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(Communicated by Tibor Katrifidk ) 

ABSTRACT. The quasiorders, i.e., reflexive, transitive and compatib le relations, 
of a (partial) algebra A form a lattice Quord(A) with an involution p \-> p~ l = 
{(x,_y) : (y,x) E p} . It is shown t h a t every algebraic lattice with involution is 
isomorphic to Quord(A) for some partia l algebra A. Any finite distributive lattice 
with involution is isomorphic to Quord(A) for some finite algebra A such that 
the quasiorders of A are 3-permutable. Every distributive lattice with involution 
can be embedded in Quord(A) for some set A. Any algebraic lattice is isomorphic 
to Quord(A) for some algebra A such t h a t Quord(A) = Con(A). 

Introduction 

A triplet L = (L; <, ~~1) is called an involution lattice or a lattice with involu-
tion if _ 1 : L —> L is a lattice automorphism such that (x~1)~ l = x holds for all 
x E L. The fixed points of the involution form a sublattice {x E L : x~~ = x), 
whose elements will be called the fixed elements (of the involution). If the con­
text is involution lattices, then embeddings, isomorphisms and homoniorphisms 
are always supposed to preserve the involution operation _ 1 . Every lattice can 
be turned into an involution lattice by considering the identical map as in­
volution. To present a natural but less trivial example, let us consider a par­
tial algebra A = (A; F). A binary relation p C A2 is called a quasiorder 
of A if p is reflexive, transitive, and compatible, i.e., for any / E F and 
any ( a p . . . , a n ) , ( 6 p . . . , b n ) in the domain of / if ( a 1 , 6 1 ) , . .. , (a n , 6n) E p, 
then ( / ( a 1 , . . . , a n ) , / ( 6 1 , . . . , 6 n ) ) E p. Defining p~- = {{x,y) : (y,x) E p) 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 06B15; Secondary 08A30, 08A55. 
K e y w o r d s : quasiorder, lattice representation. 
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as usual, the set Quord(.A) of quasiorders of A becomes an involution lat t ice 
Quord(A) = (Quord(^l) ; C , _ 1 ) . The fixed elements of this lat t ice are jus t the 
congruences of A. Like congruences of algebras, quasiorders arise na tura l ly in 
case of ordered algebras as homomorphism kernels, cf. [4] and B l o o m [1 . Our 
aim is to deal wi th the following two problems of [3]. 

PROBLEM A . Which algebraic latt ices are isomorphic to Quord(A) for some 
algebra A? 

PROBLEM B . Character ize pairs ( F 1 , F 2 ) of (algebraic) lat t ices such tha t 
Lt C F2, and there exist an algebra A and a lat t ice isomorphism ^;: L0 — 
Quord(Ai) wi th ip(L^) = Con(A). 

It is pointed out in [3] t h a t IJX cannot be an a rb i t ra ry complete subla t t ice of 
L2 . In connection with Prob lem A, it is worth ment ioning t h a t the analogous 
character izat ion of Con (.A) is solved by a celebrated theorem of G r a t z e r and 
S c h m i d t [6]. 

While our first theorem solves Problem A, we are still far from solving Prob­
lem B. A recent result [12] shows t h a t not every algebraic lat t ice with involution 
is isomorphic to Quord(^4) for some algebra A. Moreover, cer tain algebraic lat­
tices with involution cannot be embedded in Quord(yi) for any set A. This is a 
bit surprising in the view of Theorems 2, 3 and 4 of the present paper . 

Results and proofs 

T H E O R E M 1. FOr any algebraic lattice L there is an algebra A such that 
L ~ Quord(A) and, in addition, Quord(yl) coincides with C o n ( A ) . 

