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ABSTRACT. The quasiorders, i.e., reflexive, transitive and compatible relations,
of a (partial) algebra A form a lattice Quord(A) with an involution pi— p= 1 =
{{z,y) : (y,z) € p}. It is shown that every algebraic lattice with involution is
isomorphic to Quord(A) for some partial algebra A. Any finite distributive lattice
with involution is isomorphic to Quord(A) for some finite algebra A such that
the quasiorders of A are 3-permutable. Every distributive lattice with involution
can be embedded in Quord(A) for some set A. Any algebraic lattice is isomorphic
to Quord(A) for some algebra A such that Quord(A) = Con(A).

Introduction

A triplet L = (L; <, 1) is called an involution lattice or a lattice with involu-
tion if ~': L — L is a lattice automorphism such that (z7!')~! = & holds for all
& € L. The fixed points of the involution form a sublattice {xr € L: =~ ! =z},
whose elements will be called the fized elements (of the involution). If the con-
text is involution lattices, then embeddings, isomorphisms and homomorphisms
are always supposed to preserve the involution operation ~!. Every lattice can
be turned into an involution lattice by considering the identical map as in-
volution. To present a natural but less trivial example, let us consider a par-
tial algebra A = (A;F). A binary relation p C A? is called a quasiorder
of A if p is reflexive, transitive, and compatible, i.e., for any f € F and
any (a,,...,a,), (by,...,b,) in the domain of f if (a;,b,),....{(a,.b,) € p,
then (f(ay,....a,), f(b,,...,b,)) € p. Defining p=' = {(z,y) : (y,z) € p}
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as usual, the set Quord(A) of quasiorders of A becomes an involution lattice
Quord(A) = (Quord(A4); C, ~1). The fixed elements of this lattice are just the
congruences of A. Like congruences of algebras, quasiorders arise naturally in
case of ordered algebras as homomorphism kernels, cf. [4] and Bloom [1. Our
aim is to deal with the following two problems of [3].

PROBLEM A. Which algebraic lattices are isomorphic to Quord(A4) for some
algebra A7

PROBLEM B. Characterize pairs (L;,L,) of (algebraic) lattices such that
L, € L,, and there exist an algebra A and a lattice isomorphism : L, —
Quord(A) with ¢(L;) = Con(A).

It is pointed out in [3] that L, cannot be an arbitrary complete sublattice of
L, . In connection with Problern A, it is worth mentioning that the analogous
characterization of Con(A) is solved by a celebrated theorem of Gratzer and
Schmidt [6].

While our first theorem solves Problem A, we are still far from solving Prob-
lem B. A recent result [12] shows that not every algebraic lattice with involution
is isomorphic to Quord(A) for some algebra A. Moreover, certain algebraic lat-
tices with involution cannot be embedded in Quord(A) for any set A. This is a
bit surprising in the view of Theorems 2, 3 and 4 of the present paper.

Results and proofs

THEOREM 1. For any algebraic lattice L there is an algebra A such that
L = Quord(A) and, in addition, Quord(A) coincides with Con(.4).

Proof. We will use the yeast graph construction given by Pudlak and
Tuma [9], which gives an algebra with Con(A) = L. we will show Con(.1) =
Quord(A) only. The graph construction in [9; Chapter 1] is much more gen-
eral than needed here, so we describe only as much of it as necessarv. Let
J = (J;V,™ 1) be a semilattice with involution. The elements of J will be
denoted by lowercase Greek letters. Let V' be a nonempty set. let 2,(17) de-
note the set of two-element subsets of V', and let £ C J x P,(V7). An clement
(o, {a.b}) of £ will mostly be denoted by {(a, o, b)) of cowrse {a.a.b) = (h.a.a
and a # b, A pair G = (V. F) is called a J-graph or simply graph if. for any
a,beV and a. 3 € J, (a,a.b). {a,3.b) € I) implies a = 3. The elements of 1
are called vertices while the elements of £ are called edges. Here aoresp. a. b
are called the colour resp. endpoints of the edge (a.a.b). The endpoints of an
edge uniquely determine its colour. Our graphs will often have two distinguished
vertices referred to as left and right endpoints. Given two graphs /) = (V| [,
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and G, = (V,,E,), amap f:V, — V, is called a homomorphisra if for every
(a,,b) € IZ either f(a) = f(b) or (f(a),a, f(b)) € E,. Isomorphisms, endo-
morphisms and automorphisms are the usual particular cases of this notion.

