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Math. Slovaca 39, 1989, No. 4, 391-405 

ON CONNECTIVITY POINTS 
OF DARBOUX FUNCTIONS 

JAN M. JASTRZ^BSKI—JACEK M. J^DRZEJEWSKI 

1. Introduction. 

In articles [1] and [2] the notions of Darboux points and connectivity points of 
a real function of a real variable were introduced and considered. In those 
articles the following theorems were proved: 

Theorem A. A function f:R-+ R is a Darboux function if and only if it is 
Darboux at every point of the set of all real numbers. 

Theorem B. A function f: R -* is connected (i.e. it has a connected graph if and 
only if it is connected at evry point of its domain. 

It was proved in [4] that the set of all Darboux points (and also the set of all 
connectivity points) of a function/: R -> R is of type Gs. It follows immediately 
from the definitions that the set ^ ted (/) of all connectivity points of a function 
/ : R -* R is contained in the set Q)(f) of all Darboux points of the function/ 
moreover, both these sets contain the set *#(/) of all points of continuity of the 
function/ J. S. L ip ihsk i in [3] proved that for two arbitrary sets A, B of 
the type Gs and such that A cz B there exists a function / : / ? -> R for which > 
# t e d ( / ) = A and Q)(f) = B. Next, L. Snoha in [5] constructed a function 
nowhere continuous, which is connected in a given set of type G8. Simultaneous­
ly, he posed the problem: characterize the set of all connectivity points of a 
function which has Darboux property. The present paper gives the answer to 
this problem. 

2. Preliminaries. 

In the work we shall use the following notions, denotations and theorems. 
Sometimes we shall identify a function with its graph (as a subset of R2). L(f 
x), L+(f x) and L~(f x) will denote the set of all limit numbers of /a t the point 
x9 the set of all right-sided limit numbers and the set of all left-sided limit 
numbers, respectively. By card (A) we shall denote the cardinal of the set A. For 
a set Af c jR2 projx Af, proj^ M will denote the projections of M onto the x-axis 
or the y-axis, respectively. 
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P(x0) = {(x0, y)\ye R}, osc (/, E) = sup \f(x) -f(y)\. 
x,y€ E 

A set A is called c-dense in B if for any point x of the set B and an arbitrary 
neighbourhood U of x the set A n U is of the power of continuum. 

Definition 1 ([2]). Iff: R-+ R and x0ei?, then we say that x0 is a right-sided 
connectivity point of the function f (or f is connected from the right side at x0) if 

(l)f(x0)eL+(fxo), 
(2) if a, beL+(f x0) and M is an arbitrary continuum such that projyM c: 

c. (a, b), projXM = [x0, x0 + e]for some s > 0, then M nf^ 0. 
In an analogous way we define the left-sided connectivity points of a func­

tion. A point x is a connectivity point of a function if it is a left-sided and a 
right-sided connectivity point of the function. 

By ^ted( f) , ^ted+( f) , <^ted~(f) we shall denote the set of all connectivity 
points of the functionf the set of all right-sided connectivity points off and the 
set of all left-sided connectivity points off 

Definition 2 ([1]). Letf: R-^Rbean arbitrary function. A point x0eR is called 
a right-sided Darboux point of the function f (or f has the Darboux property from 
the right-side) if the condition (1) is sulfilled and 

(3) if a, beL+(f x0), a < b and c e (a, b), then for an arbitrary positive number 
e there exists a point te(x0, x0 + s) such that f(t) = c. 
The set of all right-sided Darboux points of a function f will be denoted by 
®+(f). 

Analogously, Of (f) denotes the set of all left-sided Darboux points (defined 
analogously) of a functionf. Moreover, Q)(f) = ^ + ( f ) n ^ " ( f ) . 

Theorem C ([1]). The function f: R-+ R has the Darboux property if and only 
if 2(f) ^R. 

Theorem D ([2]). The function f:R-*R is connected if and only if 
<^ted(f) = i?. 

By Ac we shall denote the set of all condensation points of a set A (a point 
x belongs to Ac: if for every neighbourhood Uof x, card (Un A) = c). As usual, 
Q will denote the Euclidean metric in R or R2. 