P r o o f . We will use the yeast graph construct ion given by P u d 1 a k and 
T u m a [9], which gives an algebra with Con(A) = L, we will show Con( . l ) — 
Quord(A) only. T h e graph construct ion in [9; Chap te r 1] is much more gen­
eral t han needed here, so we describe only as much of it as necessary. Let 
J — (J ;V, _ 1 ) be a semilatt ice with involution. The elements of J will be 
denoted by lowercase Greek letters. Let V be a nonempty set. let l\[\') de­
note the set of two-element subsets of V. and let E C J x P.}(\'). An element 
(a, {a,b}) of E will mostly be denoted by (a, a , b) \ of course (a.(\.b) -- (b.(\.(i' 
and a ^ b. A pair G = (V, E) is called a J-graph or simply graph if. for any 
a J) £ \r and a, 3 £ J, (a, a , 6), (a. 3 J)) C E implies o. — 3. Hie elements of I 
are called vertices while the elements of E are called edges. Here a resp. a. b 
are called the colour resp. endpoints of the edge (a.n.b). The endpoints of an 
edge uniquely determine its colour. Our graphs will often have 1 wo distinguished 
vertices referred to as left and right endpoints . Given two graphs Gx = ( 1 , . E{ 
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and G.? = (V2 ,F2), a map / : Vl —> V2 is called a homomorphism if for every 
(a,a,b) G E1 either f(a) = f(b) or ( / (a) , a, /(b)) G i?2 . Isomorphisms, endo-
morphisms and automorphisms are the usual particular cases of this notion. 

With any positive integer k and (a1? a 2 , . . ., ak) G Jfc we associate a 
graph i?(aL , . . . , aA.), called arc, such that the vertex set of R(ax,. . . , ak) is 
{O ( ) ,Op . . . ,O2 / ,}, and the edge set is {(a0,a1,a1), (Ox, a2 , a2), . . ., (afc_1? afc, aA;), 

( « ^ ° p f l H i ) ' K+i>a2>a/e+2>> •••>( a 2fc- i>^ a 2£ ; )}- The vertices a() resp. a2fc 

are the left resp. right endpoints of R(a1,. . . , ak). Given an a G J , we de­
fine a graph C ( a ) , called a-cell, as follows. We start with C0(a) = ({b^b . } , 
{(b(), a, b1)}) • Le., C0(a) consists of two vertices, which are its endpoints, 
and a single a-coloured edge connecting them. For each k > 1 and for each 
(a . , a.,, . . . , Q J G JA: such that a < ax Va 2 V • • • Vafc let us take (an isomorphic 
copy of) the arc i t ( a l 5 a 2 , . .. , ak). The arcs we consider must be disjoint from 
each other and from C0(a) as well. Now identifying the left endpoints of these 
arcs with b0 and their right endpoints with bx we obtain C(a). The vertices 
b{) and b. are the left and right endpoints of C(a), respectively, and the edge 
(b(),a, bx) is called the base edge of C(a). Let us cite from [9] that C(a) ad­
mits an automorphism interchanging its endpoints. Indeed, we obtain a desired 
automorphism by mapping the vertices of R(alya2,... ,ak) to the vertices of 
R((*k, &k__i > • • • ? ai) i n the reverse order. 

Nowr, for all k > 0 and a G J we define a graph Gn(a) = (Vn(a), E.n(a)) via 
induction on n as follows. Let G0(a) be the a-cell C(a) and let E_x(a) = 0. We 
obtain Gn+l(a) from Gn(a) as follows. For each edge (a,/?, 6) G En(a)\En_1(a) 
we take (an isomorphic copy of) the /3-cell C(/3). These cells, even those asso­
ciated with distinct edges of the same colour, must be disjoint form each other 
and from Gn(a). Now, for each (a,/3,b) G En(a) \ En__l(a) at the same time, 
let us identify a resp. b with the left resp. right endpoint of (the copy of) C(/3) 
associated with this edge. (In other wrords, to each edge in En(a) \ En_1(a) we 
glue the base edge of a cell with the same colour, and we use disjoint cells for 
distinct edges.) The graph we have obtained is G n + 1 ( a ) . 

Now V0(a) C Vx(a) C V2(a) C . . . and E0(a) C Ex(a) C E_(pt) C . . . , so 
oo oo 

we can define V(a) = (J Vn(a), E(a) = [J En(a), and let G(a) •= Goo(a) de-
n=0 n=0 

note the graph (V(a), E(a)). The base edge and the endpoints of G(a) are that 
of G0(a) = (7(a), respectively. Since G0(a) = (7(a) has an automorphism in­
terchanging its endpoints, a trivial induction shows that so does G(a) = GOG(a) 
as well. 

