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A NOTE ON LUSIN MEASURABILITY 
IN MEASURE SPACES 

JOSEF STEPAN 

(Communicated by Gejza Wimmer) 

ABSTRACT. If X and Y are Hausdorff topological spaces, P(X) and P(Y) the 
corresponding spaces of Radon probability measures, then any universally Lusin 
measurable map / : X -> Y defines "the image measure map" / : P(X) —> P(Y). 
We ask and partially provide answers to the following problems: 

(1) When the surjectivity of / implies the surjectivity of / ? 
(2) Under which circumstances is the map / universally Lusin measurable? 

It is a known fact that both problems are answered positively if X and Y are 
Souslin spaces. Our results show that the desired properties are connected more 
generally with the presence or absence of the measure convexity of the spaces 
P ( K ) a n d P ( Y ) . 

1. Preliminaries 

All topological spaces X, F , . . . we shall treat here are supposed to be Haus­
dorff if not stated else. We shall denote by K(X) and B(X) the family of all 
compact and Borel sets in X, respectively and by ¥(X) the set of all Radon 
probability measures defined on X, i.e. the set of all probability measures p on 
M(X) such that 

p(B) = suv{p(K) : BDKe K(X)} holds for all B e M(X). 

F(X) will be always topologized by its weak topology i.e. by the coarsest topo­
logy on F(X) for which all maps p n-r p(f) :-= J f dp from ¥(X) to R are 
lower semi-continuous as / goes through all bounded lower-semicontinuous real 
functions on X. Recall that the weak topology of P(X) is Hausdorff [4; p. 371, 
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Proposition 2] and note that for a completely regular space X the weak topology 
of F(X) is exactly the initial topology for the set of maps p »-» p(f) from F(X) 
to E as / goes through all bounded continuous functions / : X -» E [4; p. 269, 
Proposition 1]. 

Having a p e F(X) we denote by 

®(X)P :={ACX: (3BvB2eB(X))(BlcAcB2 k p(B2-Bx) = 0)} 

the cr-algebra of p-measurable sets and by 

V(X) :={]{M(X)P : PeF(X)} 

the a-algebra of universally measurable sets in X. 
Having a p e F(X) and a map / : X -» Y recall that the / is called Lusin 

p-measurable if 

(\/e > 0 ) (3K e K(X)) (p(K) >l-e k f\K is continuous), 

(where f\^f denotes the restriction of / to a set M), 
and it is Borel p-measurable if f~l(B) is in M(X)P for all B e M(Y). Fi­
nally, a map / : X -» Y is called universally Lusin measurable (briefly ULM, 
/ e ULM, / e ULM(X,y)) if it is Lusin p-measurable for all p e F(X) 
and it is called universally Borel measurable if it is Borel p-measurable for all 
p e F(X) or equivalents if / - 1 (M(Y)) C U(X) holds (briefly UBM, / G UBM, 
/eUBM(x,y)). 

The most important information is provided by 

LUSIN T H E O R E M . 

(1) ULM(X, Y) C UBM(X, Y). 
(2) ULM(.X, y ) = UBMpf, y ) if Y is either a separable metric or Souslin 

topological space. 

For the non-trivial proofs see [4; p. 26, Theorem 5, p. 129, Theorem 14]. 

Remark. Any semi-continuous function / : X -» E is ULM ([4; p. 28, Corol­
lary]) and / -> {0,1} is ULM if and only if the set {/ = 1} belongs to V(X). 
Agree that, having measurable spaces (X, X), (y, y), a probability measure p 
defined on X and a map / that is measurable as /""1(3/?) C X, we denote by 
fop the probability measure q defined on y by q(B) = p(f~x(B)) for B e y. 

Observe that any p e F(X) can be uniquely extended to a probability mea­
sure p on the cr-algebra U(X). Having moreover a map / e UBM(X, Y), fop 
is a well defined Borel probability measure on Y. Assuming that / is universally 
Lusin measurable we get f op e F(Y), i.e. as a Radon measure on Y and call 
it the image of p under f. Thus any / e ULM(X, Y) yields a map from F(X) 
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to P(y) defined by p i-r / op, Agree to denote it by / or apply the convention 
/ = F , S = G, eta-

Next lemma lists some almost obvious properties of universally Lusin mea­
surable maps. For any f:X-±Y denote by K^ = Kf(X) = Kf(X, Y) the set 
of all compacts K C X such that f\g is a continuous map. 

L E M M A 1.1. 

(1) Any f G ULM(X, Y) is a measurable map in the sense of f"1 (V(Y)) C 
V(X). Further, for any p G W(X), denoting q := f(p), we get that 
q(JJ) = p(f~x(U)) holds for any U G U(y), i.e. that q and fop are 
identical measures on U(y). 

(2) Consider a Lusin p-measurable map f:X -> Y, an arbitrary map 
g: Y -> Z and a p G ¥(X). Then g is Lusin f (p)-measurable if and 
only if go f is Lusin p-measurable. 

(3) If f e ULM(X,Y) and g G ULM(y,Z), then gofe ULM(X,Z) and 
g o f = / o g. 

(4) If f e ULM(.X,y) and M C X, then f\M G ULM(M,y) and f G 
ULM(X,/(M)). 