3. Necessary condition. 

Theorem 1. For every function f: R-+ R with the Darboux property the set of 
all nonconnectivity points of f is empty or is dense in itself> a set of type Fa. 

Proof. We know from [4] that the set of nonconnectivity points of an 
arbitrary function is of type Fa. Now suppose that the set of nonconnectivity 
points of a Darboux functionfis not dense in itself (and nonempty). Then there 
exists a point X0GR and a non-empty interval (a, b) such that 
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( a , b ) n ( / ? \ ^ t e d ( f ) ) = {x0}. 

Assume that x0 is a right-sided nonconnectivity point off The functionfhas the 
Darboux property, hence f(x0)eL+(f x0). Thus there exist a number S > 0 and 
continuum M cz R2 such that 

proj^M = [x0, x0 + 5], x0 + 5 = b 
and 

0^MnP(xo)cz{xo} x intL+(fx0), fnM = ®. 

We may assume that 

M cz [x0, x0 + 8] x [w1? w2], 

where mu m2eL+(f x0), w, < w2. Then there exist points c, de[x0, x0 + 5] such 
that c < d,f(c) < muf(d) > m2. The functionf|[c, d] is connected ([2]). The set 

M\ = {([c, d] x [wl9 w2]) n M} u {{c, d} x [wb w2]} 

is a continuum with the projection onto the x-axis equalled to [c, d]. This 
continuum fulfils all requirements of the Definition 1 for x0 but M nf= 0. The 
contradiction ends the proof. 

4. Sufficient condition. 

Before we prove the sufficient condition we shall give some useful lemmas. 
Lemma 1. Every t-dense in itself set of type Fa is a countable union oft-dense 

in itself closed sets. 
Proof. Let D be an FG set, c-dense in itself. Then 

00 

D=JB„, 
n = \ 

where 
Bn (n = 1, 2, ...) are closed sets. 

00 

The set J (Bn\B„~) is countable; let then 
M = l 

n=\ n = 1 

Let Uhn be an open neighbourhood of the point xn for n = 1,2,. . . . Since xneDc, 
then there exists kXn such that 

card(B*c
iBr.U,,n) = c. 
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Now let I, „ be any closed interval contained in U, „ which fulfils the following 
condition 

card(B;innI,.„) = c, 

Q(x„,Iu„)>0-

Suppose that we have chosen the sets Um,„, Bkm and intervals !,„„ c= Um„ such 
that 

card(BtmnnL.,„) = c 

Q(x„, Im.„) > 0 • 

Now let Um +, „ be any open neigbourhood of the point x„ and disjoint with 
intervals I, „, ..., Im„. Then there exists km+, „ with 

card(B im+| i int/m + l,„) = c. 

Let Im+,,„ be any nondegenerated closed interval contained in t/m+ .,„ such that 

card(B*m+|/inL„ + l ,n) = c , 

Q(x„, Im+l,n)>0. 

In this way we have defined for every point x„ a sequence of sets (Bkm J^=, 
and a sequence of intervals (Im<„)%= i so that 

lim Q(X„, L,,„) = 0, 
/W-> 00 

card(BftmnnIm,„) = c. 
Now let 

C«= \J(Bc
kmnImJv{x„). 

m = 1 

It is easy to see that Cn is a closed set for which every of its points is a point 
of condensation of Cn. Let now 

Dn = Bc
nKjCn. 

00 

One can prove that D = (J D„ and the sets Dw have all the required properties. 
w = 1 

Lemma 2. If D c I =[0, I] is an Fa-$eU c-dense in itself then there exists a 
Darboux function f: I-+R such that ̂ ted(f) = I\D. 

Proof. In view of Lemma 1, there exists a sequence Dn of closed sets 
c-dense in themselves and such that 
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D=uд n ' 
n= 1 

We can assume that Dn c Dn +,, n = 1, 2, .... 
Let us denote by En the set of bilateral accumulation points of the set Dn. Thus 
each of the sets En is c-dense in itself and En = Dn. 

Now we shall prove that there exists a class {An a}*eN (where Q denotes, as 
a<Q 

usually, the least uncountable ordinal) of sets fulfilling the following conditions: 

An anAm^ = 0, for (n, a) ^ (m, p)9 n9 meN9 a9 fi< Q 

An,aaEn9 An>a = Dn9 neN9 a<Q. 

