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ABSTRACT. It is proved that if H = (H;;) is a partitioned positive semidefinite
matrix with square blocks, then the matrix (E.(H;)), where E,(X) denotes the
rth elementary symmetric function of the eigenvalues of X, is again a positive
semidefinite matrix.

1. Introduction

11958, W.N.Everitt [2] proved that if H = {Hu Hu} , where each
Hyy  Ha

H;; is a k x k matrix, is positive definite hermitian, then

det H < det(Hy1) det(Hyy) — | det(Hyo)[*.

In 1961. R. C. Thompson [5] extended this result to the case where
H = (H;j), 1 <i,j < n,is an nk X nk matrix. His main result was the
following:

Theorem ([5]): If H is positive definite hermitian with H = (H,;).
I <i.j <n, with each block H;; of order k, then let H = (det H;;). Then H
is positive definite hermitian and det(H) < det(H). Equality holds if and only
if H;, =0 whenever ¢ # j.

Thompson’s proof used an identity for the inner product of Grassmann
products as his main weapon.
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John de Pillis [1] showed that the first part of Thom pson’s result
holds in general for the elementary symietric functions E;(A4). /i = I

of the eigenvalues of the matrix A. For a general k x &k matrix . we have
Ei(A) =tr(A) and Ei(A) = det(A).

Before we state this result, we introduce a few preliminary notions and cite
two useful theorems.

If A= (a;;) and B = (b;j) are matrices of size m xn . the Hadamard product
of A and B, denoted Ao B, is the m x n matrix (a;;b;;).

[f Aisan m xn matrix and B is a p X ¢ matrix, then tensor product of .1
and B, denoted A ® B, is the mp x ng matrix (a;;B). in partitioned form. It
is well known that A o B is a principal submatrix of A« B. whenever -1 and
B are square of the same order.

[.Schur proved [4] that if each of A and B is positive semidefinite hermit-
ian of the same order n, then Ao B is a positive semidefinite hermitian matrix.
He also stated the result that if A and B are positive semidefinite hermitian.

n

then det(Ao B) > nmx{( 11 (1,,»,-) det B, ( ﬁ Im) det A}.
i=1

i=1
Later, Sir Alexander Oppenheim [3] proved this result. and
strengthened it.

As we mentioned above, Thompson’s result was generalized by Joan
de Pillis, as in the following Theorem 1, of which we will give a new preof.
Finally, we give a determinantal inequality, and then state an observation con-
cerning Thom pson’s result.

2. Main result
THEOREM 1. Let H = (H;;), | <i,5 < n. be a positive semidefinite her-
matian matric with each block H;; of order k. Let E; denote the ith elemen-
tary symmetric function, 1 < i < k. Denote f},. = (E,,(H_,j))‘ Lol < b
and let Ey(H;;) = 1 for each pair (i,j). Then H, is positive semidefinitc for
=01, k.

Proof. For r =0, we have Hy = J,, 01}, where .J,, is the matrix of all 1's.

so I is clearly positive semidefinite since J,, and [, are positive semidefinite.
Assume 1 <r <k.

At the first stage, we construct the matrix K = ((7"(H,-.,-)). where ' {-)
denotes the rth compound matrix. Thus each block matrix in A has order

(f) . The matrix K is a principal submatrix of C"(H), and hence is positive

semidefinite hermitian. For any square matrix A, the eigenvalues of C""(4) are
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all possible products vi,7i, - -- Vi, of the eigenvalues v; of A. It is thus clear
that tr(C"(A4)) = E,(A), so that

tI‘[CT(HU)] = E.,.(H,'j) . (1)

Let J, denote as before the n x n matrix of all 1’s. Consider the product

Lo (J,, N ](k)) . This matrix is again positive semidefinite by Schur’s result that

,
the Hadamard product of two positive semidefinite matrices is again positive
semidefinite. At this stage,

"h(lll) h(lln)

20} ey
Ko (J ® I(ﬁ)> - N . :
h(lnl) h(lnn)

This matrix is permutationally similar to a matrix of the form

D,
D,
be
where
hﬁ(jll) h§12) }Eln)
N [ - k
e = bea(f)
h(nl) h§712) f(7171)

This matrix is again a positive semidefinite matrix, so each block D; is posi-
tive semidefinite. Finally, the sum > D; is positive semidefinite hermitian, and,

by (1), ﬁ,. =Y Dy, so the theorem is proved. O
COROLLARY 1. Under the assumption of Theorem 1, if we take E; = trace(-),

then .
= 1k
s [det(H;)]" > det H . (2)
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Proof. We have

det(H,) = det iDj > Xk:det D>k det<ﬁDi> .
j=1 j=1 i=1
Thus
{% det Erl}k > det(Dy ... Dy) = det(H o (J @ I;,)) > det(H)
by Oppenheim’s inequality. O

The multiplicative constant ﬁ in (2) is the best possible since equality can

be attained. For example, if H = I, with n =1, then H = (k). and clearly we
get equality.

Finally, we observe the following. For H as given in Theorem 1. let H(t) =
(det(H;; + tI)) . It is easy to see that

det(ﬁ(t)) = det [ﬁ/\: + tﬁk_l + -+ tkfl()} )
By Thompson’s theorem, we get that det(H+t(J,,, & Ik)) < det (f](f)) for t > 0.
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