(5) Consider fn:Xn-> Yn for allneN. Then 

(VnGN)( / n GULM(X n ,y n ) ) 

«(/:=(/i,/2i-.oeuLM(n^„,ni;)). 
Especially, if fn: X ->Yn for all neN, then 

(VnGN)( / n GULM(X,y j ) 

^( / := ( / i , / 2 J - - - ) eULM(x ,ny n ) ) . 

(6) For any f G ULM(X,y) and p G F(X) 

p(B)=sup{p(K): BDKeKf}, BeM(X). 

(7) If fe ULM(X, Y), then Graph(/) G V(X x Y). 

P r o o f . The statements (1), (4) and (6) follow directly from definitions and 
from the first statement of the Lusin Theorem. As for (2) and (3), see [4; p. 35, 
Theorem 9, p. 36, Corollary 2]. 

To prove (5), denote X := \[Xn and Y := \[Yn, consider a p G P(X) and 
n n 

e > 0. Put pn := 7rn(p) G W(Xn), where 7rn denotes the projection of X t o I n . 
If all fn 's are universally Lusin measurable, then there are compacts Kn G Kfn 

such that Pn(Kn) > e2'n holds for any n G N. It follows that K = \[Kn G Kf 
n 
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and p(X\K) < EPn(
Xn\Kn) < e h o l d s - H e n c e> / € ULM(X, Y) . The reverse 

n 
implication follows from (3) as any fn is defined by nn o f, where 7rn denotes 
this time the continuous projection of Y to 7 n . 

To prove the rest in (5), assume that fn e ULM(X, Yn) for all n. We have 
already proved that f := (fvf2,->.) e ULM(Xn,YlY

n)
 a n d therefore f\M e 

n 

ULMfM, n ^ n ) ky (4)> where the M denotes the diagonal in XN. Because 

the sets X and M are homeomorphic, we apply (3) to conclude that / e 

ULMfX, J! Yn). The reverse implication follows again by an application of (3). 
To prove (7), denote by i the identity map on Y and by D the diagonal set 

in y x y . Then Graph(/) = (f,i)-1(D) is a set in V(X x Y) according to (1) 
as D is a closed set in Y x Y. • 

Remark that the implication (7) cannot be reversed, see Example 2.5. 
Any / G VLM(X,Y) generates / : F(X) -* F(Y). We ask for the properties 

inherited by / from / . The continuity and injectivity can be included into the 
list. 

L E M M A 1.2. 

(1) / / / : X -» y is an infective universally Lusin measurable map, then 
/ : F(X) -» P(y) is also an injection. 

(2) Any continuous f:X-*Y generates continuous f: ¥(X) -* P(y) . 
(3) If / : X -» y is a continuous map, then 

/ (PPO) = {qe ¥(Y) : sup{q(f(K)) : K G K(X)} = l } . 

The injectivity part is proved in [4; p. 37, Theorem 10] for continuous maps. 
The argument remains true for any injective / G ULM(X,y). Indeed, let q{ := 
f(p{) for a pi e F(X) and i = 1,2. If qx = g2, then obviously px(K) = 
qx(f(K)) = q2(f(K)) = p2(K) holds for any compact set K C X such that 
f\l( is continuous (f(K) is a compact in Y). It follows from Lemma 1.1.6 that 
px = p2 on B(X). The continuity part is exactly [4; p. 372, Proposition 1] and 
the equality (3) follows from [4; p. 39, Theorem 12]. 

Consider a family of compact sets K C K(X) and a measure p G P(A"). We 
shall say that p is a K-regular if 

p(B)=sup{p(K): BDKeK} for any BeM(X). (1) 

Lemma 1.3.1 shows that the K-regularity concept may be simplified in some 
cases. 
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Agree to call a K C K(X) an ideal if K D D e K whenever K e K and 
D e K(X). Also denote by K' = Kf (X) = Kf(X,Y) the set of all f(K) C Y 
where K goes through the set of all compacts, K C X, such that f\j£ is a 
continuous map, i.e. K^ = {f(K) : K e Kf } . 

L E M M A 1.3. 

(1) Let K C K(X) be an ideal and p a measure in F(X) such that (1) holds 
for B = X. Then p is a K- regular measure. 

(2) For any f: X ->Y the sets Kf C K(X) and Kf C K(Y) are ideals. 
(3) If f': X —> y is a continuous map, then 

f(F(X)) = {qe P(y) : q is a Kf -regular measure} . 

To see that Kf is an ideal, choose K e Kf and K(Y) 3 C C f(K) and 
check that if Kx := f~l(C) C\K, then Kx G Kf and f(Kx) = C. 

2. Surjectivity of the measure image map 

Regarding the problems proposed by Abstract we offer first an example and a 
positive result. Denote by Fd(X) C F(X) the set of all discrete Borel probability 
measures on X, i.e. of those Borel probability measures that are supported by 
an at most countable set in X. Recall that a bijection f': X -> Y is called a 
Borel isomorphism of X and Y if f(B) is a Borel set in Y if and only if B is a 
Borel set in X. Also recall that X is called a Radon space if there are no other 
Borel probability measures on X than those in F(X). Note, that all Souslin 
spaces are Radon [4; p. 122, Theorem 10]. 

EXAMPLE 2.1. Denote by R, S and by D the set of real numbers endowed by 
the standard topology, by Sorgenfrey topology which has for a base the family of 
all half-open intervals [a, b) and by the discrete topology, respectively. Obviously, 
the topology of D is stronger than that of S which is again stronger than that 
of R. 