Let (/*)r= i denote a sequence of all intervals whose ends are rational numbers 
and Ik c= /. Let Au a Ex be any countable set which has common points with 
every nonvoid set Ik n E]9 k = 1,2,.... Assume now that we have chosen the sets 
AXX9 A2X9 ..., AnX such that AiX c Ei9 AiX = Di9 A^xnAjX = 0, for i9j = 1, ..., n9 

i ^ j and such that AiX is a countable set. 

Now let An + xxczEn + i\U Au x be a countable set which has common points 
/ = i 

with every nonvoid set 

IknEn + X9 k= 1, 2, .... 

Since En + X is a c-dense in itself set, then An + u = Dn+ x. 
Assume now that for an ordinal a < Q we have chosen countable sets An p for 

neN9 p< a such that 

An^c\An.%p = 0 for (n9 /J) * (n'9 /?'), n9 n'eN9 # fi' < a9 

AnyPaEn9 An^ = Dn9 neN9 P<a. 

Let Ax acz .E-\U U An,p be a countable set which has common points with 
neN0<a 

every nonvoid set (lknEx) for k = 1, 2, .. The set Ex is c-dense in itself and 
00 

U U ^n,fi is countable; then AXa = Dx. 
P<an=\ 

Assume, finally, that we have chosen countable sets Am ^ meN9 fi< a and 
AUa9 ..., Ana which have the adequate properties. Let An + haa 

c En + , \ ( U U Am pV [J Aia) be a coutable set with common points with 
\meNP<a i=l 7 

every nonvoid set (Ik n En +1). 
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We have defined in this way a class {An J fulfilling all required condition. 
Let (Ma)a< pbe a sequence of all continua contained in I2 with nondegenerate 

projections on the x-axis. Let g: / -*• R be defined as follows 

(min{yei?: (x, y)eMa} if xeAnaand 

M^'£l : ( x ' j ) e M o}*0 ' 
0 for the remaining x from /. 

If xQ$D, then x0 is a point of continuity of g. If x0eZ), and 

n0 = min{neN\x0eDn}, then L(g, x0) = 0, — . From the definition of the 
L no-J 

function g it follows that the graph of g has common points with every con­
tinuum fulfilling the condition from Definition 1. Thus g is a connected function. 

Now let us define a function/: /-> R in the following way. 
f 1 x2 1 

r, x )*(*) if for every n61V g(x )#— — - + -, 
/(x) = I n(n + 1) 1 + x 2 n+ 1 

[0 for the remaining x from /. 

Since for every y > 0 

{xe/[/(x) = y} = {xe/|g(x)=y} 

or there is one point xyel such that 

{xe/|g(x) = y} = {xe/|/(x) = y} u {x^}, 

then/has the Darboux property. Analogously, as previously, if x0$D, then x0 

is a point of continuity off. If x0eZ), and n0 = min{nGIV|x0G/)„}, then L(f 

x0) = 0, — and for example L+(f x0) (simultaneoulsy L~(f x0) = 0, — for 
L no-l L ml 

some m > n0). Let n be an integer such that n> n0 and 
1 x2 1 M = {(x, y)G/?2|xe[x0, 1], y = — — - + ~. 

n(n+ 1) 1 + x 2 n+ 1 
M is a continuum fulfilling conditions in Definition 1 but M has no common 
point with the graph off Thus x0 is not a connectivity point off. 

In this way we have proved that ^ ted (/) = I\D. 
Lemma 3. If A a lis a countable set dense in /, then there exists an ascending 

sequence (Km)mss x of perfect and nowhere dense sets such that 

(4) Km = I\( Q (a<m>, C.W) u 0 (b<T\ « ) , 
\ n = l n = l / 
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where A = ( J {a(m), c(m)}, b(m\ d(m)$A, 
n,m = 1 

and between any two intervals (a(m)
9 c

(m))9 (a(m)
9 c

(m)) there is at least one interval 
(b(m\ d(m)). 