With any positive integer k and (a;,a,,...,q,) € J* we associate a
graph R(a,...,«;), called arc, such that the vertex set of R((xl,. L0y s
{ay.ay, ... ay}, and the edge set is {(ay, o, a,), (a, 0y, ay), ..., (2, oy, a,),
(ageayag )y (s @y g 0)s - {agy 1y, ag,) } . The vertices a,) resp. ay,
are the left resp. right endpomts of R(ay,...,a;). Given an « E J, we de-
fine a graph C(«), called a-cell, as follows. We start with Cj(a) = <{b0,b 1,
{(bﬂ.a,bl>}>. Le., Cy(a) consists of two vertices, which are its endpoints,
and a single a-coloured edge (onne(ting them. For each k¥ > 1 and for each
(0 0y, ...ap) € JF such that a < o Va, V.- Vay, let us take (an isomorphic
copy of) tho arc R(oy,a,,. .., cyk,). Thc arcs we consider must be disjoint from
cach other and from C () as well. Now identifying the left endpoints of these
arcs with b, and their right endpoints with b, we obtain C(«). The vertices
b, and b, are the left and right endpoints of C(«), respectively, and the edge
(b,,v,b,) is called the base edge of C'(a). Let us cite from [9] that C(«) ad-
mits an automorphism interchanging its endpoints. Indeed, we obtain a desired
automorphism by mapping the vertices of R(ay,a,,...,a,) to the vertices of
R(oy,,ap_y,...,aq) in the reverse order.

Now, for all £ > 0 and o € J we define a graph G (o) = (V, (a), E, («)) via
induction on n as follows. Let G () be the a-cell C(a) andlet E_,(a) = 0. We
obtain G, . () from G, («) as follows. For each edge (a,B,b) € E, (0)\E, ()
we take (ar. isomorphic copy of) the S-cell C(8). These cells, even those asso-
ciated with distinct edges of the same colour, must be disjoint form each other
and from G, («). Now, for each (a,f,b) € E (a)\ E,_;(a) at the same time,
let us identify a resp. b with the left resp. right endpoint of (the copy of) C(3)
associated with this edge. (In other words, to each edge in £ (a)\ E,,_;(a) we
glue the base edge of a cell with the same colour, and we use disjoint cells for
distinct edges.) The graph we have obtained is G,, ().

Now V(o) C V| ((x) CVy(a) C ... and Ey(a) € E|(a) C E,(a) € ..., 50
we can define V() = U V.(a), E(a) = U E, (), and let G(a) = G __(«) de-

n=0 n=0
note the graph (V(«a), E(a)). The base edge and the endpoints of G;(«) are that
of Gy(«v) = C(a), respectively. Since G,(a) = C'(a) has an automorphism in-
terchanging its endpoints, a trivial induction shows that so does G(a) = G__(«)
as well.

Now we are ready to define the last of our graphs, denoted by G(.J). For cach
a € J let us take (a copy of) G(«) such that G(a) and G(/3) be disjoint when
a # 3. ldentitying the left endpoints of these G(«) to a single vertex we obtain
G = (V) E()).
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Let us consider the algebra A = (V(J), F'), where F is the set of endomor-
phisms of the graph G(J). Further, let J be the set of nonzero compact ele-
ments of L. It is well known, c¢f. Gratzer and Schmidt [6] or Grdtzer
[8; p. 22], that the ideal lattice Z(.J) of J is isomorphic to L. (Ilere the empty
set is also considered an ideal.) Consequently, the first chapter of [9] vields that
L is isomorphic to Con(A). (Indeed, the “quadricle” (J,<.D.L) in [9] corre-
sponds to (J,=,D,Z(J)) in our case, where D = {{a, {a,..... aby s ae .
{o....iop} C T a< Ve Vay b)) So we have to show that every quasiorder
of A is symunetric, i.e., a congruernce.

Suppose p is a quasiorder of A, a Zb € A and (a,b) € p. It is shown in [9.
cf. RC 5 and the proof of Lemma 1.9, that there is a “path”™ from a to b.1.c..a
sequence

(Chrary,eq)s (e mgcy), o (ep apcp) € L)
of edges such that ¢, = a, ¢, = b, and for ¢« = 1,2,.... k there is an f, € I
with {f,(a), f;(b)} = {c,_,,c;}. We want to show the existencc of a g, € F such
that g,(a) = ¢; and g,(b) = ¢, . For a fixed i let u resp. v denote the left resp.
right endpoints of G/(«v;), and let h be an endomorphism of G/(« ;) interchanging
them. Clearly, the map

FO V) = V) w{% if v € Vo).

v if z¢ Vi),

belongs to I and interchanges u and v. By [9], cf. RC 4 of Theorem 1.6, there are
f@) fG) e F such that {f“)(u),f@)(v) ={c,_,.¢;} and {f(';)((’iq)- e}
= {u,v}. Since F is closed with respect to composition, f*f1)f&3)f and
f(“)f(‘”fi belong to F', and one of them is an appropriate g, .