Now we are ready to define the last of our graphs, denoted by G(J). For each 
a G J let us take (a copy of) (7(a) such that G(a) and G((3) be disjoint when 
a / ii. Identifying the left endpoints of these G(a) to a single vertex we obtain 
a(j) = {V(jj,E(j)). 
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Let us consider the algebra A = ( V ( J ) , F ) , where F is the set of endomor-

phisms of the graph G(J). Fur ther , let J be the set of nonzero compact ele­

ments of L. It is wrell known, cf. G r a t z e r and S c h in i d t [(>] or G r a t z e r 

[8; p. 22], t h a t the ideal lat t ice X ( J ) of J is isomorphic to L. (Here the empty 

set is also considered an ideal.) Consequently, the first chapter of [9] yields that 

L is isomorphic to Con (A) . (Indeed, the "quadricle1 ' (J,. < , D. C) in [9] corre­

sponds to (J, = , D , T ( J ) ) in our case, where D = { ( a , {cYp . . . . ak}) : a G J. 

{ctj. . . . , ak} C J , cy < ttj V- • • VaA.} .) So we have to show that every quasiorder 

of A is symmetr ic , i.e., a congruence. 

Suppose p is a quasiorder of A, a^b G A and (O, b) G p . It is shown in [9,. 

cf. RC 5 and the proof of Lemma 1.9, t h a t there is a "'path'' from a to b. i.e.. a 

sequence 

(c(), a 1 , q ) , ( q , a2, c 2 ) , . . . , (cA_1 7 aA;, cfc) G £•(./) 

of edges such t h a t cQ = O, cfc = 6, and for i = 1, 2 , . . . , k there is an / ; G I' 
with {f7(a), fi(b)} = { c ^ j j C ^ } . We want to show the existence of a gt G F such 
t h a t .O?:(O) = c% and gz(b) = c ? : ] . For a fixed i let u resp. c denote the left resp. 
right endpoints of G(ai), and let h be an endomorphism of G(a{) interchanging 
them. Clearly, the m a p 

/•n ( h(x) if x G V(a-) , 
/ ( 1 ) : V - ( J ) - > V ' ( J ) , x ^ l J ' 

I V if X ^ v (a-) , 

belongs to F and interchanges it and v. By [9], cf. RC 4 of Theorem 1.6, there are 

f(2)j(3) e F s u c h t h a t {/(-)(_),/(-)(„)} = {Ci_1)CJ and l / ' 3 ^ , , , ) , / ' 3 ' ^ . ) } 
= {H,U}. Since F is closed wi th respect to composit ion, / ^ / ^ / ( 3 ) / / and 

f f fi belong to F, and one of t hem is an appropr ia te g%. 

Since the g% preserve p , we obta in ( c i , c i _ 1 ) = (g2(O), gt(b)) £ p , and (b.a) — 

(c/,oco) £ P follows by transit ivi ty. • 

The quasiorders of an algebra A are called 3-permutable if a o ^ o a m 3oao3 

holds for any a , j3 G Quord(v4). 

T H E O R E M 2 . For any finite distributive involution lattice L there exists a 

finite algebra A such that L and Quord(A) are isomorphic as involution lattices 

and, in addition, the quasiorders of A are 3-permutable. 

We remark t ha t if the quasiorders of all algebras in a given variety V are 
3-permutable , then Con(A) = Quord(A) for all A G V, cf. [2]. 

P r o o f . Let J be the set of join-irreducible elements of F, 0 is included. 
For each OGf\{0} we define a unary operat ion 

f 0 if x = a, 
fa:J-+J: X ^ \ -1 

[ a if x / a . 

374 



FOUR NOTES ON QUASIORDER LATTICES 

Let us call a map g: J —» J a contraction of J if g(x) < x holds for aill x G J. 
Let F consist of all contractions of J and all fa, a E J \ {0}. Consider the 
algebra A = (J; F); we intend to show that L and Quord(A) are isomorphic 