Recall that S is a fully Lindelof space (separable, non-metrizable) such 
that its compacts are at most countable (see [3; p. 59, Example K]). Hence, 
M(R) = 1(5) and ¥(S) = Fd(S) and therefore the identity map i: S -> R is a 
Borel isomorphism such that J: P(S') -> P(JR) is not a surjection where I := i 
as agreed. Note that both i and J are continuous maps by Lemma 1.2.2. 

Obviously, D is a non-separable metric space such that B(D) = 2R and such 
that K(D) consists exactly of finite sets in R. Hence, again F(D) = Pd(-D), 
but this time the identity J: F(D) -» ¥(S) is even a bijection while the identity 
i: D -» S is everything but Borel isomorphism of S and D. 
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Note that under the continuum hypotheses there are no other Borel proba­
bilities on D than the discrete ones ([1; p. 266, Theorem 13]), especially D is a 
Radon space while S does not possess the property. Hence, a continuous image 
of a Radon space need not be generally a Radon space. 

To get some other examples, we apply 1.2.3 that offers a simple equivalent 
definition of the universal Lusin measurability concept. 

2.2. Let f': X -> Y be an arbitrary map and denote the projection of X x Y 
onto X by TTX . Then 7p̂  : P(Graph(/)) -> F(X) is a surjective map if and only 
if feVLM(X,Y). 

P r o o f . According to 1.2.3, ir^ is a surjection if and only if any q G F(X) 
is a measure supported by an [)irx(Kn) where Kn G K(Graph(/)) for n G N. 
This is exactly as to say that any q G F(X) is supported by an \JDn where 
Dn G Kf for n G N, i.e. that / G ULM(X, Y). ' • 

EXAMPLE 2.3. Choosing a g: [0,1] -> [0,1] which is not measurable for the 
Lebesgue measure A on [0,1] we construct a separable metric space X (X = 
Graph(g) C [0, l]2) and a continuous open surjection / ( / = irx) onto a com­
pact metric space Y (Y = [0,1]) such that / : F(X) -> F(Y) is not a surjective 
map. 

Agree to call a map / : X —> Y measure surjective or a measure surjection 
if / G ULM(X,F) and / : F(X) -> F(Y) is a surjective map. Note that if an 
/ : X -> Y is a measure surjective map, then automatically f(X) = Y holds. 
Further, any bijection / : X -> Y such that both / and f~l are measure 
surjections will be called a Lusin isomorphism of X and Y. According to 2.1 
there is a Borel isomorphism that is not a Lusin one and vice versa while any 
homeomorphism h: X -> Y is both Borel and Lusin isomorphism. If each of X 
and Y is either a separable metric space or a Souslin space, then it follows from 
the second statement of the Lusin Theorem that any Borel isomorphism of the 
spaces is also their Lusin isomorphism. Example 2.1 and the statement 2.2 offer 
examples of a continuous or even open continuous bijection / : X —> Y that is 
not measure surjective and therefore cannot be a Lusin isomorphism. 

Next lemma offers a simple measure surjectivity calculus. Denote by MS(X, Y) 
the set of all measure surjective maps / : X -> Y. Recall that if / : X -> Y is a 
surjection, then any map s: Y -> X such that / o s is the identity map on Y 
is called a section of the map / . 

LEMMA 2.4. (Compare with [4; p. 37, Theorem 11].) 

(1) Consider f G MS(X,Y) and g:Y-*Z an arbitrary map. Then g G 
ULM(F, Z) if and only ifgofe ULM(X, Z) and g G MS(Y, Z) if and 
only if gofeMS(X,Z). 
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(2) Let f G ULM(X, Y) be a surjection and s: Y -> X a section of f. Then 

s G ULM(F, X) ==> / G MS(X, Y). 

(3) Let f: X -¥ Y be a bisection. Then f G MS(X,F) if and only if 
f'1eUS(Y,X) andifandonlyiffeVLM(X,Y) k f'1 eVLM(Y,X). 
Moreover, any of the above properties is equivalent to the statement that 
f is a Lusin isomorphism of X and Y. 

(4) If f: X —> Y is a Lusin isomorphism of X and Y and g: Y -> Z a 
bisection, then g is a Lusin isomorphism of Y and Z if and only if go f 
is a Lusin isomorphism of X and Z. 

(5) Let fn: Xn -> Yn for n G N. Then f :-= (fv / 2 , . . . ) is a Lusin isomor­
phism of n Xn and Yl Yn if and only if fn is a Lusin isomorphism of 

n n 

Xn and Yn for any n G N. 

P r o o f . Both equivalences in (1) follow by a straightforward application 
of 1.1.2. If / and 5 are as in (2) and q G F(Y) put p = 5(g) G F(X) and 
note that q = f(p) by 1.1.3. The equivalences in (3) are verified applying a 
combination of (1) and (2) as follows: 

Z , / " 1 G MS =-=> / G MS 4=> r 1 G MS 

= * Z , / " 1 e ULM =^> / , / - x G MS . 

The equivalence (4) is received by the latter equivalence in (1) and by (3). The 
stability statement (5) follows by (3) (the last equivalent definition) and by the 
first part of 1.1.5. • 

EXAMPLE 2.5. In the setting of 2.1 we proved that the identity map i: S -> R 
is not measure surjective. Hence, by 2.4.2 the / := i""1 is a map with a closed 
graph in R x S such that / £ ULM(iJ, S). 

