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ON CONNECTIVITY POINTS
OF DARBOUX FUNCTIONS

JAN M. JASTRZEBSKI—JACEK M. JEDRZEJEWSKI

1. Introduction.

In articles [1] and [2] the notions of Darboux points and connectivity points of
a real function of a real variable were introduced and considered. In those
articles the following theorems were proved:

Theorem A. A function f: R — R is a Darboux function if and only if it is
Darboux at every point of the set of all real numbers.

Theorem B. A function f: R — is connected (i.e. it has a connected graph if and
only if it is connected at evry point of its domain.

It was proved in [4] that the set of all Darboux points (and also the set of all
connectivity points) of a function f: R — R is of type G;. It follows immediately
from the definitions that the set € ted (f) of all connectivity points of a function
f+R — R is contained in the set 2 (f) of all Darboux points of the function f;
moreover, both these sets contain the set € (f) of all points of continuity of the
function f. J. S. Lipinski in [3] proved that for two arbitrary sets 4, B of
the type G; and such that 4 < B there exists a function f: R - R for which,
€ted(f) = A and 2(f) = B. Next, L. Snoha in [5] constructed a function
nowhere continuous, which is connected in a given set of type G,. Simultaneous-
ly, he posed the problem: characterize the set of all connectivity points of a
function which has Darboux property. The present paper gives the answer to
this problem.

2. Preliminaries.

In the work we shall use the following notions, denotations and theorems.
Sometimes we shall identify a function with its graph (as a subset of R?). L(/,
x), L*(f, x) and L~ (f, x) will denote the set of all limit numbers of fat the point
x, the set of all right-sided limit numbers and the set of all left-sided limit
numbers, respectively. By card (4) we shall denote the cardinal of the set 4. For
a set M < R? proj, M, proj, M will denote the projections of M onto the x-axis
or the y-axis, respectively.
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P(xp) = {(x0, YIyeR},  osc(f, E) = sup|f(x) —f(y)l.

x,yeE

A set A is called c-dense in B if for any point x of the set B and an arbitrary
neighbourhood U of x the set A N U is of the power of continuum.

Definition 1 ([2]). If f/: R — R and x,€ R, then we say that x, is a right-sided
connectivity point of the function f (or f is connected from the right side at x,) if

(D) f(x) e LT(f; xp), -

(2) if a, be L*(f, x,) and M is an arbitrary continuum such that proj, M c
< (a, b), proj, M = [x,, x, + €] for some € > 0, then M N f # ).

In an analogous way we define the left-sided connectivity points of a func-
tion. A point x is a connectivity point of a function if it is a left-sided and a
right-sided connectivity point of the function.

By € ted (f), € ted*(f), € ted(f) we shall denote the set of all connectivity
points of the function f;, the set of all right-sided connectivity points of f and the
set of all left-sided connectivity points of f.

Definition 2 ([1]). Let f: R — R be an arbitrary function. A point x,€ R is called
a right-sided Darboux point of the function f (or f has the Darboux property from
the right-side) if the condition (1) is sulfilled and

(3) ifa,be L*(f, xy), a < b and ce (a, b), then for an arbitrary positive number
€ there exists a point te(xy, x, + €) such that f(t) = c.

The set of all right-sided Darboux points of a function f will be denoted by
2*(f).

Analogously, 27 (f) denotes the set of all left-sided Darboux points (defined
analogously) of a function f. Moreover, 2(f) = 27 (f) n 2~ (f).

Theorem C ([1]). The function f: R — R has the Darboux property if and only
f2(f) =R

Theorem D ([2]). The function f:R— R is connected if and only if
€ted(f) = R. '

By A° we shall denote the set of all condensation points of a set 4 (a point
x belongs to A°¢:if for every neighbourhood U of x, card (U n 4) = ¢). As usual,
o will denote the Euclidean metric in R or R2

3. Necessary condition.

Theorem 1. For every function f: R — R with the Darboux property the set of
all nonconnectivity points of f is empty or is dense in itself, a set of type F,.

Proof. We know from [4] that the set of nonconnectivity points of an
arbitrary function is of type F,. Now suppose that the set of nonconnectivity
points of a Darboux function f'is not dense in itself (and nonempty). Then there
exists a point x,€ R and a non-empty interval (a, b) such that
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(@, b) N (RN ted (/) = {xo} .