A subset Y of J is called hereditary if for any x ' J and y ' Y if x < y, 
then ./• G Y. Let H(J) denote the set of nonempty hereditary subsets of J. It is 
well known, cf. G r a t z e r [7; p. 61, Theorem II.1.9], that the map a h— {x G J : 
./• < a} is a lattice isomorphism from F to the lattice Ji(J) = (H(J);U,n). 
Clearly, H(J) becomes an involution lattice by defining Y~l = {y _ 1 : y G Y} 
and the above-mentioned map preserves this involution. So it suffices to prove 
that the map i/r. H(J) -> Quord(yl), Y :-> (Y X Y~x) U {(x,x) : x G ./} , 
is an isomorphism. Clearly, VJ(Y) is reflexive, transitive and preserved by all 
contractions of J. To show that fa preserves ip(Y), suppose that (u,v) G ip(Y) 
and, without loss of generality, fa(u) ^ fa(

v)- Then either fa(u) = 0 , u = a 
and (/a(H),/a(U)) = (O.a - 1) G ip(Y) since a = u G Y, or /a(U) = 0, U = a 
and (fa(u),fa(v)) = (a~\0) G ^(Y) since a"1 = U"1 G (Y'1)'1 = Y. Thus 
{/(F) is a quasiorder of A. Clearly, i\) iy meet-preserving, whence it is monotone. 
Assume that (u,v) G VJ(X U F ) and u^v. Then H G X U 1", U G (X U Y)"1 

= .V - 1 U F " 1 . There are four cases depending on the location of u and v, 
but each of these cases can be treated similarly, so we detail the case u G Y, 
v G A"-1 only. Then (u, 0) G 4>(Y) and (0, v) G ̂ (AT), so by reflexivity we obtain 
(u,v) G i/>{X)oi/>(Y)oil)(X) C ^ I ) V ^ ( F ) and (u,v) ' u)(Y) ouh(X)onj(Y) C 
^(N) V 0(V ) . Besides proving that ?/; ls join-preserving, this also shows that 
^(Ar) and X/J(Y) 3-permute. Clearly, ip(X~1) = (ip(X)) , therefore I/J is a 
homomorphism. If x G Y\X, then (x,0) G ip(Y)\ip(X), whence xb is injective. 

To prove surjectivity, assume that p G Quord(A), and let X = {x G J : 
(.r, 0) G p} and F = {H G J : (0,y) G p]. Thanks to the fact that p is 
preserved by the contractions, we conclude that X,Y G H(J). If x G X \ {0}, 
then (0,x~x) = (/ r r(^),/T(0)) G p, whence x = ( x " 1 ) " 1 G F " 1 . Similarly, if 
/y G F \ { 0 } . then ( y " 1 ^ ) = (fy(0)Jy(y)) G p, whence y" 1 G X gives y G X " 1 . 
From X C F " 1 and F C X " 1 we obtain F = AT"1. 

Now, to show that p = xp(X), suppose a ^ b and (a., b) ' p. Then (b_1, 0) = 
<//,(«),//,W> e D gives b'1 eX, i.e., b G X'1, while (O^" 1 ) = (/a(a),/a(6)> 
G p gives a - 1 G F , i.e., a G F _ 1 = X, yielding (a, b) G X x A ' - 1 C ^ W -
Conversely, suppose that a ^ b and (a, b) G ip(X). Then, by definitions and 
F = X - 1 , (a,0) G p and (0,6) G p, yielding (a, 6) G p by transitivity. • 

W h i t m a n [11] has shown that every lattice can be embedded in a parti­
tion lattice. The preceding theorem trivially gives a corollary stating that each 
finite distributive involution lattice L can be embedded in Quord(A) for an 
appropriate set A. We have even proved that L has a type 2 representation in 
.1 (S n ss o n ' s sense, cf. [5], which means that L is isomorphic to a sublattice 
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S of Quord(v4) such that the members of S are 3-permu table . However, the 
assumpt ion of finiteness can be easily removed, for we have: 

T H E O R E M 3 . For each distributive involution lattice L there is a set A such 

that L has a type 2 representation in Quord(y l ) . 

P r o o f . Knowing the canonical bijection between pr ime filters (i.e., dual 
pr ime ideals) and nonzero join-irreducible elements of a finite dis t r ibu t ive lat t ice, 
cf. G r a t z e r [7; p . 63], it is easy to a d a p t the previous proof to the present 
theorem. Let A = {P : P is a pr ime filter of L or P = L}. We claim that the 
m a p ip: L —» Q u o r d ( A ) , x \-+ {(P,Q) : x G P and x'1 G Q , or P = Q} . 
is an embedding. By S t o n e ' s prime ideal theorem, cf. [10] or [7: p. 63]. r 
is injective. Using the basic proper t ies of pr ime filters and some ideas of the 
previous proof, Theorem 3 follows easily. • 

T H E O R E M 4 . For any algebraic involution lattice L there is a partial algebra 

A such that L is isomorphic to Quord(y t ) . 