Remark 2.6. Considering a surjective map f: X -> Y we may apply either 
2.4.2 or 1.2.3 to receive sufficient conditions for / to be a measure surjection. 

(1) If Z -S a continuous map, then according to 1.2.3 the / is a measure 
surjection if and only if any q G P(Y) is supported by a countable union 
of sets in Kf. Thus, if X is a Souslin space and / a continuous map, then 
Z G MS(X,Y) by [4; p. 126, Lemma 19]. 

(2) For example, if M C X x Y is a Souslin set, then 7rx G MS(M, 7TX(M)) 

where ITX denotes the projection of X x Y onto X. Assertion 2.2 shows that if 
M = Graph(^) for a g: X -» Y, the requirement on M to be a Souslin space 
can be removed if and only if g G ULM(X, Y). 
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(3) Observing (2) one might be inclined to believe that nx is a measure 
surjective map from M onto nx(M) if M G V(X x Y) as it happens when 
the M is the graph of a g G ULM(X, Y) by 1.1.7 and by 2.2. But Example 2.1 
disproves the hypotheses: 

Let M be the diagonal in [0, l ] 2 . Then M is a closed set both in R x S 
and R x D and neither for M C R x S nor M C R x D it may be true 
that f := nR e MS(M,i2) holds because in both cases /(IP(Af)) = Pd(-R). 
Especially, the identity map i on R does not belong neither to ULM(i2, S) nor 
to ULM(i?, D) according to 2.2 even though its graph is in both cases universally 
measurable. 

Are there Souslin spaces X, Y and a set M G V(X x Y) such that TTX is 
not in M 5 ( M , T T X ( M ) ) ? 

(4) If X, Y are both Souslin spaces and / : X -» Y is a Borel surjection, 
then according to von Neumann theorem [4; p. 127, Theorem 13] there is a 
section s G ULM(Y,X) of / . It follows from 2.4.2 that the map / is measure 
surjective. 

Remark 2.7. Consider an arbitrary / : X -> Y and note that it follows 
from 2.4.3 that 2.2 reads equivalently as 

/ G ULM(X, Y) <=> TTX : Graph(/) -> X 

is a Lusin isomorphism of X and Graph(/). 

Applying 2.4.3 again it is further equivalent to /ITX^X
1 G ULM. These state­

ments hold simultaneously if and only if ir.^1 G ULM(X, Graph(/)) as 7tx is a 
continuous map. Thus, 

/ G XJLM(X,Y) <=> >KX
1 G ULM(X,Graph(/)). 

The equivalence follows also by 1.1.5 because n^1 = (i,f) where i denotes the 
identity on X. 

Recall that Hausdorff topological spaces X1 and X2 are called Radon equiv­
alent1 if Xx = X2 and i G ULM(XX,X2) n ULM(JK2, Xx), where the i denotes 
the identity map on X := Xx = X2. It follows from 2.4.3 that Xx and X2 are 
Radon equivalent if and only if the identity map i is a Lusin isomorphism of X1 

and X2 and obviously if and only if 

ULM(XX, Y) = ULM(X,, y ) holds for all spaces Y. (2) 

The observation that X1 and X2 are Radon equivalent if and only if (2) holds 
follows by 1.1.3 also observing that i G VLM(Xl)X1) n ULM(X2,.X2). If the 

lL. S c h w a r z prefers rather to speak about Radon equivalent topologies of X± and X2 

in this case ([4; p. 156]). 
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topology of X2 is finer than that of Xx, then X{ 's are Radon equivalent if and 
only if i G ULM(X1, X2). Moreover, if X2 is a Souslin space, it follows that X1 

is also Souslin and by 2.6.4 and 2.4.3 that Xx and X2 are Radon equivalent 
spaces. 

To state that Xx and X2 are Radon equivalent especially means that Xx -
and X2 -measurable sets are identically placed in X = X1 = X2 and that P(-X"-.) 
and P(X2) are identical sets. More precisely, 

V(X,) = V(X2), P(XX) = P(X2) where P(X.) : = { p : p G P(XJ} . (3) 

The former equality follows from the first statement in 1.1.1 because the identity 
map i on X is both in U L M ^ X , ) and ULM(X2,X1). If p G P ^ ) , then 
p = z(qr) for a measure q G f(X2) because i G MS(X2, XJ. Hence, according to 
the second statement in 1.1.1, p = io q = q on V(XX) = U(X2). It follows that 
p G P(X2) and by symmetry the latter equality in (3). 

The pair of requirements (3) is necessary and sufficient for Xx and X2 to be 
Radon equivalent if their topologies are comparable. 

2.8. Assume that the topology of X2 is finer than that of Xx. Then 

(1) Xx and X2 are Radon equivalent, 
(2) any p G P(-X'i) is a K(X2) -regular measure. 

(Note that K(X2) C B(XX)), 
(3) any p G P(-X"i) has an extension to a q G F(X2), 
(4) U(X1) = U(X2),f(Xl) = F(X2) 

are equivalent statements. If X2 is a separable metric space, then Xx and X2 

are Radon equivalent if and only if V(Xl) = U(X2). 

Generally, in the setting of 2.8, any p G ^(Xt) has at most one extension 
q G P(-Y2) because if q is a such extension, then p = i(q) holds where i denotes 
the continuous identity map X2 -» Xx and according to 1.2.1 the above equation 
has at most one solution q G P(X2). 

