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ABSTRACT. It is proved tha t if H = (Hik) is a partit ioned positive semidefinite 

matrix with square blocks, then the matr ix (Er-(Hifc)) » where Er(X) denotes the 

r th elementary symme tr ic function of the eigenvalues of X, is again a positive 

semidefinite matrix. 

1. Introduction 

# n # 1 2 

# 2 1 # 2 2 
/here each In 1958, W . N . E v e r i 11 [2] pгoved that if Я 

Hjj is a к x к matrix, is positive definite hermitian, then 

d e t Я < d e t ( Я n ) d e t ( Я 2 2 ) - | d e t ( Я 1 2 ) | 2 . 

111 1961, R . C . T h o m p s o n [5] extended this result to the case where 
H = (H-ij), 1 < i.j < n. is an nк x nк matrix. Нis main result was the 
following: 

Theorem ([5]): If Я is positive definite hermitian with H = ( Я ? 7 ) , 

l < i.j < п, with each block Я ^ of order k, then let Я -= ( d e t Я ? J ) . Then Я 

is positive definite hermitian and det(Я) < d e t ( Я ) . Equality holds if and only 

if Hjj --- 0 whenever i ф j . 

T li o m p s o n \s proof used an identity for the inner product of Grassmann 
products as his main weapon. 

AЛIS S u b j e c t C l a s s i f i c a t i o n (1991): Pгimaгy 15A57, 15A15, 15A18. 
К e y w o r d s : (Positive) Semidefinite rnatrix, Part i t ioned matrix, Eigenvalue, Elementary 

syшшetric function, Hermitian, Hadamard product. 
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J o h n d e P i 1 1 i s [1] showed t h a t the first par t of T h o m p s o u *s result 
holds in general for the e lementary symmetr ic functions Ej(A). i = 1 k. 

of the eigenvalues of the mat r ix A. For a general k x k ma t r ix A. we have 

Ei(A) = tr(A) and Ek(A) = det ( A ) . 

Before wre s ta te this result, wTe int roduce a few prel iminary notions and cite 

two useful theorems. 

If A = (aij) and B = (bij) are matrices of size rrixn. the Hadamard product 

of A and B, denoted A o B, is the rn x n ma t r ix (O/yO,;/). 

If A is an rn x n ma t r ix and B is a p x q mat r ix , then tensor product of A 

and B, denoted A ® B, is t he rnp x nq mat r ix (a.jjB). in par t i t ioned form. It 
is well known t h a t A o B is a principal submat r ix of A & B. whenever A and 
B are square of the same order. 

I . S c h u r proved [4] t h a t if each of A and B is positive semidefinite hermit-
ian of the same order n, t hen A o B is a positive semidefinite hermi t ian mat r ix . 
He also s ta ted the result t h a t if A and B are positive semidefinite hermi t ian . 

then det(_4 o B ) > max j ( f[ at1) det B , f J ] b^ det A j . 

Later, Sir A l e x a n d e r O p p e n h e i m [3] proved this result, and 

s t rengthened it. 

As we ment ioned above, T h o rn p s o n ' s result was generalized by J o ;i n 

d e P i 11 i s , as in the following Theorem 1, of which we will give a new proof. 

Finally, we give a de te rminan ta l inequality, and then s t a t e an observat ion con­

cerning T h o m p s o n ' s result. 

2. M a i n re su l t 

T H E O R E M 1. Let H = (Hjj), 1 < i,j < n. be a positive semidefinite her­

mitian matrix with each block Hjj of order k. Let Ej denote the ith elemen­

tary symmetric function, 1 < i < k. Denote Hr = (Er(Hjj)) , 1 < /• < k. 

and let Eo(Hij) = 1 for each pair (i:j). Then Hr is positive serin'definite for 
r = 0, l , . . . , / c " . 

P r o o f . For r = 0 , we have Ho = Jn(S)Ik , where Jn is the mat r ix of all 1 "s. 

so Ho is clearly positive semidefinite since Jn and I/,; are positive semideiinitc1. 

Assume 1 < r < k. 

At the first s tage, we const ruct t he ma t r ix K = ( C r ( H / ; ) ) . where C'i-) 

denotes t he r t h compound mat r ix . T h u s each block mat r ix in K has order 

f ,, J . T h e ma t r ix K is a principal submat r ix of Cr(H), and hence is positive 

semidefinite hermi t ian . For any square ma t r ix A, the eigenvalues of Cr(A) are 
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all possible products T^T^ • • • 7i r of the eigenvalues 7^ of .A. It is thus clear 

that t r(P r(-4)) = Er(A), so that 

tT[Cr(Hij)]=Er(Hlj) (1) 

Let Jn denote as before the n x n matrix of all 1 's. Consider the product 

A* o f Jn 0 Lk\ ) . This matrix is again positive semidefinite by Schur's result that 

the Hadamard product of two positive semidefinite matrices is again positive 
semidefinite. At this stage, 

K 0 (jn (Š LkЛ 

h\ 
(11) Aln) 

l ( 1 1 ) 

(î) 
, ( 1 « ) 

(*) 

h\ 
(»1) 

lгľ 
nn) 

Һ 
(nl) 

h 
(nn) 

X) '"(k) 
This matrix is permutationally similar to a matrix of the form 

I>i 
D2 

D 
(r) 

DІ 

Л ( 1 1 ) Л ( 1 2 ) Лln) 

L Л ( n l ) Л ( n 2 ) . . . Л ( n n ) 

. - > . . . . , ( * ) . 

This matrix is again a positive semidefinite matrix, so each block Di is posi-

tive semidefinite. Finally, the sum ^2 D{ *s positive semidefinite hermitian, and, 

by (1), IIr = "^2 D{, so the theorem is proved. • 

COROLLARY 1. Under the assumption of Theorem 1. if we take E\ — trace(-) ; 

then 

p[det( i^)]* >detH . (2) 
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P r o o f . W e have 

N 
det ( Д DІ 

7 = 1 

The multiplicative constant —^ in (2) is the best possible since equality can 

( k \ k 

3 = 1 J j=l 

Thus 

{ - ^ d e t H i } >det(D1...Dk) = det(H o (J ® Ik)) > det(H) 

by Oppenheim's inequality. • 

J_ 
kk 

be attained. For example, if H = Ik with n = 1, then H = (k), and clearly we 
get equality. 

Finally, we observe the following. For H as given in Theorem 1. let H[t) — 

(det(Hij + tlk)) • It is easy to see that 

det (H(t)) = det [Hk + tHk^ + • • • + tkH0] . 

By Thompson's theorem, we get that det(H + t(J n ®I*.)) < det(JI(l)) for / > 0. 
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