Proof . Let us denote by (xn) a sequence of the points of A , where 
xn # xm for n T£ m. Let 

n(\) _ r r(\) _ r 

where n, = min{neIV|x„G(a,(1), 1)}, 
Let (b(,), d(1)) and b(,), d(1)) be any two intervals such that (b,(1), d,(1)) c (0, a,(1)), 

(b(
2

l\ d[X)) c (c(1), 1), and b(1), b(1), d(l\ d(
2

l)$A. Now let 

fl(D _ r ^(D _ r r0) _ r -d) _ r 

fl0) _ r ^(D _ r r(\) _ r -0) _ r 

where n2 = min{nG # 1 x ^ ( 0 , b,(1))}, 

n'2 = min{neIV|xMG(a2
(1), b(,))}, 

n3 = min{/i6.iV|-x:lle(rfi(1)- a,(1))}, 

n3 = min{nGIV|xne(a3(1), a,(l))}, 

n4 = min{nGIV|xwG(c(1), b(1))}, 

n'4 = mm{neN\xne(a(
4

]\ b(1))}, 

n5 = min^G IVIx^G^ 0 , 1)}, 

n5 = min{nGiV|xwG(a5
(1), 1)}. 

Now between any two of the chosen intervals (a?\ c/°) and bfl\ dfl)) we select 
intervals (b(1), d(1)), ..., (b(1), d(1)) such that b,(1), d}l)$A forj = 3, ..., 10. 

Continuing this process we infer sequences (a„(1), cw
(1)) and (bw

(1), d„(1)) of intervals 
such that a(1), c(])eA9 b(l)

9 d(])$A. Let 

*i = /\(u<^^^ 
\n = 1 n = 1 / 

In every interval of the form (aw
(1), c„(1)) or (b(l)

9 d(l)) we select now, in anlogous 
way, adequate sequences of intervals (a„(2), cM

(2)), (bw
(2), d(2)) fulfilling the con­

ditions: 
— every interval (a(2)

9 c
(2)) and (b(2)

9 d
(2)) is contained in some interval (a(

m
l)

9 c^) 
or (b(,), d(1)), 

— between any two intervals (a(2)
9 c

(2)) and (a(2)
9 c

(2)) there is some interval (b(2), 
d(2\ 

-aKc(2)eA9b
(2\d(2)tA. 
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Let 

K2 = l\(0(a?\c™)u{j(b?\dn»)). 
\n -= 1 n =- 1 

Continuing this proces we obtain a sequence of sets Km fulfilling all our 
requirements. 

Lemma 4. If A is a countable set which is dense in itself and nowhere dense in 
L then there exists a sequence (Km)m= x of nowhere dense perfect sets fulfilling the 
condition (4) in Lemma 3. 

The proof of this lemma is analogous to the proof of Lemma 3. 
The only difference is that we choose all intervals of the form (b^w), d^m)) in 

such a way that (b{m), dim)) n A = 0. 
Lemma 5. Let a nowhere dense perfect set K be of the form 

K=I\{\J(an,cn)v\J(b„,dn)), 
\n = I n = I / 

where between any two different intervals (a„, c„), (am, cm) there is some interval 
(bk, dk) and, conversely, between any different intervals (b„, d„) and (bm, dm) there 
is some interval (aA, ck). 

Then there exists a Darboux function f: I ~> R such that 

Vted(f) = I\(Q{an, cn}v{0, 1}^. 

Proof. Define four functions 

fl,f: (a, c) -> R, 0ai: (a, c) -> /?, ^ „: (b, d) -> i?, ¥£„: (b, d) -> R 

in the following way: 

\ x — a \ (x — a \ . 7t (c — a) c 

+ h 1 . sin — for xe 

(PaЛx) = 
2 c — a 2 \c — a / 4(x — a) 

c — 

,27 

a + cl 

x \ (c - x \ . n(c - a) r /a + c "\ 
— 1 - - h 1 .sin—- f o r x e , c , 
a 2\c-a ) 4(c-x) \ 2 ) 

¥h.d(x) = 

. %(d-b) , / , b + ď] 
sin — for xe [b, , 

4(x-b) \ 2 J 
• n(d-b) . (b + d , 

srn — for x G ( , d 4(d-x) \ 2 

Ф а í (x) -= mаx(ç?аf(x), .£>(*, {a, c}) for xє(a, c), 
c — a 
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•X 
I 

(nM) for xe{xe(b, d)\\i/hM(x) < 0}, 

%.<i(x) = \ min (x. vlM(x), x - £>(x, {b, d})) for the remaining x 
(. from (b, d). 