P r o o f . To check the above equivalencies just observe that we have already 
proved that (1) = > (4); that (4) ===> (3) = > (2) are trivial statements and 
that (2) is the same as to say that the continuous identity map i: X2 -» X1 is 
measure surjective (by 1.3.3), i.e. that it is Lusin isomorphism of Xx and X2. 
If X2 is a separable metric space, it follows from (2) in the Lusin Theorem that 
to state U(XX) = U(.X"2) is as to state that the identity map i: X1 —> X2 is 
universally Lusin measurable. • 

For any / : X -> Y denote by X * the topological space such that X, = X 
and such that it has for a topological base sets G fl f~l(V) where G C X and 
V CY are open sets. Obviously, the topology of Xf is equivalently defined as 
the coarsest topology among those that are finer than the original topology of 
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X and for which the map / is continuous. Now, 2.2 translates to the following 
theorem: 

THEOREM 2.9. Let f: X -» y be an arbitrary map. Then f 6 ULM(X,y) if 
and only if the spaces X and Xf are Radon equivalent. 

P r o o f . By 2.7 we are to verify that X and Xf are Radon equivalent if and 
only if TTX: Graph(/) -> X is a Lusin isomorphism of X and Graph(/). It is 
easy to check that h := nx

x: Xf -» Graph(/) is a homeomorphism, i.e. a Lusin 
isomorphism of the spaces Xf and Graph(/), where the latter set inherits its 
topology as a subset of X x Y. Now, the identity map i on X = Xf may be 
written as i = nx O h and it is a Lusin isomorphism of X and Xf if and only 
if TTX is a Lusin isomorphism of X and Graph(/) by 2.4.4. • 

A simple complement to 2.9 is the following remark: 

Remark 2.10. Consider f:X-¥Y and assume that Y has a countable topo­
logical base. Then M(X) = B{Xf) holds for any Borel map / , or equivalently, 
/ is Borel if and only if the identity i on X = Xf is a Borel isomorphism of X 
and Xf. 

Indeed, if /? is a countable topological base for y , then the sets UGV := 
G fl /""1(V), where G C X is an open set and V € /?, constitute a topological 
base for Xf. Hence, any open set U C Xf is a countable union of UG v -sets, 
hence a set in M(X) if / is a Borel map. 

Theorem 2.9 applies to extend [4; p. 39, Theorem 12] (see also 1.2.3 and 1.3.3). 

THEOREM 2.11. Let f be a map in ULM(X,y). Then 

/ ( P p O ) = {g6 P(y) : q is a Kf (X) -regular measure} . 

Hence, an universally Lusin measurable map f: X -» Y is measure surjective 
if and only if each measure in F(Y) is K? (X) -regular. 

P r o o f . It follows from 2.9 that the identity i on X = Xf is a measure sur­

jective map in MS(X, Xf). Hence, f(F(X)) = f(F(Xf)) and according to 1.3.3 

f(F(Xf)) consists exactly of those q e P(Y) which are Kf(Xf,Y) -regular. Fi­
nally, it is easy to check that the transfer X -* Xf yields K(Xf) = Kf(X) 
and therefore the equality stated by 2.11 holds because the map f:Xf-+Y is 
continuous. • 

COROLLARY 2.12. / / fn 6 MS(Xn, YJ for any n G N, then f := (fvf2,...) 
e MS(X,Y) where I : = f l - Y n and Y := J[Yn. 
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P r o o f . Consider q G ¥(Y) and e > 0. Because all fn 's are measure sur-
jective, it follows from 2.11 that qn{fn(Kn)) > e2~n for some Kn G K/n(-Yn) 
where qn := nn(q) G F(Yn) and nn stays for the projection of Y to Yn. Putting 
D := Iifn(

Kn) = f(UKn) w e obviously get a set D in Kf(X,Y) such that 
n ^ n ' 

r/(£>) > e holds. Hence, sup{g(.D) : D G K' (X,F)} = 1 and by 1.3.1 and 1.3.2 
the measure q is K^^F)- regular . Because / G ULM(X,Y) by 1.1.5, The­
orem 2.11 finally applies to prove that the map / is measure surjective. • 

We suspect that if we modify 2.12 as 

(Vn6N)(/neMS(x ,Yn)) .-=-> ( / :=-( / 1 , / a i . . . )€MS(jf inyn ) ) 

we get a statement that is not true. Because of 2.6.3 we cannot repeat the 
argument we applied to derive the latter statement of 1.1.5 as a corollary to its 
former one. 

Remark that Lemma 2.4 suggests to introduce a category where the ob­
jects are all Hausdorff topological spaces X, F, Z , . . . , where the morphisms 
from X to Y are exactly the maps in MS(X, Y), i.e. the measure surjective 
maps / : X —r Y and finally where the composition law is given by the stan­
dard composition of maps. Observe that the definition is legal because it follows 
from 2.4.1 that gof G MS(X, Z) for any / G MS(X, Y) and any g G MS(y, Z). 
Agree to denote this category by L and observe that a map / : X -> Y is an 
L-isomorphism if and only if it is Lusin isomorphism of X and Y, i.e. objects 
X and Y are L-isomorphic if and only if there is an Lusin isomorphism of X 
and Y. Thus, for example, 2.4.5 and 2.12 are equivalently stated in this context 
as 

J | Xn and J | Yn
 a r e L-isomorphic spaces if and only if Xn and Yn are 

n n 
L-isomorphic for all n G N; 

fn is a morphism from Xn to Yn for all n G N =-> / := (/x, / 2 , . . . ) is 
a morphism from Yl Xn to Yl Yn > 

n n 
respectively. 