Assume that x, is a right-sided nonconnectivity point of £, The function f has the

Darboux property, hence f(x,) e L* (f; x,). Thus there exist a number § > 0 and
continuum M < R? such that

proij=[x09 x0+5]’ x0+5§b
and

0#MnP(xy) < {xp} xintL*(f, X)), foM=0.
We may assume that
M < [xg, X + 8] x [my, my],

where m,, mye L*(f, x,), m; < m,. Then there exist points c, de[x,, x, + &] such
that ¢ < d, f(c) < my, f(d) > m,. The function f][c, d] is connected ([2]). The set
M, ={(c, d] x [m), m)) n M} U {{c, d} x [m,, m,]}

is a continuum with the projection onto the x-axis equalled to [c, d]. This
continuum fulfils all requirements of the Definition 1 for x, but M n f = 0. The
contradiction ends the proof.

4. Sufficient condition.

Before we prove the sufficient condition we shall give some useful lemmas.

Lemma 1. Every c-dense in itself set of type F, is a countable union of ¢-dense
in itself closed sets.

Proof. Let D be an F, set, ¢-dense in itself. Then

where
B,(n=1, 2, ...) are closed sets.

The set () (B,\By) is countable; let then

n=1

0 @NE) = U ).

n=1

Let U, , be an open neighbourhood of the point x,forn = 1,2, ... Since x,€ D,
then there exists k,; , such that

card (B,ﬁl'" nU,,)=c.
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Now let I, , be any closed interval contained in U, , which fulfils the following
condition

card (Bi,,n1,)=c¢,
o(x,, I,,)>0.

Suppose that we have chosen the sets U, ,, B, andintervals [,,, < U, , such

that
card(B, N1,,) =¢
o(xy, 1,,) > 0.

Now let U, , , , be any open neigbourhood of the point x, and disjoint with
intervals I, ,, ..., I, ,- Then there exists k,, , , , with

card(B,, ., Uy 1) =c¢.

Let I, ., , be any nondegenerated closed interval contained in U,, , ; , such that
card (B, , eV S ) =€,
Q(xn’ Im+ l,n) > 0 .

In this way we have defined for every point x, a sequence of sets (B, ). _,
and a sequence of intervals (,, )5~ SO that

lim o(x,, Im,n) =0,

card(B, nl1,,) =c.
Now let

C,= U (B NI, )ui{x}.
m=1 )

It is easy to see that C, is a closed set for which every of its points is a point
of condensation of C,. Let now

D,=B,uC,.

One can prove that D = | ) D, and the sets D, have all the required properties.
n=1
Lemma 2. If D = I = [0, 1] is an Fyset, c-dense in itself, then there exists a
Darboux function f: I — R such that € ted (f) = I\D.
Proof. In view of Lemma 1, there exists a sequence D, of closed sets
¢-dense in themselves and such that
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We can assume that D, < D,,,,n=1,2, ....
Let us denote by E, the set of bilateral accumulation points of the set D,. Thus
each of the sets E, is ¢-dense in itself and E, = D,.

Now we shall prove that there exists a class {4, ,}%.y (Where £ denotes, as
a<

usually, the least uncountable ordinal) of sets fulfilling the following conditions:

A, ,NA,p=0, for (n, @) # (m, B), n, meN, a, f < N2
A, .<E, A,,=D,, neN, a< Q.

Let (Z,)7_ , denote a sequence of all intervals whose ends are rational numbers
and I, c I. Let 4;, < E, be any countable set which has common points with
every nonvoidset [, " E\, k = 1,2, .... Assume now that we have chosen the sets
Ay Ay .oy Ay such that A, c E;, 4y =D,, A, ,nA;=0,fori,j=1, .., n,
i # j and such that A4, is a countable set.

Nowlet 4, ,, < E,, "\ 4, be a countable set which has common points
i=1

with every nonvoid set
IkmEn+|, k=1,2, oo s

Since E, ., is a ¢-dense in itself set, then A, ., = D, .
Assume now that for an ordinal @ < £2we have chosen countable sets 4, ,for
neN, f < a such that

A",ﬂmA"',ﬂ' =0 for (n, B # @, B),n,neN, B, B <a,
A,p<E,, A,,=D,, neN, f<a.