P r o o f . Le t S be the set of compac t e lemen ts of L. Then S is a join-sub-
semila t t ice of F, and, clearly, S is closed wi th respec t to the involution of L . The 
set X(S) of ideals (i.e., heredi tary nonempty V-closed subsets) of S forms an 
algebraic lat t ice with involution, where Y~x = { a - 1 : a G Y}. It is known that 
(p: L —> X(S), x i—>• {a G S : a < x } , is a lat t ice isomorphism, cf. G r a t z e r 
and S c h m i d t [6] or [8; p . 22]. Evidently, p preserves the involution, too. The 
rest of our proof borrows a lot of ideas from the congruence lat t ice counterpar t 
of our theorem, cf. G r a t z e r and S c h m i d t [6] or [8; pp . 96-97]. We define 
the following par t ia l operat ions on S, each of t hem has a two-element domain 
as indicated: 

(1) f o r a , 6 e S \ { 0 } fab : (a, b) ^ a V 6, (0, 0) ^ 0; 

(2) for a > b G 5 gab:a^b, 0 ^ 0 ; 
(3) for a ^ b G S hab : a \-+ a , ft^O; 

(4) f o r a e S \ { 0 } pa : a i-> 0, 0 i-> a " 1 . 

Note t h a t t he par t ia l operat ions (1), (2) and (3) also occur in [8; pp. 96 97' . 

Let A be the par t ia l algebra (S\ F), where F is the collection of par t ia l oper­

at ions (1) - (4). Let a: X(S) -> Q u o r d ( A ) , F H ( F X Y'1) U {(O.O) : a G S} . 

and (3: Q u o r d ( ^ ) -> X(S), p h-> {s G S : (,s,0) G p} . 

It is s traightforward to check tha t a(Y) G Quord(Ai) for Y G X(S). 

Using the part ia l opera t ions (1) and (2), it follows easily tha t 3(p) G X(S) 

for p G Quord(y l ) . If ;s G fi(p~~l), then (s, 0) G p~l =-> (0. s) G p => 

( , s - ' ,0 ) = (p,(0) ,p s( .s)) G p => s-1 G /3(p) = > s = (s-l)-[ G {J(p))~l. 

Conversely, if s G (0(p))~ , then s~{ G 0(p) => (s~[A)) G /) => 

((),*-') e p~l =^ ' (s,0) = (p^Q^p^is-*)) G p " 1 => - s G * - 1 ) . 

Therefore fi(p~l) = (P(p)) , i.e., /? preserves the involution. Clearly, so 
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does a , too. Since both a and /3 are monotone, it suffices to show that 
they are inverses of each other. It is straightforward that j3(a(Y)) — Y for 
Y G I(S). Now let p G Quord(A), O, b G S and a ^ b. Suppose first 
that (O, b) G p. Then (0,0) = (hab(a),hab(b)) G /> gives a G /5'(p) while 

<M) = ( ^ a ( 6 ) A a ( ° ) > e P " 1 S i v e s 6 " ^ ( p - 1 ) = (/3(/o))"\ and we infer 
(O, b) G a (/3(D)). Conversely, suppose that (O, b) G cr(/3(p)). Now O G /3(p) 

yields (O,0) e p, b e (/?(p))_ 1 = /3(p_ 1) gives (b, 0) G p " 1 implying (0, b) G p, 

and (O, b) G p follows by transitivity. Therefore a(fi(p)) = p, and a is an 

isomorphism. Consequently, a o (p: L —> Quord(.A) is an isomorphism as well. 

• 

Contrary to Theorem 2, Theorem 4 does not lead to any corollary concerning 
embeddability of involution lattices in Quord(^l) for sets A1 for the joins are 
different. 

Added at final revision. Recently A. G. Pirms has informed us that he also 
had proved Theorem 1 independently. His paper "On the lattice of quasiorders 
on universal algebras" (in Russian) is submitted to Algebra i Logika. 
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