Considering the functor X i-> ¥(X) that sends a Hausdorff space X to the 
Hausdorff space of its Radon probabilities F(X) we may ask a natural question 
wether L-isomorphic spaces X and Y yield L-isomorphic spaces of the cor­
responding Radon probabilities ¥(X) and F(Y). Especially, we may ask under 
which conditions a Lusin isomorphism / of X and Y yields a Lusin isomorphism 
/ of F(X) and F(Y). If / is a Lusin isomorphism of X and Y, then it follows 
from 1.2.1 that / : P(X) -» F(Y) is a bijection. Hence, in view of 2.4.3, the prob­
lem is basically reduced to a possibility to verify that / G ULM(P(X),P(F)) 
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if / G ULM(X, Y), which is the second problem imposed by our Abstract. The 
answer is frequently positive: 

Remark 2.13. If X is an arbitrary space, Y is either a separable metric 
or a Souslin space and / : X -> Y a Borel map (hence in ULM(X, Y) by 
the Lusin Theorem), then / : F(X) —> P(F) is again a Borel map (hence in 
ULM(P(X),PQV)) again by the Lusin Theorem). 

The argument involves the following hereditary properties: 

Y separable metric ==> F(Y) separable metric, 
see [5; p. 49, Theorem 11.1]; 

Y Souslin = > F(Y) Souslin, 
see [4; p. 385, Theorem 7] 

that imply in both cases that the Borel <r-algebra of F(Y) is generated by maps 
q »-> q(g) where g's go through all bounded Borel functions g: X -> R. These 
maps are Borel measurable by [4; p. 387, Theorem 8] and the measurability 
stated by Remark follows directly. 

3. Lusin measurability of the measure image map 

First agree to denote the superspace of Radon probabilities on F(X), i.e. 
the space P(P(X)), by W¥(X) and further note that for any M C F(X) and 
P e F(M) 

rP(B) := J'p(B) dP, B G M(X), (4) 
M 

defines a Borel probability measure on X that we shall call the barycenter of 
P. Definition (4) is correct because p >-» p(f) := f f dp is a Borel measurable 

x 
map from F(X) to R for any bounded Borel function / : X -> R by [4; p. 387, 
Theorem 8]. 

Recall that a set M C F(X) is called measure convex if rP G M for arbitrary 
P G P(M), i.e. if the barycenter map r given by (4) is a map from P(M) to M. 
Agree also to call a Hausdorff space X F-convex if M = F(X) is a measure 
convex set. 

Remark 3.1. Recall that 

(1) If X is a P-convex space, then r is a continuous and (obviously) affine 
map from PP(X) to F(X). 

We argument as follows: The barycentrical formula (4) can be obviously ex­
tended to rP(f) = Jp(f) dP to be valid for all bounded Borel / : X -> R. 
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Hence, if Pa -> P in PP(X), then rPa -» rP in F(X) because p H p(f) is 
a lower-semicontinuous function for any bounded lower-semicontinuous function 
f:X-+R. 

(2) Radon (in particular Souslin) and locally compact spaces are P-convex, 
see [6; p. 24, Example 2]. 

(3) If X is a completely regular topological space, then X is a P-convex 
space if and only if the closed convex hull of any compact set D C F(X) is a 
compact subset of F(X), 
see [6; p. 26, 1.2.5 Proposition]. 

(4) There is a set X C [0, l]2 (X (£ U([0,1]2)) that is not P-convex, see 
[6; p. 20, Example 5]. 

We shall need the following lemma: 

LEMMA 3.2. Let X be a F-convex space and g a bounded function in 
ULM(.X,R). Then the map p H p(g) is in UBM(P(X),E) and (4) extends 
to 

(VP G PP(X)) (// := rP => fl(g) = J p(g) dp) . (5) 
P(K) 

P r o o f . Denote G(p) := p(g) for all bounded g G ULM(-Y,R) and all 
p G F(X). Fix such a g and a P G PP(-Y). Then /i := rp G F(X) as X is a 
P-convex space, and therefore the 3 is a /i-measurable function. It follows that 
there are bounded Borel functions gx < g < g2 such that /jt[g1 < g2] = 0 holds. 
Because both Gx and G2 are Borel maps F(X) -> R by [4; p. 387, Theorem 8] 
such that G1 <G < G2 holds on P(X), we may compute that J G2 — G1 dP = 
fi(g2 — gx) = 0. Hence P[Gl < G2] = 0 and we have proved that the G is a 
P-measurable function for arbitrary P G PP(X), hence G G UBM(P(X),R). 