Let 4, ,« EN ) | 4, be a countable set which has common points with
neNB<a
every nonvoid set (I, n E,) for k =1, 2, .. The set E, is ¢-dense in itself and

@
U U 4,5 is countable; then 4, , = D,.
B<an=1

Assume, finally, that we have chosen countable sets 4,, 5, me N, B < a and
Ayg ..., A,, which have the adequate properties. Let 4,.,,<

n

<E,, 1\( U UA4,.,vU4, a) be a coutable set with common points with
meN B<a i=1

every nonvoid set (I, N E, +1)-
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We have defined in this way a class {4, .} fulfilling all required condition.
Let (M), < o b€ a sequence of all continua contained in 7 with nondegenerate
projections on the x-axis. Let g: I — R be defined as follows

min{yeR: (x, y)e M} if xed, ,and
1 1

g(X)= {}’E[ ’—]:(x’ J’)EMa}?EQ,
n+1 n

0 for the remaining x from I.

If x,¢D, then x, is a point of continuity of g. If x,eD, and

n, = min{ne N|x,e D,}, then L(g, x,) = [0, —1—] From the definition of the
ny
function g it follows that the graph of g has common points with every con-
tinuum fulfilling the condition from Definition 1. Thus g is a connected function.
Now let us define a function f: I — R in the following way.

. 1 x? 1
X if for every ne N g(x) # . + "
f(x)= 8() Y 2(x) nn+1) 14+x?> n+1

0 for the remaining x from I.

Since for every y > 0

{xellf(x) = y} = {xellg(x) = y}

or there is one point x,e I such that

{xellg(x) =y} = {xellf(x) =y} ix,},

then f has the Darboux property. Analogously, as previously, if x,¢ D, then x,
is a point of continuity of f. If x,e D, and ny = min{ne N|x,e D,}, then L(f,
Xp) = [O, —1—] and for example L*(f, x,) (simultaneoulsy L™ (f, x,) = [O, l] for
n, m

some m > ng). Let n be an integer such that n > n, and
__ 1 X 1

nn+1) 14+x> n+1
M is a continuum fulfilling conditions in Definition 1 but M has no common
point with the graph of f. Thus x, is not a connectivity point of f.

In this way we have proved that € ted (f) = I'\D.

Lemma 3. If A < I is a countable set dense in I, then there exists an ascending
sequence (K., -1 of perfect and nowhere dense sets such that

@) K, =1\ U @, ™o 6", d;m’>>,
=1 n=1

M={(x5 y)ERzle[XOs 1]9 Yy
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0
where A= U (@, ™), b, dr A,

nm=1
and between any two intervals (a™, c¢{™), (a{™, c{™) there is at least one interval
(b(m) d('"))
p >7p 7

Proof. Let us denote by (x,) a sequence of the points of A, where
x, # Xx,, for n # m. Let

1 1
W=x, =x,

where 7, = min{ne N|x,e(a{", 1)}.
Let (b(", d") and b{", d{") be any two intervals such that (b{", d{") < (0, a{"),
b5V, d§P) = (c¢{", 1), and b, b, d, d{V¢ A. Now let

1 1) 1) N __
az“=x,,2,a3"—x,,3,c{’—x,,é,cp—x

ny>
P = Xy al? =, €0 = ) =

where n, = min{ne N|x,€(0, b")},

n3 = min{ne N|x,e(a", b")},

ny; = min{ne N|x,e(d", a(")},

nj = min{ne N|x,e(ai", a(")},

n, = min{ne N|x,e(c{", b{")},

ny = min{ne N|x,e (al", b{")},

ns = min{ne N|x,e(d", 1)},

ns=min{ne N|x,c(al’, 1)}.
Now between any two of the chosen intervals (a”, c¢{") and ", d") we select
intervals (b, d), ..., (b{p, dit) such that b, dV¢ 4 for j =3, ..., 10.

Continuing this process we infer sequences (a'”, c{) and (6", d{") of intervals
such that a{", cMe 4, b, dV¢ 4. Let :

[c e} o0
K, = I\<U (@, s o U &, d,S"))-
n=1 n=1

In every interval of the form (a{", c{") or (b{", d\") we select now, in anlogous
way, adequate sequences of intervals (a?, ¢?), (b, d?) fulfilling the con-
ditions:

— every interval (¢, ¢?) and (b, d?®) is contained in some interval (a%, c\)
or (by, dy),
— between any two intervals (a2, c?) and (a2, c?) there is some interval (b,

4
— A, cPed, b2, dV¢ A,
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Let
K= 1\(U @@ o U 6 a).

n=1 n=1

Continuing this proces we obtain a sequence of sets K, fulfilling all our
requirements.