Since K is a nowhere dense set, then there exists a subsequence (a (1), c {l))„ 
kn kn 

of intervals of the sequence ((a„, c„))*=, such that 
— a (1) <a (l) for n = 1, 2, ... 

« « + 1 

— (a,, c,) is one of the intervals of this sequence. 

Let now ((a {2), c {2)))*=, be a sequence of intervals fulfilling the following 
n n 

conditions: 

— a {2)> a {2) for n = 1, 2, ... 

— a (2) >0 

— no interval (a^,, c^(2)) is contained in the sequence ((a^,,, c^(l)))^=,. 

Suppose now that we have chosen 2m of such sequences. Now let (a (2w+I), 

(̂2m+1))*- i be a subsequence of ((a„, cX= 
/i 

such that 

— ^<2m+.) <^<2m+.) for n = 1, 2, . . . 

a. 

-V(2m+ I) ^ ы

ki2m+ I) 
n + 1 

k (2m + I) 

— (am + , , cm + , ) is one of the terms of that sequence if it is not contained in 
previously chosen sequences 

— no interval (a,{2m+X), c {2m+])) is contained in the sequences 
kn *" 

U ^ ( l ) > C

kU)))n=\> •••> \\a

ki2m)> Ck{2m)))nss , . 

In this way we have chosen an infinite seuence of sequences of intervals from 
the sequence ((a„, cn))^=1 such that every interval (a„, c„) is exactly one term in 
exactly one of those sequences. 

oo 

Now let x\ K\\J {a„, cn) -> R be a function meeting every continuum which 
n= 1 

is contained in the set {(x, y)el x R, - 1 = y < *}. Let 
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m H 

x н — • Фa c <™i (•*) 

m ö*<mì *» 

*U(*) 
am + 

1 

cm + 

2m + 2 

l 

2m + 3 

f0ГJCЄ(f l w ,C „,,,), 
n n 

for *є(Д,, dn), 

for x = am, 

for x = cm, 

n, m = ì, 2, ... 

n= 1, 2, ... 

m = 1, 2, ... 

m = 1, 2, ... 

*(*) for the remaining x from /. 

The function defined in this way has to the following properties: 
— / i s continuous at every point of the set 

ocT oo 

U (<*»' c»)u U(*« '^) ' 
n= 1 / . = 1 

Цf x) = [ - 1 , x] for xф ( J [я„, c„]u ( J (b„, dj, 

1 

n= 1 w = 1 

1 

-[-••i^y^0' [-U^VI]=L+(/'°' 
— f(x) ^ x forxe/. 

It follows from those properties thatfhas the Darboux property in /, but the 
oo 

set {0, l }u [J {an, cn) is the set of nonconnectivity points off because an 
n= 1 

adequate part of the segment {(x, y) e R2\x e [0,1], y = x} is a continuum disjoint 
with the graph off but fulfilling all remaining requirements of Definition 1. 

Analogously, omitting only the first two steps of the previous construction of 
sequences ((a (m), c^(m)))^°=,, one can prove the following lemma 

n n 

Lemma 6. If a set K fulfils all suppositions of the Lemma 5, then there exists 
a function f: I -> R with the Darboux property and such that # ted (f) = 

= I\(j (an, cn}. 
n= 1 

Corollary 1. If K fulfils all supositions of the Lemma 5, g:I-+ R is a con­
tinuous function which is constant on no subinterval of/, ^-arbitrary positive 
number, then there exist functions f :I -* /?, i = 1, 2, 3, 4 such that 
— f is a Darboux function; i = 1, 2, 3, 4, 
— fi(x) # g(x) for xe/, i = 1, 2, 3, 4, 
— \fi(x) - ^(x) | < s for xe/, / = 1, 2, 3, 4, 
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*tedc/;)--/\(ui{-i-,c,J}Y 

