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ABSTRACT. Andras Huhn proved the following theorem: Let ) and F
be finite distributive lattices, and let ¢: D — E be a {0}-preserving join-
homomorphism. Then there are finite lattices K and L, and there is a lattice
homomorphism ¢: K — L such that Con K (the congruence lattice of K) rep-
resents D, Con L (the congruence lattice of L) represents E, and the mapping
exty: Con K — Con L (obtained by mapping a congruence of K under ¢ to
L as a binary relation and then forming the minimal extension of this binary
relation to a congruence relation of L) represents 1.

In -his note, we give a short proof of this theorem. In fact, we prove a much
stronger result: for K one can choose any finite lattice whose congruence lattice

is isomorphic to D.

1. Introduction

Once of the most persistent problems of lattice theory is the representa-
tion problem of distributive algebraic lattices as congruence lattice of lattices.
A. P. Huhn in [5] attempted to solve this problem by simultaneous represen-
tation of finite distributive lattices as congruence lattices of finite lattices.
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To state Hu hn'’s result, we need a notation. Let K and L be lattices, and
let ¢ be a homomorphism of K into L. Then ¢ induces a map ext ¢ of Con i
into Con L: for a congruence relation © of K, let the image © under ext s be
the congruence relation of L generated by the set ©¢ = {{ap,bp) | a =b (0)}.

The following result was proved by A. P. Huhn in [5] in the special case
when ¢ is an embedding and was proved for arbitrary 1 in [3] (where vou also
find for a more complete history of this result):

THEOREM 1. Let D and FE be finite distributive lattices, and let
v:D—F

be a {0,V}-homomorphism. Then there are finite lattices K and L. a lattice
homomorphism ¢: K — L, and isomorphisms
a: D — ConK , B: E— ConlL
with
VB = alextp).
Furthermore, ¢ is an embedding if and only if i separates 0.
Theorem 1 concludes that the following diagram is commutative:

¥

D —s F
ela Elﬁ
ConK %, ConL

In this paper, we give a short proof of this theorem. In fact, we prove the

following much stronger version:

THEOREM 2. Let K be a finite lattice, let E be a finite distributive lattice, and
let ¢v: Con K — E be a {0,V}-homomorphism. Then there is a finite lattice L,
a lattice homomorphism ¢: K — L, and an isomorphism (: E — Con L with
extw = YB. Furthermore, ¢ is an embedding if and only if ¥ separates 0.

2. Preliminaries

Let M be a finite lattice and let C' be a finite set; the elements of " will be
called colors. A coloring p of M over C is a map

w:P(M) — C
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of the set of prime intervals P(M) of M into C satisfying the condition: if two
prime intervals generate the same congruence relation of M | then they have the
same color; that is,

b,q € P(M) and O(p) = O(q) —> pu = qu.

Since the join-irreducible congruences of M are exactly those that can be gen-
erated by prime intervals, equivalently, 4 can be regarded as a map of the set
J(Con M) of join-irreducible congruences of M into C':

w: J(Con M) — C.

In this paper, we need the more general concept. A multi-coloring over C
is an isotone map p from P(M) into PT(C) (the set of all nonempty subsets
of C'); isotone means that if p,q € P(M) and O(p) < O(q), then pu C qu.
Equivalently, a multi-coloring is an isotone map of the poset J(Con M) into the
poset PT(C).

We will now show that a multi-colored lattice has a natural extension to a
colored lattice.

LEMMA. Let M be a finite lattice with a multi-coloring p over the set C'.
Then there exist a lattice M* with a coloring p* over C such that the following
conditions hold:

(1) M* is the direct product of the lattices M_, ¢ € C, where M_ is a
homomorphic image of M colored by {c}.

(2) There is a lattice embedding a — a* of M into M*.

(3) For every prime interval p = [a,b] of M,

pp = {au* | q € P(M*) and q C [a*,b"]},

and the minimal extension of ©(p) under this embedding into M* is of

the form
[k, ceC),

where p,. s a prime interval of M, if and only if c € pu, and p_. is a
trivial interval otherwise (in which case, ©(p,) = w,; ).

Proof. For ¢ € C, define the binary relation ®_ on Al as follows:
w=1v (b)) <= ¢ ¢ pu for every prime interval p C [u Av. u Vo).

This relation is obviously reflexive and symmetric. To show transitivity, assume

that w = ¢ (¢.) and v = w (®), and let q be a prime interval in uAw, uV ).
Then g s collapsed by O(u.v) v O(v.w). hence there is a prime intesval p in
WA eou Ve or i fe Ay e Vo] satisfying ©O(q) < O(p) . Tt follows from the
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definition of multi-coloring that g C ppu; since ¢ & pu, it follows that ¢ & qu.
hence uw = w (®,). The proof of the Substitution Property is similar.

For ¢ € C, we define the lattice M_as M/®,_. A prime interval p of M™ =
[I(M,. | ¢ € C) is uniquely associated with a ¢ € €' and a prime interval of
M. We define pp™ = c. It is easy to see that p* is a coloring of M™ over (.
establishing the first condition.

To establish the second condition, for a € M, define «* so that its M -com-
pouent be [a]® .. The mapping a +— a* is obviously a lattice homomorphism.
We have to provo that it is one-to-one. Let a,b € M and a # b: we have to
prove that a* # b*. Let p be a prime interval in [a A b, a V b]. Since p* is a
multi-coloring, there is a ¢ € pu*™. Obviously, then a # b (mod @), from which
the statement follows.

Finally, the third condition is trivial from the definition of M* and

3. Proof of Theorem 2

Let K, E, and ¢ be given as in Theorem 2.