Lemma 4. If A is a countable set which is dense in itself and nowhere dense in
I, then there exists a sequence (K,,),: _ | of nowhere dense perfect sets fulfilling the
condition (4) in Lemma 3.

The proof of this lemma is analogous to the proof of Lemma 3.

The only difference is that we choose all intervals of the form (b, d) in
such a way that (b/, d™)n A4 = 0.

Lemma 5. Let a nowhere dense perfect set K be of the form

K=1I\ O (a,, c,)u C) (o dn)>,

n=1 n=1

where between any two different intervals (a,, c,), (a,, ¢,.) there is some interval
(bi, d,) and, conversely, between any different intervals (b,, d,) and (b,,, d,,) there
is some interval (a;, c;).

Then there exists a Darboux function f: I — R such that

¢ted() = I\(U e c,bo 0, 1))
n=1
Proof. Define four functions
(pa‘(-: (a’ C) - R’ (Du.(':(aa C) - R’ '//h.d: (b’ d) - R9 %.d: (b, d) - R

in the following way:

s _ — _
lx—a l(x a+]> sin T =4 2 forxe(a,a+c],
2 c—a 2\c—a 4(x —a) 2
(/)a.c(x)=<l
le=x, (c—x+]> Sin1r(c—a) forxe(a+c,c),
2 c—a c—a 4(c — x) 2
n(d b) forxe(b, d]
) < 4(x—b)
Vp.a(X) =
sinM for xe(b+d, d).
L 4(d—x) 2

.0(x, {a, c}) for xe(a, c),

@, .(x) = max (¢, (x),
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Vha(x)  for xelxe(b, d)ly, 4(x) <0},

min (x. ¥, 4(x), x — o(x, {b, d}))  for the remaining x
from (b, d).

Since K is a nowhere dense set, then there exists a subsequence (a

%.d(x) =

c Wr
PAUR k;" n=1
of intervals of the sequence ((a,, ¢,));_, such that

—a, <a forn=1,2, ...

(1) (1)
An "n+|

— a I,

—_—
k'” "o
— (ay, ¢}) is one of the intervals of this sequence.

Let now ((a,,, ¢,»))2=1 be a sequence of intervals fulfilling the following
conditions:

— 40> a0 forn=1,2, ...
n n+1

J— —_—
k2
n n—%x

— no interval (@, €, ) is contained in the sequence ((a, ), ck(,,));“= -
n n n n

Suppose now that we have chosen 2m of such sequences. Now let (@, 2ms 10

€AX
€ am+ =1 DE a subsequence of ((a,, ¢,)-
n
such that
- ak(2m+l) <ak(2m+l) forn: 1’ 2, cee
n n+1
ﬁ— ak(2m+ > an
n

— (@415 €m4 1) 1s one of the terms of that sequence if it is not contained in
previously chosen sequences
— no interval (@, g, > €,en+n) is contained in the sequences
n n

((ak:”’ Cksll)));(; 19 **°y ((akLZIn)a ckgm))):(;l .

In this way we have chosen an infinite seuence of sequences of intervals from
the sequence ((a,, ¢,)),— such that every interval (a,, c,) is exactly one term in
exactly one of those sequences.

K N
Now let %: K\ U {a,, c,} = R be a function meeting every continuum which

n=1

is contained in the set {(x, y)el x R, —1 £ y < x}. Let

399



1
x4+ —. (D”kw-‘k('"’ (x) for x€(a, > € m) nm=1,2, ...
m n n n n

-
qlf)n‘dn(x) for xe(b", dn)i h= l, 29 LR
1
-J a,+ for x = a,,, m=1,2, ...
J(x) = 2m + 2
¢, + for x =¢,,, m=1,2, ...
2m + 3
) #(x) for the remaining x from 1.