What we have already proved shows that 

I/(17) := í p(U)dP, UeV(X), 

P(K) 

defines correctly an extension of /i from M(X) to U(X). Hence, 1/ = p, on U(X) 
which of course verifies (5). • 

We shall also need the following lemma: 

LEMMA 3.3. Assume that f: X -> Y is such that f G ULM(P(X),P(F)). 
Then the map F := f: F(X) ->> P(F) is measure affine, i.e. such that 

(VPe PP(X)) (F(rP) = rF(P)). 
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P r o o f . Fix a P € PP(X) and note that Q := F(P) is a measure in PP(Y). 
Denote fi := rP and u :=rQ, consider a set B € B(Y). Then 

F(n)(B) = fi(r1(B)) (=> f p(r1(B)) dP 

P(K) 

(=} f F(p)(B)dP= f q(B)d(FoP)^ f q(B)dQ = v(B), 

p(X) p(Y) p(Y) 

where (a) follows by formula (5) in 3.2, (b) is implied by 1.1.1 that in our notation 
reads as / op = F(p) observing that the B is a Borel set and finally (c) follows 
again from 1.1.1 that gives F o P = Q and by [4; p. 387, Theorem 8] that says 
that q ^ q(B) is a Borel map. • 

In contrast to 3.1.4 we may apply 3.2 and 3.3 to get: 

3.4. / / X is a f-convex space, then any M in U(X) inherits the property. 

P r o o f . Consider an M G V(X) and denote by h: M -* X the map defined 
by h(x) = x for all x G M. Hence, H := h: P(M) -» F(X) is a continuous 
injection and 

¥(X\M) := H(P(M)) = {p G P(X) : p is K(M)-regular} 

= { P GP(X) : p ( M ) = l } 

holds by 1.2.3. It follows from 3.2 that F(X\M) is a universally measurable 
subset of ¥(X) and therefore, by (5) in 3.2, it is a measure convex set. 

Take Q G PP(M), denote u := rQ, apply the barycentric formula 3.3 to get 
H(u) = rH(Q), which shows that #(*/) is in P(X|M) because the latter set 
is measure convex and the measure H(Q) is a Radon probability measure on 
F(X\M). Thus, H(u) is a K(M)-regular measure, which directly implies that 
u = rQ is a Radon measure on M. • 

3.5. / / -X" is a ^-convex space and f: X -* Y a map such that f G 
MS(P(-Y),P(F)), then also Y is a ^-convex space. 

P r o o f . The requirement on F imposed by 3.5 says that / G ULM(X, Y) 
is such that F G ULM(P(X),P(y)) and F is a surjective map from PP(X) 
to PP(F). Fix a Q G W(Y) and let P G W(X) be a measure such that 
Q = F(P) holds. The P-convexity of X and the barycentric formula 3.3 thus 
imply the P -convexity of Y. D 

Having a K C K(X) we shall say that a set T C F(X) is K- tight (simply 
tight if K = K(X)) if for every e > 0 there exists a set K G K such that 
P(K) > 1 — e holds for every p€T. Denote 

T(K) := {T C ¥(X): T is K-tight and closed} . 
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Recall that all tight sets T C F(X) are relatively compact in F(X) by [4; 
p. 379, Theorem 3] and therefore T(K) C K(P(X)) holds for any K C K(X) 
and any X. On the other hand the equality T(K(X)) = K(P(X)) does not 
hold generally. Topological spaces X for which the above equality is valid are 
called Prochorov spaces. Remark that Polish spaces are Prochorov and that there 
are Souslin spaces that are not Prochorov, distinguished among them being the 
space all rationals Q. 

The tightness and P-convexity concepts are connected. 

LEMMA 3.6. Let K C K(X) be an ideal. Then 
(1) For any P G W(X), P is a T(K) -regular measure if and only if rP is 

a measure that is K-regular. 
(2) X is a F-convex space if and only if any P in PP(X) is a T(K(X)) -re­

gular measure. 
(3) Every Prochorov space is F-convex. 

P r o o f . (2) follows from (1) putting there K = K(X). 
We shall prove (1): Let P be a T(K)-regular measure, choose e > 0, 

T G T(K) with P(T) > 1 - 2~le and finally K G K such that p(K) > 1 - 2^e 
holds for all p G T. Putting /i := rP we get 

VL(K) = f p(K) dP > fp(K) dP > P(T) - | > 1 - e . 

¥(X) T 

Hence, rP = /i is a K-regular measure by 1.3.1 because K is assumed to be an 
ideal. 

Before we shall proceed to verify (<£=) in (1) note that if T is a K-tight 
set, then its closure T is a set in T(K). The tightness of T follows directly be­
cause p »-» p(K) are upper semi-continuous functions on F(X) for all compacts 
KCX. 

Let \i := rP be a K-regular measure. Then there are Kn G K such that 
fi(Kn) -» 1. It follows that p(Kn) -» 1 in probability P and therefore for 
arbitrary e > 0 there is a Borel set T C F(X) such that P(T) > 1 - e and 
p(Kn) -> 1 uniformly on T as n -> oo. Obviously, the T is a K-tight set and, 
as we have already noticed, T is a set in T(K) such that P(T) >l — e holds. 
Hence, P is a T(K)-regular measure by 1.3.1 because T(K) is is easily seen to 
be an ideal of compact sets. 

The assertion (3) is an easy corollary to (2) and 1.3.1 because again T(K(.X)) 
is an ideal. • 

Theorem 2.9 offers a necessary and sufficient condition for a universally Lusin 
measurable / : X -» Y to yield a universally Lusin measurable / : F(X) -* F(Y)-
It reads that / G ULM(P(X),P(Y)) if and only if the spaces F(X) and F(X)j 
are Radon equivalent. We offer a weaker form of the statement. 
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THEOREM 3.7. Let X be a F'-convex space. Then / c miM/iiv v\ ia>tv\\ t^ 
every f G ULM(X, F) and every Y. * ULM(P(X), F(Y)) for 

P r o o f. Fix Y and / G ULM(X, Y). Denote by t: x _ > x t h e c o n t i n i loUs 
identity which is a Lusin isomorphism of Xf and X by 2.9. We shall be able to 
apply P-convexity of X to prove that 

J := i: F(Xf) -> F(X) is a Lusin isomorphism of F(Xf) and F(X). (6) 

Because / = / ( J - 1 ) on F(X) by 1.1.3 and / : F(Xf) -> P(Y) is a continuous 
map by 1.2.2, it follows by (6) that / : F(X) -* F(Y) is a universally Lusin 
measurable map which concludes the proof. 