Since the g; preserve p, we obtain (¢;, ¢, ;) = (g;(a), g;(b)) € p, and (b.a) =

(¢g, cy) € p follows by transitivity. )

The quasiorders of an algebra A are called 3-permutable if ao3oa = Joao.3
holds for any «, 3 € Quord(A).

THEOREM 2. For any finite distributive involution lattice L there erists a
finite algebra A such that L and Quord(A) are isomorphic as involution lattices
and, n addition, the quasiorders of A are 3-permutable.

We remark that if the quasiorders of all algebras in a given variety V' are

3-permutable, then Con(A) = Quord(A) for all A €V, cf. [2].

Proof. Let J be the set of join-irreducible elements of L. 0 is included.
For cach a € J\ {0} we define a unary operation

0 if ©=a,
ford—J. T )
' a' ifr#a.
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Let us call a map g: J — J a contraction of J if g(x) < x holds “or all x € J.
Let I consist of all contractions of J and all f,, a € J\ {0}. Consider the
algebra A = (J; F); we intend to show that L and Quord(A) are isornorphic.

A subset Y of J is called hereditary if for any x € J and y € Y if © <y,
then € Y. Let H(J) denote the set of nonempty hereditary subsets of J. It is
well known, of. Gréatzer [7; p. 61, Theorem I11.1.9], that the map a — {z € .J :
o < a} is a lattice isomorphism from L to the lattice H(J) = (H(J);U,N).
Clearly, H(J) becomes an involution lattice by defining Y ! = {y~!: y € YV}
and the above-mentioned map preserves this involution. So it suffices to prove
that the map ¢: H(J) — Quord(4), Y — (Y x Y Hu{(z,z) : z € J},
is an isomorphism. Clearly, (YY) is reflexive, transitive and preserved by all
contractions of J. To show that f  preserves (Y'), suppose that {u,v) € ¥(Y)
and, without loss of generality, f, (u) # f, (v). Then either f (u) =0, u =a
and (f, (u), f,(v)) = (0,a™ ') € Y(Y) since a =u € Y, or f,(v) =0, v =a
and (f, (u), f,(v)) = (@ 1,0) € (V) since a™! =v~ ' € (Y1) =Y. Thus
v'(Y) is a quasiorder of A. Clearly, 1 is meet-preserving, whence it is monotone.
Assume that (u,v) € (X UY) and u #v. Then u e XUY,ve (X UY)"!
- X ' U Yl There are four cases depending on the location of u and v,
but cach of these cases can be treated similarly, so we detail the case u € YV,
v € X! only. Then (u,0) € (Y) and (0,v) € 1(X), so by reflexivity we obtain
(u.v)y € P(X)oyp(Y)op(X) Cp(X)Vep(Y) and (u,v) € p(Y) o X)orp(Y) C
V(X)) V (Y). Besides proving that 1 is join-preserving, this also shows that
v(X) and (YY) 3-permute. Clearly, (X 1) = (d)(X))_l, therefore 1 is a
homomorphism. If z € Y\ X, then (z,0) € ¥(Y)\¢(X), whence  is injective.

To prove surjectivity, assume that p € Quord(A), and let X = {z € J :
(r,0) € p} and Y = {y € J: (0,y) € p}. Thanks to the fact that p is
preserved by the contractions, we conclude that X, Y € H(J). If z € X \ {0},
then (0,27 = (f,(z), f,(0)) € p, whence z = (z~!)"' € Y~!. Similarly, if
y € Y\{0}. then (y~1,0) = (£,(0), f,(v)) € p, whence y~! € X gives y € X .
From X CY ' and Y C X! we obtain ¥ = X 1.

Now, to show that p = ¢(X), suppose a # b and (a,b) € p. Then (b~ 0) =
(fy(@), f,(B)) € p gives b=' € X, ie, b€ X', while (0,a') = (f,(a), f,(b))
€ pgivesal € Y ie, a€ Y ! =X, yielding (a,b) € X x X! C (X).
C'onversely, suppose that a # b and (a,b) € ¥ (X). Then, by definitions and
Y = X' (a,0) € p and (0,b) € p, yielding (a,b) € p by transitivity. O

Whitman [11] has shown that every lattice can be embedded in a parti-
tion lattice. The preceding theorem trivially gives a corollary stating that each
finite distributive involution lattice L can be embedded in Quord(A) for an
appropriate set A. We have even proved that L has a type 2 representation in
Jonsson's sense, cf. [5], which means that L is isomorphic to a sublattice
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S of Quord(A) such that the members of S are 3-permutable. However, the
assumption of finiteness can be easily removed, for we have:

THEOREM 3. For each distributive involution lattice L there is a set A such
that L has a type 2 representation in Quord(A).