The function defined in this way has to the following properties:
— f'is continuous at every point of the set

U @, c)u ) (b, d,),

n=1 n=1

L =[-Lx  forxé(lan clo L) (G d),

]cL‘(f,am), [—1, ]cL*(f, cn)s

— | =1,
l: 2m 4+ 2 2m+ 3

— f(x) #x for xel.
It follows from those properties that f has the Darboux property in 7, but the

set {0, 1}u () {a,, c,} is the set of nonconnectivity points of f, because an
n=1
adequate part of the segment {(x, y) € R*|x [0, 1], y = x} is a continuum disjoint
with the graph of f but fulfilling all remaining requirements of Definition 1.
Analogously, omitting only the first two steps of the previous construction of

sequences (4, > €, m))n=1, ONe can prove the following lemma
n n

Lemma 6. If a set K fulfils all suppositions of the Lemma 5, then there exists
a function f:1— R with the Darboux property and such that €ted(f) =

= I\O (a,,, C,,}.

n=1

Corollary 1. If X fulfils all supositions of the Lemma 5, g: /— R is a con-
tinuous function which is constant on no subinterval of I, e-arbitrary positive
number, then there exist functions f;: /- R, i =1, 2, 3, 4 such that
— f;is a Darboux function; i =1, 2, 3, 4,

— fi(x) #g(x) forxel,i=1,2, 3,4,
— filx)—gx)<e for xel, I=1, 2, 3, 4,
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Cx

— (gted(fl)=1\<

(@, })

{a,, c,}u {0}>,

n

@ted (f;) = I\

Y
@ted (f;) = I\( {a, cn}u{l}), |
(Y

IICR I|C8 qu

ted (f) = I'\\| U {a,, ¢,} U {0, 1}>’

more exactly:

g(a,)eint L*(f, a,), g(c,)eint L=(fi, ¢,), i=1,2,3, 4,

g(0) eintL*(f£, 0),j =2, 4,

g(1) eintL~(f,, 1) k=3, 4,
and

fi(x) #g(x) for xel.

Lemma 7. For every countable set A dense i the interval I there exists a
Darboux function f: I — R such that €ted () = '\ A4.

Proof. According to Lemma 3, there exists an ascending sequence of
nowhere dense perfect sets K, such that

— I\<U (a(m) C,Sm)) U(O (b,ﬁ"'), d’sm))>’

n=1 n=1

where AN\{0, 1} = U {a™, ¢}, b\™, d'™¢ A and between any two intervals

nm=1
@™, ¢, (@™, ¢™) there is some interval (b, d\™).
Consider m = 1. Depending on the fact if 0 or 1 belongs to 4 we define a
function A, : I - R as in the Corollary 1 such that the following conditions are
fulfilled:

— h, has the Darboux property on I,

—h,(x);éx+% for xel,

— L(h,, x) [0, x4+ %] for x¢ () [a", c{"),

n=1

— h, is constant on no subinterval of I,

) — h, is continuous for xe U (@™, ¢y U (B, dMy),

n=1
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— Gted(h) = INJ (@, ¢} if0, 144,

n=1

— %ted(h,)——[\(U{a“’ c”’}u{O}) if0eA, 1¢4,
— '6ted(h)—]\<U{a”’ c,ﬁ”}u{]}) if0¢A, 1ed,

— %ted(h) = 1\<U {a", "} u{o, ]}) if0, led.

n=1
Now let m = 2. Define a function h,:/— R in the following way. If
x¢ U (@, i) U (bS", di")], then let hy(x) = h,(x). On each interval (a'", ¢{V)

n=

or (b“’ d\") we define h, (like f, or f, in the Corollary 1) in such a way that there
are fulfilled the following conditions:

— hyl[a", ¢!V), hy|[bS", d'V] have the Darboux property,

— hy(x) # hy(x) for xe U [(@l", M)y u (B, d'M))]

n=1

— h, is constant on no subinterval of /,

— h, is continuous for xe U [(@®, ¢y u (b2, dP),

n=1

— |hy(x) = hy(0) =

NI—-

- hZ(x) =_>- 0’
— Gred (i, ) = @, e\ U {a?, ¢,

n=1

__ %ted (hzl(b,‘,”, d'('l))) — (b(l) d(l))\ U {a(Z) C(Z)}

Continuing this process we can define a sequence (4,,) of functions such that
the following conditions are fulfilled for me N:

— h,, has the Darboux property on the interval 7,

— P 1 (X) # B () for xe U [(@™, ¢y o (B, d™)),
— |h,,,+,(X)\h|(x)|§§n— for xel,

— h,, is constant on no subinterval of I,
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€K
— h,, is continuous for xe () [(a™, c{™) L (b, di™)],

n=1

— By () =h,(x)  for xeIN U ([a¥™, c™ v [b™, d™)),

n=1

- hm(x) g 09

x
— Gted (h,l(@" ", ") = (a0, "IN U ™, ey,
n=1

— Gted (b, |6, d ") = BV, d =N U {a™, )

n=1

form=2, ... and (5) for m = 1.