^ted(/2) = I\(Q{aw,c„}u{0}), 

^ted(/3) = I\(Ů|K,c„}u{l}), 

<f ted(/«) = / \ ( Ů {«- c„}v{0, 1}), 

more exactly: 

g(a„)GintL+(f, a„)9 g(cn)eintL'(fl9 cn)9 i = 1, 2, 3, 4, 
*(0) eint£+(j;.,0),j-=2,4, 
g(\) GintL-( f„l)k = 3,4, 

and 
fi(x)±g(x) for xel. 
Lemma 7. For et;ery countable set A dense i the interval I there exists a 

Darboux function f: I -> R such that ̂ ted(f) = I\A. 
Proof. According to Lemma 3, there exists an ascending sequence of 

nowhere dense perfect sets Km such that 

Km = I\( 0 (a(m\ c(m)) u ( Q (bJT\ ^m ))) , 

00 

where A\{0, 1} = (J {a(
n

m), c(m)}, b(m), d(m)$A and between any two intervals 
w, m = 1 

(^m), c<m)), (a|m), 4m)) there is some interval (b(m), d(m)). 
Consider m = 1. Depending on the fact if 0 or 1 belongs to A we define a 

function hx: I —> R as in the Corollary 1 such that the following conditions are 
fulfilled: 

— hx has the Darboux property on I, 

— hx(x) # x + - forxeI, 
2 

— L(/.„ x) c= To, x + ±1 for x * Q [«<•>, c^], 

— A, is constant on no subinterval of I, 

(5) — hx is continuous for xe Q [(an
X), c(X)) u (^1}, ^ , })], 

n = 1 
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- #ted(/.,) = I\U W1V"'} if 0, 1*A, 
« = 1 

- «,ted(A1) = / \ ^ 0 { « - , ) . ^ , ) } ^ { ° } ) ifOeA, l ^A , 

, - <^ted(/.,) = I\((J ( 4 ^ ^ ' ^ { l } ) ifO^A, )eA, 

- <€ ted (A,) = I\( U {«<", c<"} u{0, 1}) if 0 , 1 e A. 

Now let w = 2. Define a function h2:I->R in the following way. If 

xi U [(«"'• c«") ̂  (#"» 41°)]. then let A2(x) = A,(x). On each interval («<•>, c<») 
/» = I 

or (b,(;
n, d(,)) we define /?2 (likef orf, in the Corollary 1) in such a way that there 

are fulfilled the following conditions: 

— h2\[an
x\ cn\ h2\[b{

n
l\ d,(1)] have the Darboux property, 

_ h2(x) * h}(x) for xe \J [(a{]\ c<") u (b«\ d^)) 
/ ? = i 

— h2 is constant on no subinterval of /, 
X 

— A2 is continuous for xe \J [(a<2>, <J'>) u (bt2), d(„2% 
n = i 

— \h2(x)-ht(x)\^1-, 

— h2(x) = 0, 

— «• ted (A2|(a<", c<")) = («<•>, c i " ) \ (J {«.c\ c/,2>}, 
/ ! = 1 

— <f tedtf-IG'", < « ) = (/><", o*'>)\ U ta!2), <f>}-
/ . = I 

Continuing this process we can define a sequence (hm) of functions such that 
the following conditions are fulfilled for meN: 

— hm has the parboux property on the interval 7, 

— K + ,(x) * hjx) for xe (J [(a{
n

m\ c{
n^) u (b}T\ d<m% 

« = i 

— Iltm + i (*) - h\ (x)\ ^ — for xe I, 

— A„, is constant on no subinterval of I, 
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— hm is continuous for *e \J [(aj,m), cj,m)) u (b?\ d(m% 
n= 1 

- hm+i(x) = h„(x) íor xel\\j ([atK 4m)]<j[bj,m), 4m))), 
n= 1 

- hm(x) = 0, 

- ^ted(h„Mm-)\ cr-°)) = (Ar-1*, c r _ l ) ) \ ú wsn,)» c«m)}, 
w = 1 

X 

- vted(hm\(by-», dim-»)) = (b*r-x\ dr - ° ) \ u i«<m\ c'm)) 
n = I -s 

for m = 2, ... and (5) for m = 1. 

The sequence (hm) is uniformly convergent. Let then 

f= lim/im. 

