x be a point such that r^0x and A(RrR)fOx in Rx. Since 
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(A(RrR))RrR=0, there is some s£0 in A (RrR) such that s±Ox; and so 
sRrR=Ox. This contradicts to that Rx is a prime ring. Moreover, A(RrR)cz 
A (RFR) is clear. Now let si= 0X in A (RFR) with 5 in R. Then iflrjR = 0X. Since R 
(= Rx) is a prime ring, either s = 0X or f = 0X. Since s^ 0X, we have r = 0X. Thus we 
have some e in B(R) such that er = 0; and so esRrR = 0. Therefore we have (es) 
such that es(RrR) = 0 with 6s = s in A(RFR). 

Conversely, let sRr = 0x in Rx for s and r in JR, and x in Spec !*(#) . By 
hypothesis, A(RrR) = A(RFR), so there is an s' in A(jRrjR) such that sf=s in 
A(RFR). Hence s'RrR =0. Assume s^0x. Then s' =s±0x implies that x is in 
supp (A (RrR)). BY hypothesis, x is not in supp (r), so r = 0x. Assume f±0x. By 
hypothesis again, supp (r) n supp (A(jRrJR)) = 0, s' = 0x=s. Therefore, Rx is 
a prime ring for each*. 

For a ring finitely generated over its center as a ring, the lifting condition of the 
annihilator of a principal ideal (A(JRr_R) = A(RFR)) can be dropped. 

Corollary 4.3. Let R be a ring finitely generated over its center as a ring. Then 
Rx are prime rings for all x in SpecB(jR) if and only if supp (r) n 
supp (A (RrR )) = 0 for each r in R. 

Proof. By Theorem 4.2, it suffices to show that A (RrR) = A(RFR). A(RrR) 
c A (RrR) is clear. To show the other inclusion, let s be an element in A(jRrjR) 
with s in R, and {r1? ..., rn} a generating set for R. Then sr^f, = 0X for all i and /. 
By a basic property of sheaf theory, there is a basic open set T(e) of Spec B(R) 
containing x such that the system of the above equations hold over T(e) (where 
T(e) = {x in SpecB(R)\(l — e) is injt}), so e5rtrr;=0 for all 1 and/. Hence 
esRrR = 0 since {r,, ..., rn) generate JR over its center. So, (es) is in A (RrR) such 
that es=s in A(RFR). This completes the proof. 

It is not difficult to show the following characterization of a semiprime ring: Rx 

are semiprime for all x in Spec B(R) if and only if for each r in R, rRraxR 
implies that there exists some e in x such that rRrczeR. 

We conclude the paper with a characterization of semiprime rings under 
a hypothesis on the lifting property of the annihilator of a principal ideal. 

Theorem 4.4. Assume A (EeE) = A ORrJR) in Rx for each x in Spec B(R) and r 
in R. Then R is semiprime if and only if Rx is semiprime for each x in Spec (B(R). 

Proof. The sufficiency is clear. For the necessity, let f^O* in Rx for an x in 
SpecB(i^). We claim rRri^0x. Suppose not. We have fRFR =0X. Hence r is in 
A (RrR). By hypothesis, there is some s in A (RrR) such that s = r. We then have 
an idempotent e in B(R) and not in x such that es = er. Since esRrR=0, 
erRerR = 0, and so er = 0 by hypothesis. But er = esj=0, so this gives a contradic­
tion. Thus Rx is a semiprime ring. 
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From the proof of Corollary 4.3, we see that A (RrR ) = A (RrR) holds for a ring 
finitely generated over its center. Thus we have: 

Corollary 4.5. If R is a semiprime ring finitely genera ted over its center as a ring, 
then Rx is semiprime for each x in Spec B(R). 

Remarks. 1. The sufficiency of Theorem 4.4 does not need the assumption that 
A(RrR) = A(RfR). 

2. supp (r)usupp (RrR) = SpecB(R) for any r in a ring R. 
3. For reduced rings, it is easy to see that R is reduced if and only if so is Rx for 

each x in Spec B(R). 
4. There is a class of reduced rings called almost hereditary rings which are p.p. 

rings (see [12] and [13]). 
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П. П. КОЛЬЦО И ПУЧКЫ ПИРСА НЕКОММУТАТИВНЫХ КОЛЕЦ 

Жорж Сето—Т. О. То 

Резюме 

Кольцо называется п.п. кольцом, если каждый его правый идеал проективен. В работе 
изучаются пучки Пирса некоммутативных колец и особенно п.п. колец. В частности, характери­
зуются кольца К, у которых каждый слой Кх является областю целостности (первичным или 
полупервичным кольцом). 
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