The sequence (4,,) is uniformly convergent. Let then

f=1limh,.
One can prove that the function f has all the required properties.

Corollary 2. For an arbitrary interval [a, f], a coutable set 4 < [a, f], an
arbitrary M > 0 there exists f,5: [a, B] - R such that € ted (f)/5) = [a, fI\ 4,

0 S£25). ose(f2sla, B) = M, lim inf/Ys(x) = 0 = lim inf/2s(x)

The proof of the next lemma is similar to the proof of Lemma 7, so we
omit it.

Lemma 8. For every countable set A dense in itself and nowhere dense in I there
exists a function f: I - R with the Darboux property and such € ted (f) = '\ A4,

li1(1)1 inff(x)=0= lirln inf f(x).

x—->0+ A

Corollary 3. For every interval [a, ], a countable set 4 < [a, ff] dense in itself
and nowher dense in [@, B] and an arbitrary number M > 0 there exists a
function

g5 [a, Bl — R such that €¥ted (g2p) = [a, fI\ A4,
0 < g2,(x), osc (g, [a, B)) = M and

lim infgys(x) =0 = lir}} inf gy p(x).
N a+ X— fi—

Now we can prove the main theorem.

Theorem 2. Let E c I be any set of type G, such that I'\ E is dense in itself.
Then there exists a function f: I — R with the Darboux property and such that
€ted(f) = E.

Proof. The set A = I\ E is of type F, and it is dense in itself. Let
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A =ANnA°.
Itis obvious that 4, is a set of type F,, c-dense in itself, and A\ 4, is a countable
set. Let now

B=1N4,.

Then B lT= (J 1, u C, where I, are nondegenerate components of B, and C a set
n=1

containing no intervals. Now let

A,= ) (ANA) A1,

n=1
Ay = (4,0 AN\(4,V 4)),
A3 = A\(A] ) Az v A4) .
One can easily prove that the following conditions are fulfilled:
— A=A,UA,UA4,U A,, ’
— A, is a c-dense in itself set of type F,,
— A, is a countable set dense in some union of closed nondegenerate
intervals I,
— A, is a countable set dense in itself and nowhere dense,
— A, is the set of accumulation points ofthe set A4,, belonging to 4 which do

not belong to 4, U 4,.
— AN A4;=0 fori#j,i,j=1,2,3,4.

Now let g,:I— R be a function (constructed in Lemma 2) for which
Fted(g) = I\4,.

Let A += | {x,,}. Forevery point x,, € 4, there exists a subsequence (/ mn =1

. n=1
of (1,); such that I , 0 1, = 0 for k{™ # k{” and o(x,,, I, ,m)—0.
n 1 n n— o
Now let (Ik(o,),’,’“=I be a sequence of all those intervals 7, which are not
contained in sequences (Ik~(,,,,);'“= ;- Let a function g,:7— R (behaving denota-

tions from the Corollary 2 for the set A4,) be definedas follows:
- .
(- l)k“).f,},f'/;'(x) for xe I, where Lw=le B,
‘ _ (©
e = f;,/’;," )(x) for XEIk;‘”’ where Ik‘;” = [a, B,
0 " for all remaining xe/.
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There exists an open set U= () (a,, B,) such that 4;,c U and Un

n=1

N (A4, U A,) = 0. Respecting.now denotations from the Corollary 3 for the set
A, let g;: I — R be defined as follows:

{qt‘r,{"ﬂ"(x) for X€ (a)n ﬂn)
&3\ X) = X
for all remained xe/.

Now let g,:/— R be any continuous and nowhere constant function for
which the sum of g, and each of the functions appeared in all the previous
constructions of the functions g,, g, g; as well as their sums and limits is constant
on no subinterval of I. In this way the function

f=a+tg+g+g
has all the required properties.
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Pe3momMme .

B paGote moka3aHo, 4TO s TOro 4ro6nl E OGBLIO MHOXECTBOM HECBA3HOCTH HEKOTOPOi
¢byskuu JapOy Heo6X0AMMO H IUCTATOYHO, YTOOB! E ObLIO F, — MHOXECTBOM ILIOTHBIM B cebe.
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