One can prove that the function f has all the required properties. 
Corollary 2. For an arbitrary interval [a9 fl]9 a coutable set A cz [a9 fl\9 an 

arbitrary M > 0 there exists f£fi: [a9 fl]->R such that ^ ted( f^) = [a, fl]\A9 

0 | / » , osc(f»,[a9fl\) = M9 lim infff,(x) = 0 = lim inff^(x). 
Y -> a + x -* p-* 

The proof of the next lemma is similar to the proof of Lemma 7, so we 
omit it. 

Lemma 8. For every countable set A dense in itself and nowhere dense in I there 
exists a function f: I -> R with the Darboux property and such %> ted (f) = I\A9 

lim inff(x) = 0 = lim inff(x). 
.Y-+0+ Y - l -

Corollary 3. For every interval [a9 fl]9 a countable set A c= [a9 fl] dense in itself 
and nowher dense in [a9 fl] and an arbitrary number M > 0 there exists a 
function 

*£V [^ fl -> * such that <€ ted (g^) = [a9 fl]\A, 

0 S g£i,(x)9 osc(gZfi9 [a9 fl]) = M and 

lim inf^(x ) = 0= lim in(g^(x). 
\-*a+ x-*p-

Now we can prove the main theorem. 
Theorem 2. Let E a I be any set of type Ga such that I\E is dense in itself 

Then there exists a function f:I-~*R with the Darboux property and such that 
^ted(f) = £. 

Proof. The set A = I\E is of type Fa and it is dense in itself. Let 
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Ax = AnAc. 

It is obvious that Ax is a set of type Fa9 c-dense in itself, and A\AX is a countable 
set. Let now 

B = A\AX. 

Then B = \J ln\j C, where /„ are nondegenerate components of B9 and C a set 
A! = 1 

containing no intervals. Now let 

A2= \J((A\Ax)nIn9 
n = 1 

A4~(A2nA)\(AxvA2)9 

A3 = A\(AX\J A2u A4). 

One can easily prove that the following conditions are fulfilled: 

— A = AXKJ A2\J A3\J A49 

— Ax is a c-dense in itself set of type Fa9 

— A2 is a countable set dense in some union of closed nondegenerate 
intervals ln, 

— A3 is a countable set dense in itself and nowhere dense, 
— A4 is the set of accumulation points ofthe set Al9 belonging to A which do 

not belong to Ax u A2. 
— AinAj = Q for i^j9 i9j= 1, 2, 3, 4. 

Now let g,: / -» R be a function (constructed in Lemma 2) for which 
Vtcd(gx) = I\Ax. 

Let Af4 = ( J {xw}. For every point xm e A4 there exists a subsequence (/ (m))^= j 
/.= . 

of (/„)*_• such that Iim) n / ^ = 0 for *<"" # k\» and e(xm, / M ) > 0. 
Kn Kl Kn n - » X 

Now let (/ (0))J= 1 be a sequence of all those intervals /„ which are not 
kn 

contained in sequences (/ (/w))„'=,. Let a function g2:I-+ R (behaving denota-
kn 

tions from the Corollary 2 for the set A2) be definedas follows: 

I' ( - 1 ) " ^ • / # (* ) for xel9 where / ^ = [a, fi\, 

ff/(x) for xe/^(0), where Ik? = [a, fl, 

.0 for all remaining xel. 
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There exists an open set C/= ( J («„, pn) such that AlaU and 17 n 
« = i 

n (z?t u A2) = 0- Respecting.now denotations from the Corollary 3 for the set 
A39 let g3: /--* i? be defined as follows: 

(<"«,(*> for X6(aw5j8„) 
£3(*)=H , 

CO for all remained xel. 
I 

Now let g4:I-+ R be any continuous and nowhere constant function for 
which the sum of g4 and each of the functions appeared in all the previous 
constructions of the functions gx, g2 g3 as well as their sums and limits is constant 
on no subinterval of /. In this way the function 

f=g\ + £ 2 + g 3 + g 4 

has all the required properties. 
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О ТОЧКАХ СВЯЗНОСТИ ФУНКЦИЙ ДАРБУ 

^ап М. ^а8^^2еЪ8к^—^асек М. 1ес1г2е]е\у$к1 

Р е з ю м е 

В работе показано, что для того чтобы Е было множеством несвязности некоторой 
функции Дарбу необходимо и дистаточно, чтобы Е было Ра— множеством плотным в себе. 
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