Proof. Knowing the canonical bijection between prime filters (i.e.. dual
prime ideals) and nonzero join-irreducible elements of a finite distributive lattice.
cf. Gratzer [7; p. 63], it is easy to adapt the previous proof to the present
theorem. Let A = {P: P is a prime filter of L or P = L}. We claim that the
map ¥: L — Quord(A4), z — {(P,Q): z € P and 27' € Q. or P = Q}.
is an embedding. By Stone’s prime ideal theorem, cf. [10] or [7: p. 63]. ©
is injective. Using the basic properties of prime filters and some ideas of the
previous proof, Theorem 3 follows easily. O

THEOREM 4. For any algebraic involution lattice L there is a partial algebra
A such that L is isomorphic to Quord(A).

Proof. Let S be the set of compact elements of L. Then S is a join-sub-
semilattice of L, and, clearly, S is closed with respect to the involution of L. The
set I(S) of ideals (i.e., hereditary nonempty V-closed subsets) of S forms an
algebraic lattice with involution, where Y ™' = {a~1': a € Y}. It is known that
p: L = I(S), © — {a € S: a <z}, is a lattice isomorphism, ¢f. Gratzer
and Schmidt [6] or [8; p. 22]. Evidently, ¢ preserves the involution, too. The
rest of our proof borrows a lot of ideas from the congruence lattice counterpart
of our theorem, cf. Gratzer and Schmidt [6] or [8; pp. 96-97]. We define
the following partial operations on S, each of them has a two-element domain
as indicated:

(1) for a,be S\ {0} f,,:(a,b)—aVb, (0,0)—0;

(2) fora>besS Gap: @b, 01— 0;

(3) fora#be S h,:a—a, b—0;

(4) for a € S\ {0} pyiar—0,0m—al.

Note that the partial operations (1), (2) and (3) also occur in [8; pp. 96-97 .
Let A be the partial algebra (S; F'), where F is the collection of partial oper-
ations (1) - (4). Let a: Z(5) — Quord( ) Y (¥ xY " Hu{{aa): aeS}.
and B: Quord(A) — I(S), prs {s€5: (s,0) € p}.

It is straightforward to check that «(Y) € Quord(A) for Y € I( S).

Using the partial operations (1) and (2), it follows easily t mt J(p) € I(S)
for p € Quord(A). If s € 3(p~ 1), then (s,0) € p ! = (0.5) € p —
(s710) = (p,(0),p(s))y € p =» s '€ Plp) = s= (,s‘] i € (3p) !

Conversely, if s € (ﬁ(p))fl_ then s=' € 3(p) = (s L0) e p —
(0.s )y e p ! = (50) = (p, (0),p, (s 1)) ep ! = s 3ph.

-1, . . .
Therefore B(p~ ') = (H(/))) . i.e., 3 preserves the involution. Clearly. so
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does «, too. Since both o and (3 are monotone, it suffices to show that
they are inverses of each other. It is straightforward that ﬁ(a(Y)) =Y for
Y € Z(S). Now let p € Quord(A), a,b € S and a # b. Suppose first
that (a,b) € p. Then (a,0) = (h,(a), ab(b)) € p gives a € [(p) while
(b,0) = (b, (b),hy,(a))y € p~! gives b € ﬂ = (8( )7 , and we infer
(a,b) € a(B(p)). Conversely, suppose that (a, b € a(B(p)). Now a € B(p)
vields (a,0) € p, b€ (,(3(/)))71 = B(p~1) gives (b,0) € p~! implying (0,b) € p,
and (a,b) € p follows by transitivity. Therefore a(B(p)) = p, and « is an

isomorphism. Consequently, « o ¢: L — Quord(A) is an isomorphism as well.
O

Contrary to Theorem 2, Theorem 4 does not lead to any corollary concerning
cmbeddability of involution lattices in Quord(A) for sets A, for the joins are
different.

Added at final revision. Recently A. G. Pinus has informed us that he also
had proved Theorem 1 independently. His paper “On the lattice of quasiorders
on universal algebras” (in Russian) is submitted to Algebra i Logika.
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