Step 1. Since ¥ preserves 0 and joins, there is a largest congruence ¢ of A
such that ® = 0,,. Let l\'l = K/®. The mapping ¢» has a natural decomposi-
li()n =1, \xhoro ¥ Con K — Con K| is defined by Qv = OV o and

(on K, — E is the restriction of ¢ to [®) = Con K. Hl(‘ll Ly separates
() in Con K. It is sufficient to prove Theorem 2 for K. E. and v,.

C'onsequently, we need only prove Theorem 2 under the assumption that o

separates 0.

Step 2. We define a map g of P(A') to subsets of J(F):

ppo=J(I)N ((—)(p)(,ﬂ'} ,

jt is obviously isotone. v separates 0, so ppe # (1. Therefore, yo is a multi-coloring
ol K over J(F). We apply the Lemma to ()bt,(lm the lattice

K= [, [eear).

Step 3. Any finite lattice A can be embedded in a finite simple lattice \f
with the same zero and unit. Use such an extension for cach /' to obrain o
simple lattice K, then define:

o TIOR,

and extend the coloring so that ' is also colored by {c}. Sinee L) is a divee
product of simple lattices. it follows that .J(Con L)) is unordered: the congruence

ce J()).
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lattice of L, is a Boolean lattice with |J(F)| atoms. K is a sublattice of K™,
and K" is a sublattice of L, so we obtain an embedding ¢: K — L.

Finally, we construct a special ideal of L. Let p. be an arbitrary atom of
the direct component K : then the prime interval [0,p, | of L has color ¢. The
atoms p_, ‘or ¢ € J(E), generate an ideal B, of L, which is a Boolean lattice
satisfving the following properties:

(1) any two distinct atoms have different colors;
(2) every color ¢ € J(E) occurs in B,,.

Step 4. We continue by forming a finite atomistic lattice L, with I =
Con L under the isomorphism 3,. For L, we take the oldest published con-
struction as in [4], except that we use a uniform “tripling” (first done in [2])
as opposed to “doubling” of non-maximals as in [4]. To recap, using the ex-
position in [1], we construct a partial lattice P, with 0 as follows. For every
join-irreducible element p of E, we take three atoms p,, p,, and p,, so that in
I’ they arc the three atoms of a sublattice isomorphic to M, with zero 0; and if
p.q € J(E), then p, Aq; =0 (0<4,7<3).1f ¢g=<pin J(E), then we add the
clement p(q) so that p, Vg, = p(g) (0 <i < 3). Let L, be the ideal lattice of
P’,. The isomorphism J(£) = J(Con L) is given as follows: for p € J(E), the
congruence O(0,p) of L, corresponds to p. Let 3, denote the corresponding
isomorphism 3;: £ — Con L, .

We consider on L, the natural coloring over J(E) (a prime interval p is
colored by ©(p)B; " € J(F)). Note that L, and L, are colored over the same
set, J(E). Let B, be the ideal of L, generated by the atoms p, for p € J(E).
Then the ideal B, is a Boolean lattice satisfying the properties (1) and (2) stated
in Step 3.

Step 5. We have the lattice L, with the ideal B, and L, with an ideal
B, . Note that B, and B, are isomorphic finite Boolean lattices with the same
coloring. Take the dual L, of L,; in this lattice, B, corresponds to a dual ideal
B,. Again, note that B, and B, are isomorphic finite Boolean lattices with the
same coloring. Glue together L, and L, by a color preserving identification of
B, and B, . The resulting lattice is L. The prime intervals of L are colored by
J(FE), and we have the isomorphism 3: £ — Con L. Since L, is a sublattice of
L, we may view ¢ as an embedding of K into L.

Step 6. Finally, we have to verify that extp = y3. It is enough to prove
that ©(ext p) = Oy for join-irreducible congruences O in K.

So let & = ©(p), where p = [a,b] is a prime interval of K. By the Lemma,
O(p) ext ¢ = O(a*,b*) collapses in K™* the prime intervals of color < ©1; the
same holds in L, and in L.

Computing Oy we get the same result, hence O(ext ) = Oy, completing
the proof.
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4. Concluding remarks

The proof in [3] of Theorem 1 gave a slightly stronger result  the lattices
K and L can be chosen to be atomistic. In our proof, here K can be chosen to
be atomistic, but L is not atomistic. However, in his thesis ([7; Lemma 1.18]).
M. Tischendorf proved thar any finite lattice L can be embedded in a finite
atomistic lattice L' by an embedding ¢: L — L’ with exts an isomorphism.
Consequently, extending L in Theorem 2 by such an L', enables us to choose
both K and L atomistic in Theorem 1.

Theorem 2 also yields a substantial simplification of the proof of Huhn's
theorem [6] that any algebraic distributive lattice with countably many com-
pact clements is the congruence lattice of a lattice. Let us denote by S the
join-semilattice of compact elements of the given algebraic distributive lattice.
Huhn observes that S is the direct limit (union) of an increasing count-
able family (D, | i < w) of finite distributive 0-preserving subsemilattices
of S. The D, are, of course, distributive lattices. For cach i < w. let us de-
note by ;1 D; — D, | the {0,V}-embedding. Huhn constructs a sequence
(L, | i < w) of lattices with lattice embeddings ¢,: L, — L, , such that
extp;: ConL; — Con L, | represents ;. Then, denoting by L the direct limit
of the sequence (L, | i < w), it follows that Con L = D. The construction of
the L, and ¢, is the most complicated part of his paper - it comprises every-
thing but the introduction. However, using our Theorem 2, we can proceed in a
straight-forward manner. We first represent D, by a finite lattice L, and. in-
ductively, given L,, we immediately get a finite lattice L, , and an embedding
w;» Ly — L, with extp; representing ;.
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