We shall prove (6): Because Xf and X are Radon equivalent spaces it follows 
that J: F(Xf) -» F(X) is a bijection. Thus, by 2.4.3, (6) holds if and only 

if J G MS(P(.A^),P(X)). Observing that 7 is a continuous map it is further 

equivalent to the requirement that I: PP(X^) -> PP(JC) is a surjection. 

Consider a P G PP(.X) and denote fi:= rP. Because X is P-convex space, 
we get in this way a \x G F(X) and therefore a /i that is a Kf(X) -regular 
measure. It follows further from 3.6.1 that the measure P is T(Kf(X)) -regular. 
Applying the equality Kf(X) = K(Xf) we conclude that P is measure regular 
with respect to the family K of the tight closed subsets of F(Xf). It follows 
from [4; p. 379, Theorem 3] that /C C K(P(X^)) and we have proved that any 

P G PP(X) is a K(P(X;))-regular measure. Hence, I: ¥V(Xf) -> PP(-Y) is a 
surjective map by 1.3.3. • 

Theorem 3.7 applies to prove: 

THEOREM 3.8. If X and Y are F-convex spaces, f: X -> Y a Lusin iso­
morphism of X and Y, then f: F(X) -r F(Y) is a Lusin isomorphism of F(X) 
and F(Y). In particular, if X and Y are Lusin isomorphic F-convex spaces, 
then also F(X) and F(Y) are Lusin isomorphic. 

P r o o f . Let / : X —> Y is a Lusin isomorphism of X and Y. Then 
/ : P(.X) -» P(y) is a bijection such that both / and (Z)" 1 = / - 1 are uni­
versally Lusin measurable maps according to 3.7. It follows from 2.4.3 that the 
map / is a Lusin isomorphism of F(X) and F(Y). D 

In some cases, P-convexity of X is also a necessary condition for an 
/ G ULM(X, Y) to yield / G ULM(P(X), F(Y)). 
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3.9. Let f:Y-*X be a continuous map and a Lusin isomorphism of Y and X. 
Suppose that Y is a F-convex space. Then f: F(Y) -> F(X) is a Lusin isomor­
phism of F(Y) and F(X) if and only if the space X is F-convex. In particular: 

(•) If X = Y and the topology of Y is finer than that of X, if X and Y 
are Radon equivalent and finally if Y is a F-convex space, then 

1: F(Y) -> F(X) is a Lusin isomorphism ofF(Y) and F(X) 

<£=> the space X is F-convex, 

denoting by i the identity map on X = Y. 

P r o o f . If / i s a Lusin isomorphism of P(y) and F(X), then X is a 
P-convex space by 3.5. If X is a P-convex space, then ( / ) = f*1 e 
ULM(F(X),F(Y)) by 3.7 and / is a Lusin isomorphism of F(Y) and F(X) 
by 2.4.3 observing that / is a continuous map by 1.2.2 and a bijective map as 
the / is assumed to be a Lusin isomorphism. • 

We are sorry to admit that we have no example of a Lusin isomorphism / of 
X and Y that would not yield the / as a Lusin isomorphism of F(X) and F(Y). 
Are there any spaces X and Y that satisfy the requirements (•) in 3.9 such that 
X is not a P-convex space? According to 2.1, X = S and Y = D satisfy (•). 
Is F(S) a P-convex space, or equivalently, is the map i: F(D) -r P(5) a Lusin 
isomorphism of F(D) and F(S) (denoting by i the identity on R)? Are spaces 
F(D) and F(S) Lusin isomorphic? 

Our final remark is: 

Remark 3.10. The following conditions are equivalent: 

(VU e U(X)) (p H-> p(U) is a map in ULM(P(X), R)) . (7) 

For all spaces Y it holds that 

(V/ e ULM(X, Y)) (V5 e 1(F)) (p »-> f(p)(B) is a map in ULM(P(X), R)). 

(8) 

(V/ e ULM(X,R)) ( / e ULM(P(X),P(R))). (9) 

To verify (7) = > (8) note that any / e ULM(X, Y) is in UBM(X, Y) by 
the second statement of the Lusin Theorem and therefore f~l(B) e U(X) for 
every Borel s e t B c F . Observing that f(p)(B) = p(f^(B)) holds for all such 
sets we prove the implication. 

To verify (8) => (9) consider (8) with Y = R. It says that for every Borel 
set B C R the function 6: F(X) -r R defined by b(p) := f(p)(B) is measurable 
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as 6-1B(E) C U(P(x)). This proves the implication as the Borel <r-algebra of 
the space P(R) is generated by the maps q •-> q(B) where B runs in B(R). 

Finally, let us verify (9) => (7): Consider a f /G U(X), put / := Iv and 
observe that p{U) = /(p)({l}) for all p € P(x) . As obviously / € ULMpf.R), 
it follows by (9) that p i-> p(U) is in ULM(P(x), R). 
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